首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
Pancreatic islets from adult rats whose mothers were protein restricted during lactation undersecrete insulin. The current work analyzes whether this secretory dysfunction can be improved when the pancreatic islets are grafted into hyperglycemic diabetic rats. Two groups of rats were used: the adult offspring from dams that received a low protein diet (4%) during the initial 2/3 of lactation (LP) and, as a control, the adult offspring from dams that consumed a normal protein diet (23%) during the entire period of lactation (NP). Islets from NP- and LP-rats were transplanted into diabetic recipient rats, which were generated by streptozotocin treatment. The islets were transplanted via the portal vein under anesthesia. The fed blood glucose levels were monitored during the 4 days post-transplantation. Transplanted islets from LP-rats (T LP) decreased the fed glucose levels of diabetic rats 34% (21.37 ± 0.24 mM, p<0.05); however, the levels still remained 2-fold higher than those of the sham-operated controls (6.88 ± 0.39 mM, p<0.05). Grafts with NP-islets (T NP) produced the same effect as the LP-islets in diabetic rats. The high fasting blood glucose levels of diabetic rats were improved by the transplantations. Islet grafts from both rat groups recovered 50% of the retroperitoneal fat mass of the diabetic rats (0.55 ± 0.08 g/100 g of body weight for T NP and 0.56 ± 0.07 g/100 g of body weight for T LP, p<0.05). Because pancreatic islets from both the NP- and LP-rats were able to regulate fasting blood glucose concentrations in hyperglycemic rats, we propose that the altered function of pancreatic islets from LP-rats is not permanent.  相似文献   

2.
We hypothesized that protein source in the nutritionally adequate AIN-93G diets fed during gestation, lactation, and weaning influences food intake (FI) regulation in male offspring of Wistar rats. Pregnant rats were fed the recommended casein-based (C) or soy protein-based (S) diet during gestation (experiment 1) or during gestation and lactation (experiment 2). Pups (n = 12 per group) weaned to C or S diets were followed for 9 wk (experiment 1) or 14 wk (experiment 2). At termination, body weight was 5.4% and 9.4% higher, respectively, in offspring of dams fed the S diet. Altered FI regulation was shown by failure of devazepide (a CCK-A receptor blocker) to block FI reduction after protein preloads in offspring of S diet-fed dams, whereas it had a strong effect on offspring of C diet-fed dams (P < 0.005). Similarly, naloxone (an opioid receptor blocker) blocked FI reduction more after casein than after soy protein preloads (P < 0.01). In experiment 2, offspring of dams fed the S diet had higher hypothalamic gene expression of agouti related protein at weaning (P < 0.05), and higher FI was found throughout postweaning (P < 0.0001). FI reduction after protein preloads at week 7 and after glucose preloads at week 13 was greater in offspring of C diet-fed dams (P < 0.05). Plasma insulin at weaning and insulin, ghrelin, and glucagon-like peptide-1 at week 15 were higher in offspring of S diet-fed dams (all P < 0.05). In conclusion, nutritionally complete C and S diets consumed during gestation and lactation differ in their effects on body weight and FI regulation in the offspring. Extending the diet from gestation alone to throughout gestation and lactation exaggerated the adverse effects of the S diet. However, the diet consumed postweaning had little effect on the outcome.  相似文献   

3.
Our objective was to investigate the long-term metabolic effects of postnatal essential fatty acid deficiency (EFAD). Mouse dams were fed an EFAD diet or an isoenergetic control diet 4 days before delivery and throughout lactation. The pups were weaned to standard diet (STD) and were later subdivided into two groups: receiving high fat diet (HFD) or STD. Body composition, energy expenditure, food intake and leptin levels were analyzed in adult offspring. Blood glucose and plasma insulin concentrations were measured before and during a glucose tolerance test. EFAD offspring fed STD were leaner with lower plasma leptin and insulin concentrations compared to controls. EFAD offspring fed HFD were resistant to diet-induced obesity, had higher energy expenditure and lower levels of plasma leptin and insulin compared to controls. These results indicate that the fatty acid composition during lactation is important for body composition and glucose tolerance in the adult offspring.  相似文献   

4.
Protein restriction during the suckling phase can malprogram rat offspring to a lean phenotype associated with metabolic dysfunctions later in life. We tested whether protein-caloric restriction during lactation can exacerbate the effect of a high-fat (HF) diet at adulthood. To test this hypothesis, we fed lactating Wistar dams with a low-protein (LP; 4% protein) diet during the first 2 weeks of lactation or a normal-protein (NP; 23% protein) diet throughout lactation. Rat offspring from NP and LP mothers received a normal-protein diet until 60 days old. At this time, a batch of animals from both groups was fed an HF (35% fat) diet, while another received an NF (7% fat) diet. Maternal protein-caloric restriction provoked lower body weight and fat pad stores, hypoinsulinemia, glucose intolerance, higher insulin sensitivity, reduced insulin secretion and altered autonomic nervous system (ANS) function in adult rat offspring. At 90 days old, NP rats fed an HF diet in adulthood displayed obesity, impaired glucose homeostasis and altered insulin secretion and ANS activity. Interestingly, the LP/HF group also presented fat pad and body weight gain, altered glucose homeostasis, hyperleptinemia and impaired insulin secretion but at a smaller magnitude than the NP-HF group. In addition, LP/HF rats displayed elevated insulin sensitivity. We concluded that protein-caloric restriction during the first 14 days of life programs the rat metabolism against obesity and insulin resistance exacerbation induced by an obesogenic HF diet.  相似文献   

5.
Low birth weight in humans is associated with an increased risk of cardiovascular disease. Humans with heart failure have a reduced beta-adrenergic response. The aim of this study was to investigate the hemodynamic response to the beta-adrenergic agonist isoproterenol and to identify molecular deficiencies that may be predictive of cardiac failure in a low-birth weight rodent model that develops insulin resistance and type 2 diabetes in adulthood. Wistar rats were fed a control or a low-protein (LP) diet throughout pregnancy and lactation. The resting heart rate and blood pressure of the 3-mo-old male offspring of these dams, termed "control" and "LP" groups, respectively, and their responses to isoproterenol (ISO) infusion were monitored by radiotelemetry. The protein expression of beta-adrenergic signaling components was also measured by Western blot analysis. Basal heart rate was increased in LP offspring (P<0.04), although mean arterial pressure was comparable with controls. Chronotropic effects of ISO were blunted in LP offspring with significant delays to maximal response (P=0.01), a shorter duration of response (P=0.03), and a delayed return to baseline (P=0.01) at the lower dose (0.1 microg.kg-1.min-1). At the higher dose (1.0 microg.kg-1.min-1 ISO), inotropic response was blunted (P=0.03) but quicker (P=0.001). In heart tissue of LP offspring, beta1-adrenergic receptor expression was reduced (P<0.03). beta1-Adrenergic receptor kinase and both stimulatory and inhibitory G protein levels remained unchanged, whereas beta-arrestin levels were higher (P<0.03). Finally, insulin receptor-beta expression was reduced in LP offspring (P<0.012). LP offspring have reduced beta-adrenergic responsiveness and attenuated adrenergic and insulin signaling, suggesting that intrauterine undernutrition alters heart failure risk.  相似文献   

6.
Maternal overnutrition during suckling period is associated with increased risk of metabolic disorders in the offspring. We aimed to assess the effect of Vitis vinifera L. grape skin extract (ACH09) on cardiovascular and metabolic disorders in adult male offspring of rats fed a high-fat (HF) diet during lactation. Four groups of female rats were fed: control diet (7% fat), ACH09 (7% fat plus 200 mg kg?1 d?1 ACH09 orally), HF (24% fat), and HF+ACH09 (24% fat plus 200 mg kg?1 d?1 ACH09 orally) during lactation. After weaning, all male offspring were fed a control diet and sacrificed at 90 or 180 days old. Systolic blood pressure was increased in adult offspring of HF-fed dams and ACH09 prevented the hypertension. Increased adiposity, plasma triglyceride, glucose levels and insulin resistance were observed in offspring from both ages, and those changes were reversed by ACH09. Expression of insulin cascade proteins IRS-1, AKT and GLUT4 in the soleus muscle was reduced in the HF group of both ages and increased by ACH09. The plasma oxidative damage assessed by malondialdehyde levels was increased, and nitrite levels decreased in the HF group of both ages, which were reversed by ACH09. In addition, ACH09 restored the decreased plasma and mesenteric arteries antioxidant activities of superoxide dismutase, catalase and glutathione peroxidase in the HF group. In conclusion, the treatment of HF-fed dams during lactation with ACH09 provides protection from later-life hypertension, body weight gain, insulin resistance and oxidative stress. The protective effect ACH09 may involve NO synthesis, antioxidant action and activation of insulin-signaling pathways.  相似文献   

7.
Maternal nutrient restriction and impaired fetal growth are associated with postnatal insulin resistance, hyperinsulinemia, and glucose intolerance in humans but not consistently in other species, such as the rat or sheep. We therefore determined the effect of mild (85% ad libitum intake/kg body wt) or moderate (70% ad libitum intake/kg body wt) maternal feed restriction throughout pregnancy on glucose and insulin responses to an intravenous glucose tolerance test (IVGTT) in the young adult guinea pig. Maternal feed restriction reduced birth weight (mild and moderate: both P < 0.02) in male offspring. Moderate restriction increased plasma glucose area under the curve (P < 0.04) and decreased the glucose tolerance index (K(G)) (P < 0.02) during the IVGTT in male offspring compared with those of mildly restricted but not of ad libitum-fed mothers. Moderate restriction increased fasting plasma insulin (P < 0.04, adjusted for litter size) and the insulin response to IVGTT (P < 0.001), and both moderate and mild restriction increased the insulin-to-glucose ratio during the IVGTT (P < 0.003 and P < 0.02) in male offspring. When offspring were classed into tertiles according to birth weight, glucose tolerance was not altered, but fasting insulin concentrations were increased in low compared with medium birth weight males (P < 0.03). The insulin-to-glucose ratio throughout the IVGTT was increased in low compared with medium (P < 0.01) or high (P < 0.05) birth weight males. Thus maternal feed restriction in the guinea pig restricts fetal growth and causes hyperinsulinemia in young adult male offspring, suggestive of insulin resistance. These findings suggest that mild to moderate prenatal perturbation programs postnatal glucose homeostasis adversely in the guinea pig, as in the human.  相似文献   

8.
9.
Developmental programming of postnatal pancreatic β-cell and peripheral insulin function by maternal nutrient reduction (MNR) has been extensively investigated in rodents and sheep, but no data exist from nonhuman primate offspring of MNR mothers. We hypothesized that moderate levels of MNR would result in developmental programming of postnatal β-cell function and peripheral insulin sensitivity that lead to emergence of a prediabetic state prior to puberty. Prepregnancy phenotype of 18 nonpregnant baboons was matched. During pregnancy and lactation 12 mothers ate chow ad libitum (controls), while six ate 70% of chow consumed by controls (weight-adjusted MNR). Weaned offspring ate normal chow. At 3.5 ± 0.18 yr (mean ± SE) in an intravenous glucose tolerance test, conscious, tethered MNR juvenile offspring (2 females and 4 males) showed increased fasting glucose (P < 0.04), fasting insulin (P < 0.04), and insulin area under the curve (AUC; P < 0.01) compared with controls (8 females and 4 males). Insulin AUC also increased following an arginine challenge (P < 0.02). Baseline homeostatic model assessment insulin β-cell sensitivity was greater in MNR offspring than controls (P < 0.03). In a hyperinsulinemic, euglycemic clamp, the glucose disposal rate decreased 26% in MNR offspring. Changes observed were not sex dependent. MNR in pregnancy and lactation programs offspring metabolic responses, increasing insulin resistance and β-cell responsiveness, resulting in emergence of an overall phenotype that would predispose to later life type-2 diabetes, especially, should other dietary challenges such as a Westernized diet be experienced.  相似文献   

10.
During the early post-natal period, offspring are vulnerable to environmental insults, such as nutritional and hormonal changes, which increase risk to develop metabolic diseases later in life. Our aim was to understand whether maternal obesity during lactation programs offspring to metabolic syndrome and obese phenotype, in addition we aimed to assess the peripheral glucose metabolism and hypothalamic leptin/insulin signaling pathways. At delivery, female Wistar rats were randomly divided in two groups: Control group (CO), mothers fed a standard rodent chow (Nuvilab); and Diet-induced obesity group (DIO), mothers who had free access to a diet performed with 33% ground standard rodent chow, 33% sweetened condensed milk (Nestlé), 7% sucrose and 27% water. Maternal treatment was performed throughout suckling period. All offspring received standard rodent chow from weaning until 91-day-old. DIO dams presented increased total body fat and insulin resistance. Consequently, the breast milk from obese dams had altered composition. At 91-day-old, DIO offspring had overweight, hyperphagia and higher adiposity. Furthermore, DIO animals had hyperinsulinemia and insulin resistance, they also showed pancreatic islet hypertrophy and increased pancreatic β-cell proliferation. Finally, DIO offspring showed low ObRb, JAK2, STAT-3, IRβ, PI3K and Akt levels, suggesting leptin and insulin hypothalamic resistance, associated with increased of hypothalamic NPY level and decreased of POMC. Maternal obesity during lactation malprograms rat offspring to develop obesity that is associated with impairment of melanocortin system. Indeed, rat offspring displayed glucose dyshomeostasis and both peripheral and central insulin resistance.  相似文献   

11.
Fetal programming is linked to adulthood metabolic and chronic diseases. We hypothesized that early fish oil (FO) intake would revert the programming responses in adult offspring. Pregnant mice were fed either standard chow (SC) or a low-protein diet (LP) throughout pregnancy/lactation. At weaning, the following groups were formed: SC and SC-FO, LP and LP-FO, which were fed SC or SC+FO, respectively. The LP offspring are predisposed to becoming fat, hypercholesterolemic and hyperglycemic. In addition, during adulthood, they become hypertensive with hepatic steatosis and have a high level of sterol regulatory element binding protein (SREBP-1). However, LP offspring that were fed an FO-enriched diet have decreased body mass (BM) gain and lower final BM. In addition, with this diet, these mice have improved lipid metabolism with a decrease in total cholesterol (TC) and triacylglyceride (TG) levels, reduced fat pad masses and reduced adipocyte size. Furthermore, these LP offspring show reduced liver structural damage of alanine aminotransferase (ALT), liver steatosis with low SREBP-1 protein expression and high peroxisome proliferator activity receptor-alpha expression, and improvement of blood pressure (BP) and tumor necrosis factor (TNF)-alpha level. Early fish oil intake has beneficial effects on the programming responses that control body fat pad, glucose and lipid metabolism, and liver and adipose tissue structure in adult programmed offspring.  相似文献   

12.
Low birth weight has been associated with increased obesity in adulthood. It has been shown that dietary salt restriction during intrauterine life induces low birth weight and insulin resistance in adult Wistar rats. The present study had a two-fold objective: to evaluate the effects that low salt intake during pregnancy and lactation has on the amount and distribution of adipose tissue; and to determine whether the phenotypic changes in fat mass in this model are associated with alterations in the activity of the renin-angiotensin system. Maternal salt restriction was found to reduce birth weight in male and female offspring. In adulthood, the female offspring of dams fed the low-salt diet presented higher adiposity indices than those seen in the offspring of dams fed a normal-salt diet. This was attributed to the fact that adipose tissue mass (retroperitoneal but not gonadal, mesenteric or inguinal) was greater in those rats than in the offspring of dams fed a normal diet. The adult offspring of dams fed the low-salt diet, compared to those dams fed a normal-salt diet, presented the following: plasma leptin levels higher in males and lower in females; plasma renin activity higher in males but not in females; and no differences in body weight, mean arterial blood pressure or serum angiotensin-converting enzyme activity. Therefore, low salt intake during pregnancy might lead to the programming of obesity in adult female offspring.  相似文献   

13.
We evaluated the effect of a high-protein diet (HP) on pregnancy, lactational and rearing success in mice. At the time of mating, females were randomly assigned to isoenergetic diets with HP (40% w/w) or control protein levels (C; 20%). After parturition, half of the dams were fed the other diet throughout lactation resulting in four dietary groups: CC (C diet during gestation and lactation), CHP (C diet during gestation and HP diet during lactation), HPC (HP diet during gestation and C diet during lactation) and HPHP (HP diet during gestation and lactation). Maternal and offspring body mass was monitored. Measurements of maternal mammary gland (MG), kidney and abdominal fat pad masses, MG histology and MG mRNA abundance, as well as milk composition were taken at selected time points. HP diet decreased abdominal fat and increased kidney mass of lactating dams. Litter mass at birth was lower in HP than in C dams (14.8 v. 16.8 g). Dams fed an HP diet during lactation showed 5% less food intake (10.4 v. 10.9 g/day) and lower body and MG mass. On day 14 of lactation, the proportion of MG parenchyma was lower in dams fed an HP diet during gestation as compared to dams fed a C diet (64.8% v. 75.8%). Abundance of MG α-lactalbumin, β-casein, whey acidic protein, xanthine oxidoreductase mRNA at mid-lactation was decreased in all groups receiving an HP diet either during gestation and/or lactation. Milk lactose content was lower in dams fed an HP diet during lactation compared to dams fed a C diet (1.6% v. 2.0%). On days 14, 18 and 21 of lactation total litter mass was lower in litters of dams fed an HP diet during lactation, and the pups' relative kidney mass was greater than in litters suckled by dams receiving a C diet. These findings indicate that excess protein intake in reproducing mice has adverse effects on offspring early in their postnatal growth as a consequence of impaired lactational function.  相似文献   

14.
Objective: To determine whether treatment of rat dams with oleoyl‐estrone (OE) has an effect on the offspring's long‐term response to diet restriction during lactation. Methods and Procedures: Control, OE‐treated, and diet‐restricted dams were treated up to day 15 of lactation. Changes in food intake and body weight were recorded for dams and their pups. After weaning, pups received a 4‐week standard diet followed by a 4‐week period of high‐fat diet. Lipid, protein, and energy content of pups plus energy intake and efficiency. Serum metabolites (glucose, urea, and cholesterol) and serum hormones (adiponectin, leptin, insulin, and sexual hormones). Results: Neither pups from dams in the OE‐treated nor in the diet‐restricted group showed significant changes in weight, though these two groups ingested 79% of food ingested by controls. At weaning, the pups from OE‐treated rats were smaller than those of the control or diet‐restricted groups. These pups maintained the differences in size and lipid content during the 4‐week standard‐diet period, whereas pups from diet‐restricted dams showed a sharp decrease in their lipid content. During the 4 weeks of high‐fat diet, the male offspring from OE‐treated dams increased the difference in lipid content in relation to the pups from control dams whereas in females the differences decreased. Female offspring from diet‐restricted dams showed the most marked changes in metabolite and hormone levels in relation to controls. Discussion: Treatment of lactating dams with OE programs the metabolic response of their offspring to resist the challenge of a high‐fat diet that would lead to obesity in adulthood.  相似文献   

15.
目的:探讨孕期和哺乳期的高脂饮食能否导致子代在生命早期出现糖脂代谢紊乱。方法成年雌性C57BL/6J小鼠与正常饮食雄性小鼠进行交配,孕鼠随机分为高脂饮食组和正常饮食组,在孕期和哺乳期喂养高脂饲料或正常饲料,至交配后第一代鼠断乳时(3周龄)观察其糖脂代谢相关性指标以及肝脏病理表现。结果较正常饮食组子鼠相比,高脂饮食子鼠出生体重更低( P<0.05)。在断乳时,高脂饮食组雄性子鼠体重较重( P =0.038),腹腔糖耐量实验30 min和60 min血糖明显升高(P值分别为<0.001和<0.01),糖耐量曲线下面积较大(P=0.0016),HOMA-IR值较大(P<0.05),雌性子鼠腹腔糖耐量实验在30 min血糖高于正常组(P<0.01),而糖耐量曲线下面积和HOMA-IR值在两组之间无明显统计学意义。雄性和雌性子代小鼠空腹胆固醇水平高脂饮食组均高于正常饮食组( P值分别为<0.0001和0.0004),而两组雄性和雌性子代小鼠空腹胰岛素和甘油三酯水平差异均无显著性( P均>0.05)。另外,在断乳时高脂饮食子鼠出现肝脏脂肪变性,雌性和雄性子鼠无明显差异。结论母鼠孕期和哺乳期高脂饮食能够诱导子代在生命早期就能出现糖脂代谢紊乱并且雄性子鼠更易出现肥胖、糖耐量异常、胰岛素抵抗。  相似文献   

16.
Insulin resistance and obesity are components of the metabolic syndrome that includes development of cardiovascular disease and diabetes with advancing age. The thrifty phenotype hypothesis suggests that offspring of poorly nourished mothers are predisposed to the various components of the metabolic syndrome due to adaptations made during fetal development. We assessed the effects of maternal nutrient restriction in early gestation on feeding behavior, insulin and glucose dynamics, body composition, and liver function in aged female offspring of ewes fed either a nutrient-restricted [NR 50% National Research Council (NRC) recommendations] or control (C: 100% NRC) diet from 28 to 78 days of gestation, after which both groups were fed at 100% of NRC from day 79 to lambing and through lactation. Female lambs born to NR and C dams were reared as a single group from weaning, and thereafter, they were fed 100% NRC recommendations until assigned to this study at 6 yr of age. These female offspring were evaluated by a frequently sampled intravenous glucose tolerance test, followed by dual-energy X-ray absorptiometry for body composition analysis prior to and after ad libitum feeding of a highly palatable pelleted diet for 11 wk with automated monitoring of feed intake (GrowSafe Systems). Aged female offspring born to NR ewes demonstrated greater and more rapid feed intake, greater body weight gain, and efficiency of gain, lower insulin sensitivity, higher insulin secretion, and greater hepatic lipid and glycogen content than offspring from C ewes. These data confirm an increased metabolic "thriftiness" of offspring born to NR mothers, which continues into advanced age, possibly predisposing these offspring to metabolic disease.  相似文献   

17.
Absence of leptin is known to disrupt the development of energy balance regulatory mechanisms. We investigated whether administration of leptin to normally nourished rats affects energy balance in their offspring. Leptin (2 mg.kg(-1).day(-1)) was administered from day 14 of pregnancy and throughout lactation. Male and female offspring were fed either on chow or on high-fat diets that elicited similar levels of obesity in the sexes from 6 wk to 15 mo of age. Treatment of the dams with leptin prevented diet-induced increases in the rate of weight gain, retroperitoneal fat pad weight, area under the intraperitoneal glucose tolerance curve, and fasting plasma insulin concentration in female offspring. In the male offspring, the diet-induced increase in weight gain was prevented and increased fat pad weight was reduced. Energy intake per rat was higher in response to the obesogenic diet in male offspring of saline-treated but not leptin-treated dams. A similar trend was seen in 3-mo-old female offspring. Energy expenditure at 3 mo of age was higher for a given body weight in female offspring of leptin-treated compared with saline-treated dams when these animals were fed on the obesogenic diet. A similar trend was seen for male rats fed on the obesogenic diet. Thus leptin levels during pregnancy and lactation can affect the development of energy balance regulatory systems in their offspring.  相似文献   

18.
Risk of obesity in adult life is subject to programming during gestation. To examine whether in utero exposure to maternal obesity increases the risk of obesity in offspring, we developed an overfeeding-based model of maternal obesity in rats utilizing intragastric feeding of diets via total enteral nutrition. Feeding liquid diets to adult female rats at 220 kcal/kg(3/4) per day (15% excess calories/day) compared with 187 kcal/kg(3/4) per day for 3 wk caused substantial increase in body weight gain, adiposity, serum insulin, leptin, and insulin resistance. Lean or obese female rats were mated with ad libitum AIN-93G-fed male rats. Exposure to obesity was ensured to be limited only to the maternal in utero environment by cross-fostering pups to lean dams having ad libitum access to AIN-93G diets throughout lactation. Numbers of pups, birth weight, and size were not affected by maternal obesity. Male offspring from each group were weaned at postnatal day (PND)21 to either AIN-93G diets or high-fat diets (45% fat calories). Body weights of offspring from obese dams did not differ from offspring of lean dams when fed AIN-93G diets through PND130. However, offspring from obese dams gained remarkably greater (P < 0.005) body weight and higher % body fat when fed a high-fat diet. Body composition was assessed by NMR, X-ray computerized tomography, and weights of adipose tissues. Adipose histomorphometry, insulin sensitivity, and food intake were also assessed in the offspring. Our data suggest that maternal obesity at conception leads to fetal programming of offspring, which could result in obesity in later life.  相似文献   

19.
To investigate the early renal alterations due to severe maternal protein restriction (MPR) Wistar dams received 23% (normal protein, NP) or 5% (low protein, LP) chow during gestation and lactation periods. In NP offspring at birth, the cortex-to-medulla (C/M) ratio was 35% greater in female than in male offspring and the mature/immature glomeruli ratio was lower in both sexes of LP offspring than in the matched NP ones (by 20%). At birth and at weaning the kidney of the LP offspring showed fewer glomeruli (40% less) than the age-matched NP offspring. The NP female offspring had almost 20% fewer glomeruli than the matched male offspring. At weaning, the number of glomeruli was positively correlated with BM at birth (R=0.86; P<0.001). The effects of gender and maternal protein restriction, both individually and overall, based on biometrical and stereological parameters were: day 1, MPR largely responsible for the majority of alterations observed in LP groups, however gender influenced C/M ratio; day 21, MPR and gender interacted and modified the number of glomeruli per kidney. The early adverse of MPR effect on renal development is disproportionate between mature and immature glomeruli at birth leading to fewer glomeruli at weaning. This supports epidemiological data in humans underlying why fetuses with low birth weight carry an increased risk of mortality from chronic diseases in adulthood, including hypertension.  相似文献   

20.
Maternal obesity in women is increasing worldwide. The objective of this study was to evaluate differences in adipose tissue metabolism and function in adult male offspring from obese and control fed mothers subjected to an ad libitum feeding challenge. We developed a model in which obese ewes were fed 150% of feed provided for controls from 60 days before mating to term. All ewes were fed to requirements during lactation. After weaning, F1 male offspring were fed only to maintenance requirements until adulthood (control = 7, obese = 6), when they were fed ad libitum for 12 weeks with intake monitored. At the end of the feeding challenge offspring were given an intravenous glucose tolerance test (IVGTT), necropsied, and adipose tissue collected. During the feeding trial F1obese males consumed more (P < 0.01), gained more weight (P < 0.01) and became heavier (P < 0.05) than F1control males. During IVGTT, Obese F1 offspring were hyperglycemic and hypoinsulinemic (P < 0.01) compared to F1 control F1. At necropsy perirenal and omental adipose depots weights were 47% and 58% greater respectively and subcutaneous fat thickness 41% greater in F1obese vs F1control males (P < 0.05). Adipocyte diameters were greater (P ≤ 0.04) in perirenal, omental and subcutaneous adipose depots in F1obese males (11, 8 and 7% increase vs. control, respectively). When adipose tissue was incubated for 2 hrs with C-14 labeled acetate, subcutaneous, perirenal, and omental adipose tissue of F1 obese males exhibited greater incorporation (290, 83, and 90% increase vs. control, respectively P < 0.05) of acetate into lipids. Expression of fatty acid transporting, binding, and syntheses mRNA and protein was increased (P < 0.05) compared to F1 control offspring. Maternal obesity increased appetite and adiposity associated with increased adipocyte diameters and increased fatty acid synthesis in over-nourished adult male offspring.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号