首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
During the transition from mitosis to meiosis, the kinetochore undergoes significant reorganization, switching from a bipolar to a monopolar orientation. To examine the centromere proteins that are involved in fundamental reorganization in meiosis, we observed the localization of 22 mitotic and 2 meiotic protein components of the kinetochore during meiosis in living cells of the fission yeast. We found that the 22 mitotic proteins can be classified into three groups: the Mis6-like group, the NMS (Ndc80-Mis12-Spc7) group, and the DASH group, based on their meiotic behavior. Mis6-like group proteins remain at the centromere throughout meiosis. NMS group proteins disappear from the centromere at the onset of meiosis and reappear at the centromere in two steps in late prophase. DASH group proteins appear shortly before metaphase of meiosis I. These observations suggest that Mis6-like group proteins constitute the structural basis of the centromere and that the NMS and DASH group proteins reassemble to establish the functional metaphase kinetochore. On the other hand, the meiosis-specific protein Moa1, which plays an important role in forming the meiotic monopolar kinetochore, is loaded onto the centromere significantly earlier than the NMS group, whereas another meiosis-specific protein, Sgo1, is loaded at times similar to the NMS group.  相似文献   

2.
3.
4.
Hexaploid wheat possesses 42 chromosomes derived from its three ancestral genomes. The 21 pairs of chromosomes can be further divided into seven groups of six chromosomes (one chromosome pair being derived from each of the three ancestral genomes), based on the similarity of their gene order. Previous studies have revealed that, during anther development, the chromosomes associate in 21 pairs via their centromeres. The present study reveals that, as a prelude to meiosis, these 21 chromosome pairs in hexaploid (and tetraploid) wheat associate via the centromeres into seven groups as the telomeres begin to cluster. This results in the association of multiple chromosomes, which then need to be resolved as meiosis progresses. The formation of the seven chromosome clusters now explains the occasional occurrence of remnants of multiple associations, which have been reported at later stages of meiosis in hexaploid (and tetraploid) wheat. Importantly, the chromosomes have the opportunity to be resorted via these multiple interactions. As meiosis progresses, such interactions are resolved through the action of loci such as Ph1, leaving chromosomes as homologous pairs.  相似文献   

5.
During mitosis, replicated chromosomes (sister chromatids) become attached at the kinetochore by spindle microtubules emanating from opposite poles and segregate equationally. In the first division of meiosis, however, sister chromatids become attached from the same pole and co-segregate, whereas homologous chromosomes connected by chiasmata segregate to opposite poles. Disorder in this specialized chromosome attachment in meiosis is the leading cause of miscarriage in humans. Recent studies have elucidated the molecular mechanisms determining chromosome orientation, and consequently segregation, in meiosis. Comparative studies of meiosis and mitosis have led to the general principle that kinetochore geometry and tension exerted by microtubules synergistically generate chromosome orientation.  相似文献   

6.
Watanabe Y 《Cell》2006,126(6):1030-1032
Meiosis includes a reductional division in which homologous chromosomes, rather than sister chromatids, are segregated to opposite poles of the spindle. In this issue of Cell, report that casein kinase 1 contributes to this process by promoting the attachment of both kinetochores of a homolog to only one pole of the meiotic spindle in budding yeast.  相似文献   

7.
Survivin is a member of inhibitors of apoptosis proteins (IAPs), and also belongs to be a member of the chromosomal passenger complex (CPC) which has multiple functions including inhibition of apoptosis and regulation of cell division and SAC activity. Plk1 (polo-like kinase 1) associates with the spindle poles and also distributes to the kinetochores and is shown to involve in spindle organization, APC/C activation and cytokinesis in many models. Our recent work has shown that Survivin is a critical regulator of chromosome segregation and spindle assembly checkpoint (SAC) in meiosis. In the present study, we found that Plk1 co-localized with Survivin at metaphase I (MI) and telophase I (TI) stage after GVBD. Plk1 dispersed into the oocyte cytoplasm or accumulated near the chromosomes after the depletion of Survivin by morpholino (MO) injection. Our results showed that the localization of Plk1 to kinetochores required the involvement of Survivin.  相似文献   

8.
Summary InSaprolegnia, kinetochore microtubules persist throughout the mitotic nuclear cycle but, whilst present at leptotene, they disappear coincidently with the formation of synaptonemal complexes at pachytene and reform at metaphase I. In some other fungi chromosomal segregation is random in meiosis and non-random in mitosis. The attachment of chromosomes to persistent kinetochore microtubules in mitosis, but not meiosis, inSaprolegnia provides a plausible explanation for such behaviour. At metaphase I each bivalent is connected to the spindle by 2 laterally paired kinetochore microtubules whereas at metaphase II (as in mitosis) each univalent bears only one kinetochore microtubule, thus showing that all kinetochores are fully active at all stages of meiosis.  相似文献   

9.
The orderly reduction in chromosome number that occurs during meiosis depends on two aspects of chromosome behavior specific to the first meiotic division. These are the retention of cohesion between sister centromeres and their attachment to microtubules that extend to the same pole (monopolar attachment). By deleting genes that are upregulated during meiosis, we identified in Saccharomyces cerevisiae a kinetochore associated protein, Mam1 (Monopolin), which is essential for monopolar attachment. We also show that the meiosis-specific cohesin, Rec8, is essential for maintaining cohesion between sister centromeres but not for monopolar attachment. We conclude that monopolar attachment during meiosis I requires at least one meiosis-specific protein and is independent of the process that protects sister centromere cohesion.  相似文献   

10.
11.
12.
A technique is described which permits blocks of tissue to be flat-embedded in euhedral plastic castings and then to be transected along a plane so that sections may be cut which are optimally oriented to the internal ultrastructure of the block. In the transection procedure a hollow plastic cylinder is placed on the specimen trimming block. The cylinder's top prescribes a plane to which the tissue block is accurately oriented and clamped at a predetermined level. Two hand files and a burnisher are worked across the cylinder's top to 1) remove extraneous material above the plane of transection, 2) expose the tissue for sectioning and 3) smooth the block face. The clear plastic at the periphery of the exposed tissue is then easily trimmed away with a razor blade. The result is a block face with a flat, reflective surface which may be quickly aligned to the knife on the ultramicrotome. The effort needed to transect, align and face the block is minimal and 1-micron or semithin sections produced will be precisely parallel to, and at, the plane of transection. Dust produced by the transection procedure is easily eliminated from the work area by use of a small disposable vacuum cleaner. The technique of producing optimally oriented light microscope sections, using the transector, is enhanced by application of solvents to the block face which cause it to develop a temporary low relief, exactly matching the structural detail of sections cut from the block face.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

13.
We present a technique that controls the peak power consumption of a high-density server by implementing a feedback controller that uses precise, system-level power measurement to periodically select the highest performance state while keeping the system within a fixed power constraint. A control theoretic methodology is applied to systematically design this control loop with analytic assurances of system stability and controller performance, despite unpredictable workloads and running environments. In a real server we are able to control power over a 1 second period to within 1 W and over an 8 second period to within 0.1 W. Conventional servers respond to power supply constraint situations by using simple open-loop policies to set a safe performance level in order to limit peak power consumption. We show that closed-loop control can provide higher performance under these conditions and implement this technique on an IBM BladeCenter HS20 server. Experimental results demonstrate that closed-loop control provides up to 82% higher application performance compared to open-loop control and up to 17% higher performance compared to a widely used ad-hoc technique.
Malcolm WareEmail:
  相似文献   

14.
《Developmental cell》2021,56(15):2192-2206.e8
  1. Download : Download high-res image (166KB)
  2. Download : Download full-size image
  相似文献   

15.
Lee BH  Kiburz BM  Amon A 《Current biology : CB》2004,14(24):2168-2182
BACKGROUND: The meiotic cell cycle, the cell division cycle that leads to the generation of gametes, is unique in that a single DNA replication phase is followed by two chromosome segregation phases. During meiosis I, homologous chromosomes are segregated, and during meiosis II, as in mitosis, sister chromatids are partitioned. For homolog segregation to occur during meiosis I, physical linkages called chiasmata need to form between homologs, sister chromatid cohesion has to be lost in a stepwise manner, and sister kinetochores must attach to microtubules emanating from the same spindle pole (coorientation). RESULTS: Here we show that the meiosis-specific factor Spo13 functions in two key aspects of meiotic chromosome segregation. In cells lacking SPO13, cohesin, which is the protein complex that holds sister chromatids together, is not protected from removal around kinetochores during meiosis I but is instead lost along the entire length of the chromosomes. We furthermore find that Spo13 promotes sister kinetochore coorientation by maintaining the monopolin complex at kinetochores. In the absence of SPO13, Mam1 and Lrs4 disassociate from kinetochores prematurely during pro-metaphase I and metaphase I, resulting in a partial defect in sister kinetochore coorientation in spo13 Delta cells. CONCLUSIONS: Our results indicate that Spo13 has the ability to regulate both the stepwise loss of sister chromatid cohesion and kinetochore coorientation, two essential features of meiotic chromosome segregation.  相似文献   

16.
This report illustrates development of plant sequencing programmes. So far Arabidopsis genome has been completely sequenced and a draft of the rice genome is available. The Arabidopsis programmes stimulated sequencing of EST (expressed sequence tags) from numerous cultivated species thus creating an enormous resource. The major challenge is now to correctly annotate all the genes in Arabidopsis and find out a biological and biochemical function for each one. The availability of EST and genome sequence now allows one to analyse the expression of genes at the level of the whole genome.  相似文献   

17.
Yen TJ 《Cell》2007,128(1):20-21
In this issue, Baumann et al. (2007) identify a helicase PICH that localizes to "threads" that remain connected between sister kinetochores after they have separated in anaphase. These threads are thought to be catenated centromeric DNA. PICH contributes to the mitotic checkpoint by recruiting Mad2 to kinetochores and is proposed to regulate checkpoint signaling by monitoring tension at centromeres.  相似文献   

18.
Fine structure studies of Oncopeltus fasciatus, an hemipteran with diffuse kinetochores, shows the presence of a kinetochore plate extending for up to 75% of the length of the chromosomes during mitosis. During meiosis, microtubules entered all along the body of the chromosomes and the kinetochore plate was completely missing. It is suggested that in organisms with holocentric chromosomes the formation of the meiotic kinetochore apparatus may have to be suppressed to allow terminalization of chiasmata.Supported by N.I.H. Grant No. GM-15886.  相似文献   

19.
Yokobayashi S  Watanabe Y 《Cell》2005,123(5):803-817
Meiosis resembles mitosis but employs a unique "reductional" nuclear division to allow the production of haploid gametes from diploid cells. The crucial ploidy reduction step requires that sister kinetochores attach to microtubules emanating from the same spindle pole, achieving "monopolar attachment," which ensures that maternal and paternal chromosomes are segregated. Here we screened for factors required to establish monopolar attachment in fission yeast and identified a novel protein, Moa1. Moa1 is meiosis specific and localizes exclusively to the central core of the centromere, a region that binds meiotic Rec8-containing cohesin complexes but not mitotic Rad21/Scc1-containing complexes. Enforced cleavage of Rec8 in the central core region led to the disruption of monopolar attachment, as in moa1Delta cells, without diminishing Moa1 localization. Moa1 physically interacts with Rec8, implying that Moa1 functions only through Rec8, presumably to facilitate central core cohesion. These results prove that monoorientation of kinetochores is established in a cohesion-mediated manner.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号