首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The radiation sensitivity and the toxigenic potential of conidiospores of the fungus Aspergillus alutaceus var. alutaceus were determined after irradiation with 60Co gamma rays and high-energy electrons. Over the pH range of 3.6 to 8.8, the doses required for a 1 log10 reduction in viability based on the exponential portion of the survival curve ranged from 0.21 to 0.22 kGy, with extrapolation numbers (extrapolation of the exponential portion of the survival curve to zero dose) of 1.01 to 1.33, for electron irradiation, and from 0.24 to 0.27 kGy, with extrapolation numbers of 2.26 to 5.13, for gamma irradiation. Nonsterile barley that was inoculated with conidia of the fungus and then irradiated with either electrons or gamma rays and incubated for prolonged periods at 28 degrees C and at a moisture content of 25% produced less ochratoxin A with increasing doses of radiation. Inoculation of barley following irradiation resulted in enhanced ochratoxin levels compared with unirradiated controls. In these experiments, inoculation with 10(2) spores per g produced greater radiation-induced enhancement than inoculation with 10(5) spores per g. There was no radiation-induced enhancement when the barley was surface sterilized by chemical means prior to irradiation. These results are consistent with the hypothesis that a reduction in the competing microbial flora by irradiation is responsible for the enhanced mycotoxin production observed when nonsterile barley is inoculated with the toxigenic fungus A. alutaceus var. alutaceus after irradiation.  相似文献   

2.
The radiation sensitivity and the toxigenic potential of conidiospores of the fungus Aspergillus alutaceus var. alutaceus were determined after irradiation with 60Co gamma rays and high-energy electrons. Over the pH range of 3.6 to 8.8, the doses required for a 1 log10 reduction in viability based on the exponential portion of the survival curve ranged from 0.21 to 0.22 kGy, with extrapolation numbers (extrapolation of the exponential portion of the survival curve to zero dose) of 1.01 to 1.33, for electron irradiation, and from 0.24 to 0.27 kGy, with extrapolation numbers of 2.26 to 5.13, for gamma irradiation. Nonsterile barley that was inoculated with conidia of the fungus and then irradiated with either electrons or gamma rays and incubated for prolonged periods at 28 degrees C and at a moisture content of 25% produced less ochratoxin A with increasing doses of radiation. Inoculation of barley following irradiation resulted in enhanced ochratoxin levels compared with unirradiated controls. In these experiments, inoculation with 10(2) spores per g produced greater radiation-induced enhancement than inoculation with 10(5) spores per g. There was no radiation-induced enhancement when the barley was surface sterilized by chemical means prior to irradiation. These results are consistent with the hypothesis that a reduction in the competing microbial flora by irradiation is responsible for the enhanced mycotoxin production observed when nonsterile barley is inoculated with the toxigenic fungus A. alutaceus var. alutaceus after irradiation.  相似文献   

3.
AIMS: The objective of this study was to determine the ochratoxin (OT) and aflatoxin (AF) production by three strains of Aspergillus spp. under different water activities, temperature and incubation time on barley rootlets (BR). METHODS AND RESULTS: Aspergillus ochraceus and Aspergillus flavus were able to produce mycotoxins on BR. Aspergillus ochraceus produced ochratoxin A (OTA) at 0.80 water activity (a(w)), at 25 and 30 degrees C as optimal environmental conditions. The OTA production varies at different incubation days depending on a(w). Aflatoxin B(1) (AFB1) accumulation was obtained at 25 degrees C, at 0.80 and 0.95 a(w), after 14 and 21 incubation days respectively. Temperature was a critical factor influencing OTA and AFB(1) production. CONCLUSIONS: This study demonstrates that BR support OTA and AFB(1) production at relatively low water activity (0.80 a(w)) and high temperatures (25-30 degrees C). SIGNIFICANCE AND IMPACT OF THE STUDY: The study of ecophysiological parameters and their interactions would determine the prevailing environmental factors, which enhance the mycotoxin production on BR used as animal feed.  相似文献   

4.
Kinetics of ochratoxin A production was examined in a number of ochratoxin producing isolates representing different sections of the Aspergillus genus. Both weak and high ochratoxin producers were tested using immunochemical or high-performance liquid chromatograhic methods. All isolates were found to produce the highest amounts of ochratoxin A after 7-10 days of incubation. Ochratoxin production varied between 30 - 5 x l0(5) ng ml(-1) among the Aspergillus isolates tested. The A. albertensis and A. melleus isolates examined were found to produce ochratoxin A constitutively. A. albertensis produced the highest amounts of ochratoxin A at 30 degrees C after 7 days' incubation in YES liquid medium. Ergosterol content and ochratoxin production of A. albertensis cultures were in good correlation.  相似文献   

5.
The growth curves of one epizootic hemorrhagic disease (EHD) virus serotype (Reoviridae), two Akabane virus strains (Bunyaviridae) and three bovine ephemeral fever (BEF) group viruses (Rhabdoviridae) were determined in Aedes albopictus cells maintained at 15, 20, 28 and 33 degrees C. Ae albopictus cells supported the growth of all the viruses although not necessarily at all temperatures. Because none of the viruses exhibited cytopathic effect in Ae albopictus cells, growth was assayed in baby hamster kidney 21 (BHK21) cells maintained at 37 degrees C. The temperature at which the Ae albopictus cells were maintained had a marked effect on the growth and yield for each virus studied. EHD virus was heat-stable and grew after 4 days at 28 and 33 degrees C, and after 8 days at 20 degrees C. No growth was recorded up to 12 days at 15 degrees C. The two Akabane viruses were heat-sensitive and exhibited different growth patterns. One strain (B8935) showed no growth at 15 degrees C and only minimal growth at 20, 28 and 33 degrees C. The other strain (CSIRO 16) showed growth after 1-2 days at all temperatures with higher titres reached at 15 and 20 degrees C than at 28 and 33 degrees C. The BEF group viruses grew to approximately the same titres at all temperatures. At the higher temperatures (28 and 33 degrees C) most of BEF group viruses had disappeared within 9 days. In contrast at the lower temperatures (15 and 20 degrees C), there was still virus present 18 days after inoculation.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

6.
In a batch of barley associated with field cases of mycotoxic porcine nephropathy and containing ochratoxin A and citrinin, the mycoflora were isolated by parallel incubation at 10 and 25 degrees C. Subsequently, the isolated cultures were checked for production of nephrotoxins (xanthomegnin, viomellein, ochratoxin, and citrinin). The nephrotoxin producers, all isolated by incubation at 10 degrees C, were comprised of one culture of Penicillium viridicatum, five cultures of Penicillium cyclopium, and one culture of Penicillium crustosum, all producing xanthomegnin and viomellein. One culture of P. cyclopium produced citrinin. Viomellein was detected in the barley at a concentration of approximately 1 mg/kg. The method of analysis for xanthomegnin and viomellein included extraction with chloroform, partitioning in hexane-acetone, and thin-layer chromatographic separation and identification. The identity of the xanthomegnin and viomellein produced by the isolated fungi and of viomellein detected in the barley was supported by infrared spectroscopy. This is the first report of viomellein as a natural contaminant of foodstuffs.  相似文献   

7.
In a batch of barley associated with field cases of mycotoxic porcine nephropathy and containing ochratoxin A and citrinin, the mycoflora were isolated by parallel incubation at 10 and 25 degrees C. Subsequently, the isolated cultures were checked for production of nephrotoxins (xanthomegnin, viomellein, ochratoxin, and citrinin). The nephrotoxin producers, all isolated by incubation at 10 degrees C, were comprised of one culture of Penicillium viridicatum, five cultures of Penicillium cyclopium, and one culture of Penicillium crustosum, all producing xanthomegnin and viomellein. One culture of P. cyclopium produced citrinin. Viomellein was detected in the barley at a concentration of approximately 1 mg/kg. The method of analysis for xanthomegnin and viomellein included extraction with chloroform, partitioning in hexane-acetone, and thin-layer chromatographic separation and identification. The identity of the xanthomegnin and viomellein produced by the isolated fungi and of viomellein detected in the barley was supported by infrared spectroscopy. This is the first report of viomellein as a natural contaminant of foodstuffs.  相似文献   

8.
The present studies, using Aspergillus alutaceus var. alutaceus Berkeley et Curtis (formerly A. ochraceus Wilhelm) NRRL 3174 along with three other wild-type strains, were undertaken in an attempt to understand the effects of irradiation and other treatments on mycotoxin production in grain. Bedford barley was inoculated with spores of NRRL 3174, gamma irradiated, and incubated at 28 degrees C and 25% moisture. After 10 days of incubation, two colony types, ochre (parental) and yellow (variant), were isolated from the grain. Further culturing of the yellow variant resulted in the spontaneous appearance of a white variant that exhibited greatly enhanced fluorescence under UV light. In subsequent work, we have also isolated variants producing a soluble red pigment. In addition, in model experiments involving irradiation (1 kGy) of pure cultures, induction frequencies ranging between 2 and 4% (survival basis) were observed for the yellow and red variants. Inoculation of these variants into wheat and incubation for 14 days at 28 degrees C and 32% moisture resulted in ochratoxin A production in the relative amounts of 0.09:1:4.6:9.3 for the red, ochre (parental), yellow, and white variants, respectively. Additional characteristics of these isolates are described. Confirmation that the white high-ochratoxin-A-producing variants were derived from the parental strain was demonstrated by obtaining revertant sectors in monoclonal cultures of the variants.  相似文献   

9.
AIMS: This study investigated the in vitro effects of water activity (a(w); 0.85-0.987) and temperature (10-40 degrees C) on growth and ochratoxin A (OTA) production by two strains of Aspergillus carbonarius isolated from wine grapes from three different European countries and Israel on a synthetic grape juice medium representative of mid-veraison (total of eight strains). METHODS AND RESULTS: The synthetic grape juice medium was modified with glycerol or glucose and experiments carried out for up to 56 days for growth and 25 days for OTA production. The lag phase prior to growth, growth rates and ochratoxin production were quantified. Statistical comparisons were made of all factors and multiple regression analysis used to obtain surface response curves of a(w) x temperature for the eight strains and optimum growth and OTA production by A. carbonarius. The lag phase increased from <1 day at 25-35 degrees C and 0.98 a(w) to >20 days at marginal temperatures and water availabilities. Generally, most A. carbonarius strains grew optimally at 30-35 degrees C, regardless of solute used to modify a(w), with no growth at <15 degrees C. The optimum a(w) for growth varied from 0.93 to 0.987 depending on the strain, with the widest a(w) tolerance at 25-30 degrees C. There was no direct relationship among growth, environmental factors and country of origin of individual strains. Optimum conditions for OTA production varied with strain. Some strains produced optimal OTA at 15-20 degrees C and 0.95-98 a(w). The maximum OTA produced after 10 days was about 0.6-0.7 microg g(-1), with a mean production over all eight strains of 0.2 microg g(-1) at optimum environmental conditions. CONCLUSIONS: This work demonstrates that optimum conditions for OTA production are very different from those for growth. While growth rates differed significantly between strains, integration of the OTA production data suggests possible benefits for use of the information on a regional basis. SIGNIFICANCE AND IMPACT OF THE STUDY: Very little detailed information has previously been available on the ecology of A. carbonarius. This knowledge is critical in the development and prediction of the risk models of contamination of grapes and grape products by this species under fluctuating and interacting environmental parameters.  相似文献   

10.
The present studies, using Aspergillus alutaceus var. alutaceus Berkeley et Curtis (formerly A. ochraceus Wilhelm) NRRL 3174 along with three other wild-type strains, were undertaken in an attempt to understand the effects of irradiation and other treatments on mycotoxin production in grain. Bedford barley was inoculated with spores of NRRL 3174, gamma irradiated, and incubated at 28 degrees C and 25% moisture. After 10 days of incubation, two colony types, ochre (parental) and yellow (variant), were isolated from the grain. Further culturing of the yellow variant resulted in the spontaneous appearance of a white variant that exhibited greatly enhanced fluorescence under UV light. In subsequent work, we have also isolated variants producing a soluble red pigment. In addition, in model experiments involving irradiation (1 kGy) of pure cultures, induction frequencies ranging between 2 and 4% (survival basis) were observed for the yellow and red variants. Inoculation of these variants into wheat and incubation for 14 days at 28 degrees C and 32% moisture resulted in ochratoxin A production in the relative amounts of 0.09:1:4.6:9.3 for the red, ochre (parental), yellow, and white variants, respectively. Additional characteristics of these isolates are described. Confirmation that the white high-ochratoxin-A-producing variants were derived from the parental strain was demonstrated by obtaining revertant sectors in monoclonal cultures of the variants.  相似文献   

11.
Selected morphological and physiological characteristics of four Beauveria bassiana (Balsamo) Vuillemin isolates and one Metarhizium anisopliae (Metschnikoff) Sorokin isolate, which are highly pathogenic to Lygus lineolaris (Palisot de Beauvois) (Hemiptera: Miridae), were determined. There were significant differences in conidial size, viability, spore production, speed of germination, relative hyphal growth, and temperature sensitivity. Spore viability after incubation for 24h at 20 degrees C ranged from 91.4 to 98.6% for the five isolates tested. Spore production on quarter-strength Sabouraud dextrose agar plus 0.25% (w/v) yeast extract after 10 days incubation at 20 degrees C ranged from 1.6x10(6) to 15.5x10(6)conidia/cm(2). One B. bassiana isolate (ARSEF 1394) produced significantly more conidia than the others. Spore germination was temperature-dependant for both B. bassiana and M. anisopliae. The time required for 50% germination (TG(50)) ranged from 25.0 to 30.9, 14.0 to 16.6, and 14.8 to 18.0h at 15, 22, and 28 degrees C, respectively. Only the M. anisopliae isolate (ARSEF 3540) had significant spore germination at 35 degrees C with a TG(50) of 11.8h. A destructive sampling method was used to measure the relative hyphal growth rate among isolates. Exposure to high temperature (40-50 degrees C) for 10min had a negative effect on conidial viability. The importance of these characteristics in selecting fungal isolates for management of L. lineolaris is discussed.  相似文献   

12.
The development of five geographic isolates of Steinernema feltiae at 5, 8, 10, 15, 20, 25, and 28 degrees C in wax moth, Galleria mellonella, larvae was examined. The isolates were from Mediterranean (Sinop from Turkey, SN from France, and Monterey from California), subtropical (Rafaela from Argentina), and tropical (MG-14 from Hawaii) regions. All isolates caused 100% mortality of wax moth larvae and developed and produced progeny between 8 and 25 degrees C. At 28 degrees C, mortality was 100%, but no progeny was observed. The highest infective juvenile production was observed at 15 degrees C for all isolates. In general, the tropical isolate, MG-14, had the lowest production of infective juveniles. The time of emergence of the infective juveniles from the host cadaver showed some differences among isolates, with the Sinop isolate having the earliest emergence time from cadavers at 15 degrees C (10 days) and 20 degrees C (8 days). At 25 degrees C, the infective juveniles of the Sinop, SN, and Rafaela isolates emerged from the cadavers from 5 to 7 days. Time of host death by all isolates showed no differences at 8, 10, 15, 20, and 28 degrees C. At 25 degrees C for all isolates (except the MG-14), shorter times to host death were observed. Host death occurred at 12 days at 8 degrees C, 9 to 11 days at 10 degrees C, 4 to 5 days at 15 degrees C, 3 days at 20 degrees C, and 2 days at 25 and 28 degrees C. For penetration efficiency, the Sinop, SN, and Rafaela isolates penetrated their hosts at 5, 8, and 10 degrees C. Penetration of the infective juveniles was consistently high for all isolates at 15, 20, 25, and 28 degrees C, but it was significantly lower for the MG-14 isolate at 15, 25, and 28 degrees C. No progeny production occurred at 28 degrees C, but nematode penetration did occur with the MG-14 isolate having significantly lower penetration than the other isolates. When nematodes were produced at 8, 15, and 23 degrees C in wax moth larvae, all isolates had infective juveniles with longer body lengths at 8 degrees C followed by 15 and 23 degrees C. To further verify body length at the different temperatures, beet armyworm, Spodoptera exigua, larvae and dog-food agar medium were used, respectively, for in vivo and in vitro culture of the Sinop isolate. Infective juvenile body length showed the same trends, with the longest being at 8 degrees C and decreasing in length from 15 to 23 degrees C. The data suggest that quality of food for the nematode and temperature (that is, developmental time) influence the body length of the infective juvenile.  相似文献   

13.
In the present study, the effect of temperature and water activity on fungal growth and ochratoxin production on coffee-based medium was assessed. Optimal growth of three Aspergillus strains was observed in the same ecological conditions, namely 30 degrees C and 0.99 water activity. Maximal daily growth is 11.2, 6.92, and 7.22 mm/day for Aspergillus niger, Aspergillus carbonarius, and Aspergillus ochraceus, respectively. However, ecological conditions for optimal ochratoxin production vary according to the toxinogenic strain, with water activity as a limiting factor. Such an ochratoxin A production is inhibited at 42 degrees C and 0.75 water activity. Correspondence between laboratory tested water activity and that measured on a sun-dried ripe cherry batch shows that the first 5 days of drying are critical for fungal growth and ochratoxin A production. Accordingly, artificial drying of cherries at temperatures above 42 degrees C will impede not only fungal growth but also contamination with ochratoxin A.  相似文献   

14.
Spores of five type B, five type E, and two type F strains of nonproteolytic Clostridium botulinum were inoculated into tubes of an anaerobic meat medium plus lysozyme to give approximately 10(6) spores per tube. Sets of tubes were then subjected to a heat treatment, cooled, and incubated at 6, 8, 10, 12, and 25 degrees C for up to 60 days. Treatments equivalent to heating at 65 degrees C for 364 min, 70 degrees C for 8 min, and 75 degrees C for 27 min had little effect on growth and toxin formation. After a treatment equivalent to heating at 85 degrees C for 23 min, growth occurred at 6 and 8 degrees C within 28 to 40 days. After a treatment equivalent to heating at 80 degrees C for 19 min, growth occurred in some tubes at 6, 8, 10, or 12 degrees C within 28 to 53 days and at 25 degrees C in all tubes within 15 days. Following a treatment equivalent to heating at 95 degrees C for 15 mine, growth was detected in some tubes incubated at 25 degrees C for fewer than 60 days but not in tubes incubated at 6 to 12 degrees C. The results indicate that heat treatment of processed foods equivalent to maintenance at 85 degrees C for 19 min combined with storage below 12 degrees C and a shelf life of not more than 28 days would reduce the risk of growth from spores of nonproteolytic C. botulinum by a factor of 10(6).(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

15.
In this work we demonstrated that promastigotes of Leishmania amazonensis exhibit an Mg-dependent ecto-ATPase activity, which is stimulated by heat shock. The Mg-dependent ATPase activity of cells grown at 22 and 28 degrees C was 41.0+/-5.2 nmol Pi/h x 10(7)cells and 184.2+/-21.0 nmol Pi/h x 10(7)cells, respectively. When both promastigotes were pre-incubated at 37 degrees C for 2h, the ATPase activity of cells grown at 22 degrees C was increased to 136.4+/-10.6 nmol Pi/h x 10(7) whereas that the ATPase activity of cells grown at 28 degrees C was not modified by the heat shock (189.8+/-10.3 nmol Pi/h x 10(7)cells). It was observed that Km of the enzyme from cells grown at 22 degrees C (Km=980.2+/-88.6 microM) was the same to the enzyme from cells grown at 28 degrees C (Km=901.4+/-91.9 microM). In addition, DIDS (4,4'-diisothiocyanatostilbene 2,2'-disulfonic acid) and suramin, two inhibitors of ecto-ATPases, also inhibited similarly the ATPase activities from promastigotes grown at 22 and 28 degrees C. We also observed that cells grown at 22 degrees C exhibit the same ecto-phosphatase and ecto 3'- and 5'-nucleotidase activities than cells grown at 28 degrees C. Interestingly, cycloheximide, an inhibitor of protein synthesis, suppressed the heat-shock effect on ecto-ATPase activity of cells grown at 22 degrees C were exposed at 37 degrees C for 2h. A comparison between the stimulation of the Mg-dependent ecto-ATPase activity of virulent and avirulent promastigotes by the heat shock showed that avirulent promastigotes had a higher stimulation than virulent promastigotes after heat stress.  相似文献   

16.
球孢白僵菌对桃蚜接种后特定时间内的侵染率   总被引:14,自引:0,他引:14  
用球孢白僵菌 (Beauveriabassiana)BBSG870 2菌株的分生孢子悬液 (5× 10 6个·ml-1孢子 )对桃蚜 (Myzuspersicae)始产若蚜的成蚜进行表面接种 ,在接种后 5 6h内 ,每隔 8h取样用 0 .2 %百菌清处理蚜虫 ,使其体表残存的孢子全部失活 ,分别置于 10℃和 2 0℃下逐日观察感染引起的死亡 .结果表明 ,10℃下接种后 5 6h、2 0℃下接种后 40h内各时间段有效侵染引起的死亡率相互间存在显著差异 ,并与不用杀菌剂的对照处理差异显著 (P <0 .0 5 ) .与对照相比 ,接种后 8、16、2 4、32、40和 5 6h内 ,10℃下的有效侵染率分别为 2 2 .9、48.8、6 4.9、80 .4、72 .7和 98.3% ,2 0℃下分别为 31.6、48.8、5 8.6、86 .9、97.2和 98.7% .由此表明 ,在 10~ 2 0℃范围内 ,接种后 2 4h内是该菌有效侵染桃蚜的关键时段 ,有效侵染率达 5 9~ 6 5 % .  相似文献   

17.
The production of ochratoxin A (OA) in barley by Aspergillus ochraceus and Penicillium viridicatum was measured at 12 and 25 degrees C. The grain had been fertilized with various amounts of nitrogen fertilizer (0, 90, or 240 kg/ha) and contained (at crop maturity) 9.1, 10.4, or 12.0% protein, respectively. The production of OA by both fungi increased as the protein concentration increased. Glutamic acid and proline were enriched relative to other amino acids as the protein concentration increased. The differences in OA production could not be explained by a differential effect of protein or amino acids on fungal growth in barley. However, glutamic acid and proline enhanced OA production in liquid cultures of both A. ochraceus and P. viridicatum.  相似文献   

18.
The production of ochratoxin A (OA) in barley by Aspergillus ochraceus and Penicillium viridicatum was measured at 12 and 25 degrees C. The grain had been fertilized with various amounts of nitrogen fertilizer (0, 90, or 240 kg/ha) and contained (at crop maturity) 9.1, 10.4, or 12.0% protein, respectively. The production of OA by both fungi increased as the protein concentration increased. Glutamic acid and proline were enriched relative to other amino acids as the protein concentration increased. The differences in OA production could not be explained by a differential effect of protein or amino acids on fungal growth in barley. However, glutamic acid and proline enhanced OA production in liquid cultures of both A. ochraceus and P. viridicatum.  相似文献   

19.
The irradiation with visible light of a photosensitizer dye like methylene blue was used to regenerate by electron transfer the oxidized form of a pyridine nucleotide coenzyme (NAD(+)). The process has been studied on a common enzymatic reaction: ethanol oxidation by alcohol-NAD(+) oxidoreductase immobilized on polyacrylamide gel or porous glass balls. In the experimental conditions used, the initial NAD(+) recycling rates were 2.33 x 10(4) cycles/h (polyacrylamide) and 3 x 10(4) cycles/h (glass balls). A total number of 49.5 x 10(4) cycles was obtained for 13 runs of 2 h. The enzyme immobilization strongly increased its stability: after 28 days at 20 degrees C, the residual activity was 25% of the initial value.  相似文献   

20.
The objectives of this study were to constitute a collection of pathogenic agents of economic importance which cause losses of apple fruits after harvest namely Botrytis cinerea and Penicillium expansum and to select in vivo efficient antagonistic strains able to protect fruits against both pathogens at 5 degrees C (P. expansum) and 25 degrees C (P. expansum & B. cinerea). Twenty strains of P. expansum and ten strains of B. cinerea have been isolated from infected apple fruits. Potential antagonistic micro-organisms (thirty three isolates) belonging to yeast, bacteria and fungi have been isolated from apple surface. Six of them (strains Ach1-1, Ach2-1, Ach2-2 belonging to Aureobasidium pullulans (De Bary) Arnaud, and strains 1112-3, 1113-10 and 1113-5 belonging to Aureobasidium pullulans (de Bary) Am. v. pullulans) showed a high level of protection (more than 80%) at 25 degrees C. once inoculated with P. expansum or B. cinerea for 5 days. The highest level of protection against P. expansum (96%) was observed with the application of Ach 2-1. Six days after inoculation of B. cinerea, strains Ach 2-2 and Ach 2-1 insured 100% and 96% of protection, respectively. At lower temperature (5 degrees C), first symptoms of P. expansum appeared 13 days after its inoculation. Percentages of protection observed after apple treatment with one of the six antagonistic strains were ranged from 78% to 94% 20 days after P. expansum inoculation. Strains labelled Ach showed a protective level higher than 90% against this pathogen, followed by strain 1113-10 (90%), strain 1113-5 (89%) and strain 1112-3 (82%). At 26 days post-inoculation, levels of protection decreased but remained higher than 60% (more than 80% with strain Ach2-2 and strain 1113-5, 75% with strain Ach2-1 and 1113-10, 72% with ach1-1, 61% for the other strains). Strain Ach2-2 and 1113-10 were retained as the best antagonists for the subsequent studies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号