首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
R I Salganik  G L Dianov  A V Mazin 《Genetika》1986,22(10):2398-2407
This study is concerned with an experimental verification of hypotheses postulating the involvement of self-complementary nucleotide sequences in the formation of deletions and insertions. It was suggested that deletions can arise in the regions of self-complementary nucleotide sequences, which allows the formation of the hairpin structures in a single-stranded DNA, arising during excision repair. These hairpin structures can be eliminated by nucleases or during DNA replication. Insertions can arise as a result of homologous recombination, when a migrating DNA strand contains a self-complementary sequence which forms hairpin structure. Model experiments were carried out with the pBR322 plasmid. A plasmid DNA with premutational damage in the palindrome-containing region was constructed by in vitro dimethylsulfate modification of one strand of EcoRI-BamHI restriction fragment. The plasmid was used for transformation of Escherichia coli. Restriction mapping and nucleotide analysis of the mutant DNAs demonstrated that they all contained deletions. The end points of the deletions coincide with the palindrome. To model homologous recombination, a plasmid with D-loop was constructed. A single-stranded DNA fragment containing palindrome forming a hairpin structure was introduced into the plasmid DNA and covalently fixed in the complex. When E. coli cells were transfected with this DNA, plasmid mutants containing insertions predetermined by palindromic structure arose. The evolutionary role of mutations predetermined by primary DNA structure is discussed.  相似文献   

2.
S Iida  J Meyer  K E Kennedy    W Arber 《The EMBO journal》1982,1(11):1445-1453
The bacteriophage P1 genome carries an invertible C segment consisting of 3-kb unique sequences flanked by 0.6-kb inverted repeats. With insertion and deletion mutants of P1 derivatives the site-specific recombinase gene cin for C inversion) has been mapped adjacent to the C segment and the cix sites (for C inversion cross-over) have been located at the outside ends of the inverted repeats. Inversion of the C segment functions as a biological switch and controls expression of the gene(s) responsible for phage infectivity carried on the C segment. The cin gene product can promote recombination between a 'quasi- cix ' site on plasmid pBR322 and a cix site on P1 DNA. The junctions formed on the resulting co-integrate can also serve as cix sites. This observation implies a potential evolutionary process to bring genes under the control of a biological switch acting by DNA inversion.  相似文献   

3.
XerC is a site-specific recombinase of the bacteriophage lambda integrase family that is encoded by xerC at 3700 kbp on the genetic map of Escherichia coli. The protein was originally identified through its role in converting multimers of plasmid ColE1 to monomers; only monomers are stably inherited. Here we demonstrate that XerC also has a role in the segregation of replicated chromosomes at cell division. xerC mutants form filaments with aberrant nucleotides that appear unable to partition correctly. A DNA segment (dif) from the replication terminus region of the E. coli chromosome binds XerC and acts as a substrate for XerC-mediated site-specific recombination when inserted into multicopy plasmids. This dif segment contains a region of 28 bp with sequence similarity to the crossover region of ColE1 cer. The cell division phenotype of xerC mutants is suppressed in strains deficient in homologous recombination, suggesting that the role of XerC/dif in chromosomal metabolism is to convert any chromosomal multimers (arising through homologous recombination) to monomers.  相似文献   

4.
Site-specific recombination is a powerful biotechnological tool for genome engineering. We previously reported two novel site-specific recombination systems, VCre/VloxP and SCre/SloxP, that do not cross-react with Cre/loxP and Flp/FRT in culture cells and mouse embryonic stem (ES) cells. In this study, a site-specific recombination assay in Escherichia coli was used to examine the activity of mutant VCre (H314L and Y349F) and mutant SCre (H317L and Y352F), in which both mutated residues lie within the active center of Cre recombination. The site-specific recombination activity of both mutants was significantly decreased. Recombinase-mediated cassette exchange (RMCE) using VloxP and the Vlox2272 mutant site was performed in E. coli by introducing a cassette bearing VloxP and Vlox2272 into a recipient plasmid bearing the same sites. RMCE using SloxP and Slox2272 was also performed by SCre recombinase. Moreover, BAC engineering via Red recombination and VCre/VloxP were demonstrated. First, the DNA cassette for modification was introduced into a BAC clone via Red recombination; second, the antibiotics resistance gene flanked by VloxP was removed from the BAC clone by induction of VCre recombinase. Such site-specific recombination systems may effectively be used in combination with other site-specific recombination systems or engineering tools (e.g., Red recombination).  相似文献   

5.
We have developed a procedure to directly clone large fragments from the genome of the soil bacterium Sinorhizobium meliloti. Specific regions to be cloned are first flanked by parallel copies of an origin of transfer (oriT) together with a plasmid replication origin capable of replicating large clones in Escherichia coli but not in the target organism. Supplying transfer genes in trans specifically transfers the oriT-flanked region, and in this process, site-specific recombination at the oriT sites results in a plasmid carrying the flanked region of interest that can replicate in E. coli from the inserted origin of replication (in this case, the F origin carried on a BAC cloning vector). We have used this procedure with the oriT of the plasmid RK2 to clone contiguous fragments of 50, 60, 115, 140, 240, and 200 kb from the S. meliloti pExo megaplasmid. Analysis of the 60-kb fragment allowed us to identify a 9-kb region capable of autonomous replication in the bacterium Agrobacterium tumefaciens. The nucleotide sequence of this fragment revealed a replicator region including homologs of the repA, repB, and repC genes from other Rhizobiaceae, which encode proteins involved in replication and segregation of plasmids in many organisms.  相似文献   

6.
Sequence relations among the IncY plasmid p15B, P1, and P7 prophages   总被引:5,自引:0,他引:5  
Electron microscopic analysis of heteroduplex molecules between the 94-kb plasmid p15B and the 92-kb phage P1 genome revealed nine regions of nonhomology, eight substitutions, and two neighboring insertions. Overall, the homologous segments correspond to 83% of the P1 genome and 81% of p15B. Heteroduplex molecules between p15B and the 99-kb phage P7 genome showed nonhomology in eight of the same nine regions; in addition, two new nonhomologous segments are present and P7 carries a 5-kb insertion representing Tn902. The DNA homology between those two genomes amounts to 79% of P7 DNA and 83% of p15B. Plasmid p15B contains two stem-loop structures. One of them has no equivalent structure on P1 and P7 DNA. The other substitutes the invertible C segments of P1 and P7 and their flanking sequences including cin, the gene for the site-specific recombinase mediating inversion.  相似文献   

7.
8.
Rong R  Slupska MM  Chiang JH  Miller JH 《Gene》2004,336(1):73-80
An effective DNA replacement system has been established for engineering large fragment insertions into the chromosome of Escherichia coli. The DNA replacement plasmid, pHybrid I, was first constructed based on the bacterial artificial chromosome (BAC) vector. Two fragments of the E. coli genome, 5.5 and 6.5 kb in length, were introduced into the vector for homologous recombination. In addition to the chloramphenicol gene, a second gene neo was introduced for double marker screening for recombinant clones. By shot-gun cloning and homologous recombination techniques, using our new recombinant vector (pHybrid I), a 20-kb fragment from Lactococcus lactis genomic DNA has been successfully integrated into the chromosome of the E. coli strain J93-140. Plating tests and PCR amplification indicated that the integration remained stable after many generations in cell culture. This system will be especially useful for the chromosome engineering of large heterologous fragment insertions, which is necessary for pathway engineering.  相似文献   

9.
We have used the lambda SV2 system [Howard and Gottesman. In Gluzman (Ed.), Eukaryotic Viral Vectors. Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, 1982, pp. 211-216; in Inouye, M. (Ed.) Experimental Manipulations of Gene Expression. Academic Press, New York, 1983, pp. 137-153] to reconstitute the Salmonella typhimurium his operon from overlapping fragments. lambda SV2 can be propagated as an autonomously replicating plasmid or as a prophage integrated in the Escherichia coli chromosome at the lambda attachment site; our reconstitution was accomplished in the integrated state. We first inserted a portion of the his operon into lambda SV2 and integrated the resulting plasmid by site-specific recombination into the E. coli chromosome. This was achieved by brief induction of a resident prophage. The lysogen was then transformed with DNA from a lambda SV2 clone carrying the remainder of the his operon on an overlapping DNA fragment. The second plasmid was forced to integrate into the first by homologous recombination. When this recombination occurs at the his overlap, a lysogen carrying two lambda SV2 prophages is produced. One prophage carries the entire his operon and the other carries the his overlap region. The latter is removed by site-specific recombination, permitting further contiguous sequences to be sequentially added to the remaining prophage. This method should be applicable for the reconstitution and maintenance of large genes or gene clusters in the E. coli genome.  相似文献   

10.
Plasmid p15B is a bacteriophage P1-related resident of Escherichia coli 15T-. Both genomes contain a segment in which DNA inversion occurs, although this part of their genomes is not identical. This DNA segment of p15B was cloned in a multicopy vector plasmid. Like its parent, the resulting plasmid, pAW800, undergoes complex multiple DNA inversions: this DNA inversion system is therefore called Min. The min gene, which codes for the p15B Min DNA invertase, can complement the P1 cin recombinase gene. The Min inversion system is thus a new member of the Din family of site-specific recombinases to which Cin belongs. The DNA sequence of the min gene revealed that Min is most closely related to the Pin recombinase of the e14 defective viral element on the E. coli K12 chromosome. Like other members of the Din family, the min gene contains a recombinational enhancer element which stimulates site-specific DNA inversion 300-fold.  相似文献   

11.
Plasmids were constructed which contain both attP and attB DNA segments derived from the insertion sites of the lysogenic bacteriophage HP1 and its host, Haemophilus influenzae. Similar plasmids containing the two junction segments (attL and attR regions) between the phage genome and the lysogenic host chromosome were also prepared. The formation of recombinant dimer plasmids was observed when attP-attB plasmids were propagated in Escherichia coli HB101 (recA), while plasmids containing the junction segments did not form recombinant dimers. Deletion of the phage DNA segment adjacent to the attP site from the attP-attB constructions eliminated detectable recombination, suggesting that this sequence contains the gene encoding the HP1 integrase. No plasmid recombination was observed in strains of E. coli defective in integration host factor. This suggests that integration host factor is important in the expression or activity of the system which produces the site-specific recombination of sequences derived from HP1 and H. influenzae. Further, it suggests that a protein functionally analogous to E. coli integration host factor may be present in H. influenzae.  相似文献   

12.
K Awane  A Naito  H Araki  Y Oshima 《Gene》1992,121(1):161-165
Most vectors for Saccharomyces cerevisiae are shuttle vectors which can be both propagated and selected in Escherichia coli. The DNA segments, however, which are required for propagation in E. coli are unnecessary and moreover toxic in S. cerevisiae. To delete these harmful DNA fragments from the vector after it is introduced into S. cerevisiae cells, we propose a specific gene conversion mechanism of a yeast plasmid, pSR1. Plasmid pSR1 has a pair of inverted repeats (IRs) that divides the plasmid molecule into two unique regions. Intramolecular recombination frequently occurs at a pair of specific recombination sites in IRs catalyzed by recombinase R, encoded by a pSR1 plasmid gene. This R-mediated recombination is often accompanied by gene conversion in IRs. Thus, a 2.1-kb pBR322 sequence for the E. coli host ligated into one of the IRs of a composite plasmid was automatically and effectively eliminated when the plasmid was introduced into S. cerevisiae cells.  相似文献   

13.
Plasmid pVT745 from Actinobacillus actinomycetemcomitans strain VT745 can be transferred to other A. actinomycetemcomitans strains at a frequency of 10(-6). Screening of transconjugants revealed that the DNA of pDMG21A, a pVT745 derivative containing a kanamycin resistance gene, displayed a structural rearrangement after transfer. A 9-kb segment on the plasmid had switched orientation. The inversion was independent of RecA and required the activity of the pVT745-encoded site-specific recombinase. This recombinase, termed Inv, was highly homologous to invertases of the Din family. Two recombination sites of 22 bp, which are arranged in opposite orientation and which function as DNA crossover sequences, were identified on pVT745. One of the sites was located adjacent to the 5' end of the invertase gene, inv. Inversion of the 9-kb segment on pVT745 derivatives has been observed in all A. actinomycetemcomitans strains tested except for the original host, VT745. This would suggest that a host factor that is either inactive or absent in VT745 is required for efficient recombination. Inactivation of the invertase in the donor strain resulted in a 1,000-fold increase in the number of transconjugants upon plasmid transfer. It is proposed that an activated invertase causes the immediate loss of the plasmid in most recipient cells after mating. No biological role has been associated with the invertase as of yet.  相似文献   

14.
Site-specific recombination provides a powerful tool for studying gene function at predetermined chromosomal sites. Here we describe the use of a blasticidin resistance system to select for recombination in mammalian cells using the yeast enzyme FLP. The vector is designed so that site-specific recombination reconstructs the antibiotic resistance marker within the sequences flanked by the FLP target sites. This approach allows the detection of DNA excised by FLP-mediated recombination and facilitates the recovery of recombination products that would not be detected by available screening strategies. We used this system to show that the molecules excised by intrachromosomal recombination between tandem FLP recombinase target sites do not reintegrate into the host genome at detectable frequencies. We further applied the direct selection approach to recover a rare FLP-mediated recombination event displaying the characteristics of an unequal sister chromatid exchange between FLP target sites. Implications of this approach for the generation of duplications to assess their effect on gene dosage and chromosome stability are discussed.  相似文献   

15.
V B Rao  V Thaker  L W Black 《Gene》1992,113(1):25-33
Recombinant plasmid DNAs containing long DNA inserts that can be propagated in Escherichia coli would be useful in the analysis of complex genomes. We tested a bacteriophage T4 in vitro DNA packaging system that has the capacity to package about 170 kb of DNA into its capsid for cloning long DNA fragments. We first asked whether the T4 in vitro system can package foreign DNA such as concatemerized lambda imm434 DNA and phage P1-pBR322 hybrid DNA. The data suggest that the T4 system can package foreign DNA as efficiently as the mature phage T4 DNA. We then tested the system for its ability to clone foreign DNA fragments using the P1-pBR322 hybrid vectors constructed by Sternberg [Proc. Natl. Acad. Sci. USA 87 (1990) 103-107]. E. coli genomic DNA fragments were ligated with the P1 vectors containing two directly oriented loxP sites, and the ligated DNA was packaged by the T4 in vitro system. The packaged DNA was then transduced into E. coli expressing the phage P1 cyclization recombination protein recombinase to circularize the DNA by recombination between the loxP sites situated at the ends of the transduced DNA molecule. Clones with long DNA inserts were obtained by using this approach, and these were maintained as single-copy plasmids under the control of the P1 plasmid replicon. Clones with up to about 122-kb size inserts were recovered using this approach.  相似文献   

16.
Tian DQ  Wang YM  Zheng T 《遗传》2012,34(8):1003-1008
大约10%~15%的大肠杆菌在染色体复制过程中会形成染色体二聚体。大肠杆菌染色体编码的重组酶XerC和XerD作用于染色体复制终点区的dif序列,以同源重组的方式将染色体二聚体解离为单体,使细菌得以正常复制分裂。编码霍乱毒素的噬菌体CTXΦ以位点特异的方式整合入霍乱弧菌染色体,但其基因组中不含有任何重组酶基因,其整合过程需要细菌染色体编码的XerC和XerD重组酶,且整合位点与大肠杆菌dif序列相似。XerCD重组酶基因和dif位点在细菌染色体广泛存在,表明其可能是染色体二聚体解离,噬菌体及其他外源基因成分整合入染色体过程中一种广泛存在的途径。文章对XerCD/dif位点特异性重组在细菌染色体二聚体解离、外源基因整合的研究进展进行综述。  相似文献   

17.
Plasmid pAM beta 1, originally isolated from Streptococcus faecalis DS5, mediates resistance to the MLS (macrolide, lincosamide, and streptogramin B alpha) group of antibiotics. A restriction endonuclease map of the 26.5-kilobase (kb) pAM beta 1 molecule was constructed by using the enzymes AvaI, HpaII, EcoRI, PvuII, Kpn1, BstEII, HpaI, HhaI, and HindIII. A comparison of this map to those of four independently isolated deletion derivatives of pAM beta 1 located the MLS resistance determinant within a 2-kb DNA segment and at least one conjugative function within an 8-kb region. The 5.0-kb EcoRI-B fragment from pAM beta 1 was ligated onto the 4.0-kb Escherichia coli plasmid vector, pACKC1, and used to transform E. coli HB101. The 9.0-kb chimeric plasmid was then used to transform Streptococcus sanguis Challis with concurrent expression of the E. coli kanamycin resistance determinant. The 5.0-kb EcoRI-B fragment from pAM beta 1 was subsequently used as a vector to clone a streptomycin resistance determinant from a strain of Streptococcus mutans containing no detectable plasmid DNA. Subcloning experiments, using a HindIII partial digest of pAM beta 1 DNA, narrowed the replication region of this plasmid to a 2.95-kb fragment.  相似文献   

18.
The shufflon, a multiple DNA inversion system in plasmid R64, consists of four invertible DNA segments which are separated and flanked by seven 19-bp repeat sequences. The product of a site-specific recombinase gene, rci, promotes site-specific recombination between any two of the inverted 19-bp repeat sequences of the shufflon. To analyze the molecular mechanism of this recombination reaction, Rci protein was overproduced and purified. The purified Rci protein promoted the in vitro recombination reaction between the inverted 19-bp repeats of supercoiled DNA of a plasmid carrying segment A of the R64 shufflon. The recombination reaction was enhanced by the bacterial host factor HU. Gel electrophoretic analysis indicated that the Rci protein specifically binds to the DNA segments carrying the 19-bp sequences. The binding affinity of the Rci protein to the four shufflon segments as well as four synthetic 19-bp sequences differed greatly: among the four 19-bp repeat sequences, the repeat-a and -d sequences displayed higher affinity to Rci protein. These results suggest that the differences in the affinity of Rci protein for the 19-bp repeat sequences determine the inversion frequencies of the four segments.  相似文献   

19.
The mitochondrial genomes of progenies from 26 crosses between 17 cytoplasmic, spontaneous, suppressive, ori+ petite mutants of Saccharomyces cerevisiae have been studied by electrophoresis of restriction fragments. Only parental genomes (or occasionally, genomes derived from them by secondary excisions) were found in the progenies of the almost 500 diploids investigated; no evidence for illegitimate, site-specific mitochondrial recombination was detected. One of the parental genomes was always found to be predominate over the other one, although to different extents in different crosses. This predominance appears to be due to a higher replication efficiency, which is correlated with a greater density of ori sequences on the mitochondrial genome (and with a shorter repeat unit size of the latter). Exceptions to the 'repeat-unit-size rule' were found, however, even when the parental mitochondrial genomes carried the same ori sequence. This indicates that noncoding, intergenic sequences outside ori sequences also play a role in modulating replication efficiency. Since in different petites such sequences differ in primary structure, size, and position relative to ori sequences, this modulation is likely to take place through an indirect effect on DNA and nucleoid structure.  相似文献   

20.
We have tested the CinH-RS2 and ParA-MRS site-specific deletion systems in tomato (Solanum lycopersicum L.). The ParA-MRS system is derived from the broad-host-range plasmid RK2, where the 222 aa ParA recombinase recognizes a 133 bp multimer resolution site (MRS). The CinH-RS2 system is derived from Acinetobacter plasmids pKLH2 and pKLH204, where the 188 amino acid CinH recombinase recognizes a 113-bp recombination site known as RS2. In this study, target lines containing a DNA segment flanked by recombination sites were crossed to recombinase-expressing lines producing CinH or ParA recombinase. CinH-mediated recombination of RS2 substrates was detected in 2 of 3 F1 plants that harbor both the target and recombinase loci. On the other hand, recombination mediated by ParA was not detected among F1 plants, but was found among 13 of 47 F2 plants. These data show that both systems can mediate site-specific DNA deletion in the tomato genome, and, upon further refinement, can provide additional molecular tools for tomato improvement through precise genome manipulation. As the target construct also contains additional recombination sites for site-specific integration by other recombination systems, these tomato lines could be used for future testing of gene stacking through site-specific integration.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号