首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Subclinical chronic infections characterized by transient viremia, prolonged virus shedding in oropharyngeal secretions and feces, and virus persistence in tissues (particularly lung) developed in laboratory-bred weanling bank voles (Clethrionomys glareolus) inoculated intramuscularly with Puumala virus (strain H?lln?s), the etiologic agent of nephropathia epidemica. Viral antigen, as evidence by granular fluorescence, was detected in the lungs, liver, spleen, pancreas, salivary glands, and small intestine. Infectious virus was found in the lungs from 14 to 270 days postinoculation, and feces and urine collected 35 to 130 days postinoculation were regularly and sporadically infectious, respectively. Horizontal transmission coincided with virus shedding in oropharyngeal secretions. Suckling voles also developed asymptomatic persistent infections after intracerebral inoculation, and histopathological changes were absent despite widespread infection. Our data resemble findings in Apodemus agrarius experimentally infected with Hantaan virus, the prototype virus of hemorrhagic fever with renal syndrome, suggesting that the mechanisms of maintenance and transmission of Puumala and Hantaan viruses are similar in their respective wild-rodent hosts.  相似文献   

2.
The pathogenesis of mouse hepatitis virus (MHV-S) infection in suckling and weanling mice was comparatively studied after intranasal inoculation. In sucklings, infectious virus as well as specific antigen was first detected in the nasal mucosa at 12 hr, then in the nerve cells of the olfactory bulbs. At this stage viral particles were demonstrated both in the supporting cells and olfactory cells of the nasal mucosa. In the posterior part of the brain and spinal cord, virus was detected on days 3 to 4 postinoculation when viral growth was clearly demonstrable in the liver, spleen and intestines. In weanlings too, infection was first established in the nasal mucosa, shedding infectious virus in the nasal washing until day 6 postinoculation, and later infection spread to the brain and spinal cord. In weanling mice, however, neither infectious virus nor viral antigen was detected in the liver or other visceral organs, while serum neutralizing antibody became detectable on day 5 postinoculation, increasing in titer thereafter. Histopathologically degenerative and necrotic changes were observed in the nasal mucosa and central nervous system of both age groups of animals coincidentally with the presence of viral specific antigen, while inflammatory response was much less prominent in sucklings. In the liver, spleen and intestines, however, some lesions were observed only in sucklings.  相似文献   

3.
4.
Deer mice (Peromyscus maniculatus) were inoculated with a sublethal dose of a field strain of Modoc virus to determine patterns of viral persistence, shedding, and transmission. Blood, serum, urine, fecal, and oral swab samples were collected at selected intervals until 63 days postinoculation (PI) after which lung, liver, spleen, kidney, and salivary glands were explanted. Viral assays were conducted by intracranial inoculations of suckling mice and antibody titers were determined by the micro-complement-fixation test. Viremias lasted for up to 4 days PI. Antibody titers were present by day 8 PI, peaked at day 13-20 PI, and persisted until day 63 PI. There was no evidence of viral shedding in urine, fecal, or oral swab samples. Virus was detected in explanted lungs only. In a separate experiment, deer mice were inoculated with virus and lungs were removed from five mice per wk for 10 wk. Indirect fluorescent antibody (IFA) techniques were used to determine the location of virus in lung tissue and to examine fixed tissue for lesions. IFA showed virus in lung parenchymal cells beginning 42 days PI and persisting at least 70 days PI. No histopathologic changes were seen. Horizontal transmission of the virus was studied by placing uninoculated mice with inoculated mice for 42 days and determining if the test animals developed antibodies or had virus in their lungs. Fifty-percent of the uninoculated mice developed antibody. One of these animals had virus in its lungs. Therefore, Modoc virus may be transmitted by direct contact.  相似文献   

5.
Information was sought on the temporal replication of Aleutian disease virus in 27 royal pastel mink. Groups of three were examined 8 to 126 days after they were inoculated subcutaneously with 10(3) 50% lethal doses of the Pullman strain. Much individual variation was noted in the onset of infection, occurrence of viremia, and extent of virus replication in the tissues. Thus, virus was detected in lymph nodes regional to the site of inoculation in only some mink during the first 14 days after inoculation. During this period, virus was often present as well in the mesenteric lymph node and spleen. First detected on day 10, viremia was present in all mink examined on day 28 but occurred irregularly thereafter, even when virus was widespread in the tissues. Except in five mink succumbing to the disease, the tissue distribution of virus after day 28 tended to be more limited, and the titers were generally lower than they had been earlier. Even though present in the lymph nodes and spleen, virus was often absent from the kidney, liver, and intestine after day 28. Specific antibody was detected on day 28 and was present in all mink thereafter, ostensibly without any adverse effect on virus replication. In most mink, the infection was considered subclinical, for it was usually not accompanied by a rise in serum gamma globulin or by morphologic evidence of the disease. The virologic findings in this study have a bearing on the relationship of subclinical infections to both horizontal and vertical transmission of the virus.  相似文献   

6.
Nude mice which had received intraperitoneal injection of silica simultaneously with infection of mouse hepatitis virus, NuU strain, died of severe necrotic hepatitis within 2 weeks postinfection, whereas those having received no silica survived for 3 weeks or more after challenge. Silica given day 4 postinoculation had no effect. The virus titers of the liver and spleen at day 4 as well as serum interferon levels at day 2 were much higher in silica-treated mice than those without silica treatment. At day 2 or 3 postinoculation, silica-treated mice were found to have a considerable number of necrotic foci in the liver with some neutrophil and lymphocyte infiltration, and viral antigen was present in the cytoplasm of some hepatocytes around necrotic foci. In contrast, those without silica treatment showed only some necrotic foci with some lymphocyte infiltration. Viral antigen was detected only in a few littoral cells but not in hepatocytes. The role of macrophages in the resistance at early stage of inection in nude mice is discussed.  相似文献   

7.
Colonial bats (Myotis supp. and Eptesicus sp.) were infected with eastern equine encephalomyelitis virus by subcutaneous inoculation or by the bite of infected mosquitoes. Bats were maintained in an environment simulating conditions encountered in hibernacula or in summer maternal colonies. Virus was detected in the blood of hibernating bats at irregular intervals over a 42-day observation period; viremia perhaps was influenced by the amount of disturbance (arousal) involved in the blood sampling process. Target organs included brown fat, spleen, lung, kidneys, pancreas, and liver. Neutralizing antibody was not detected in sera collected from these bats between days 4 and 42 post-inoculation. In nonhibernating bats, virus was recovered from mammary glands, brown fat, pancreas, lungs, kidneys, and liver, in addition to blood. Attempts to infect bats orally or to transmit virus to suckling mice by the bite of viremic bats were unsuccessful. Virus was transmitted from viremic chickens to E. fuscus by the bite of Culiseta melanura and Aedes aegypti.  相似文献   

8.
We studied the effects of natural and/or experimental infections of West Nile virus (WNV) in five raptor species from July 2002 to March 2004, including American kestrels (Falco sparverius), golden eagles (Aquila chrysaetos), red-tailed hawks (Buteo jamaicensis), barn owls (Tyto alba), and great horned owls (Bubo virginianus). Birds were infected per mosquito bite, per os, or percutaneously by needle. Many experimentally infected birds developed mosquito-infectious levels of viremia (>10(5) WNV plaque forming units per ml serum) within 5 days postinoculation (DPI), and/ or shed virus per os or per cloaca. Infection of organs 15-27 days postinoculation was infrequently detected by virus isolation from spleen, kidney, skin, heart, brain, and eye in convalescent birds. Histopathologic findings varied among species and by method of infection. The most common histopathologic lesions were subacute myocarditis and encephalitis. Several birds had a more acute, severe disease condition represented by arteritis and associated with tissue degeneration and necrosis. This study demonstrates that raptor species vary in their response to WNV infection and that several modes of exposure (e.g., oral) may result in infection. Wildlife managers should recognize that, although many WNV infections are sublethal to raptors, subacute lesions could potentially reduce viability of populations. We recommend that raptor handlers consider raptors as a potential source of WNV contamination due to oral and cloacal shedding.  相似文献   

9.
Viral DNA in horses infected with equine infectious anemia virus.   总被引:14,自引:12,他引:2       下载免费PDF全文
The amount and distribution of viral DNA were established in a horse acutely infected with the Wyoming strain of equine infectious anemia virus (EIAV). The highest concentration of viral DNA were found in the liver, lymph nodes, bone marrow, and spleen. The kidney, choroid plexus, and peripheral blood leukocytes also contained viral DNA, but at a lower level. It is estimated that at day 16 postinoculation, almost all of the viral DNA was located in the tissues, with the liver alone containing about 90 times more EIAV DNA than the peripheral blood leukocytes did. Assuming a monocyte-macrophage target, each infected cell contained multiple copies of viral DNA (between 6 and 60 copies in liver Kupffer cells). At day 16 postinoculation, most of the EIAV DNA was not integrated into host DNA, but existed in both linear and circular unintegrated forms. In contrast to acute infection, viral DNA was not detectable in tissues from asymptomatic horses with circulating antibody to EIAV.  相似文献   

10.
Some laying hens 6 months of age were inoculated subcutaneously or orally with a chick embryo--adapted strain of avian encephalomyelitis virus and examined for propagation of the virus in the body. When inoculated subcutaneously, the virus appeared in liver, spleen, ovarian follicle, and muscle at the site of inoculation 1 day, in kidney and lumbar part of the spinal cord 3 days, in the pancreas 5 days, in heart, duodenum, and cervical part of the spinal cord 7 days, and in the brain 11 days after inoculation. After its appearance, it increased gradually in amount in liver, spleen, pancreas, muscle at the site of inoculation, and cervical and lumbar parts of the spinal cord, but remained at a low level in any other organ. When examined 14 days after inoculation and later, it was distributed mainly in the central nervous system. It was detected from 12 of 16 organs examined. The highest virus level in each organ was 10(2.6)/0.1 g in pancreas and lumbar part of the spinal cord, which were followed by muscle at the site of inoculation (10(2.0)/0.1 g), spleen (10(1.8)/0.1 g), cervical part of the spinal cord, heart, and liver in the order listed. When inoculated orally, the virus was found sporadically in spleen, pancreas, kidney, cecum, ovarian follicle, and lumbar part of the spinal cord. The virus level was low in these organs, of which pancreas, kidney, and lumbar part of the spinal cord showed the highest virus level, or 10(1.3)/0.1 g.  相似文献   

11.
Rotaviruses infect mature, differentiated enterocytes of the small intestine and, by an unknown mechanism, escape the gastrointestinal tract and cause viremia. The neonatal rat model of rotavirus infection was used to determine the kinetics of viremia, spread, and pathology of rotavirus in extraintestinal organs. Five-day-old rat pups were inoculated intragastrically with an animal (RRV) or human (HAL1166) rotavirus or phosphate-buffered saline. Blood was collected from a subset of rat pups, and following perfusion to remove residual blood, organs were removed and homogenized to analyze rotavirus-specific antigen by enzyme-linked immunosorbent assay and infectious rotavirus by fluorescent focus assay or fixed in formalin for histology and immunohistochemistry. Viremia was detected following rotavirus infection with RRV and HAL1166. The RRV 50% antigenemia dose was 1.8 x 10(3) PFU, and the 50% diarrhea dose was 7.7 x 10(5) PFU, indicating that infection and viremia occurred in the absence of diarrhea and that detecting rotavirus antigen in the blood was a more sensitive measure of infection than diarrhea. Rotavirus antigens and infectious virus were detected in multiple organs (stomach, intestines, liver, lungs, spleen, kidneys, pancreas, thymus, and bladder). Histopathological changes due to rotavirus infection included acute inflammation of the portal tract and bile duct, microsteatosis, necrosis, and inflammatory cell infiltrates in the parenchymas of the liver and lungs. Colocalization of structural and nonstructural proteins with histopathology in the liver and lungs indicated that the histological changes observed were due to rotavirus infection and replication. Replicating rotavirus was also detected in macrophages in the lungs and blood vessels, indicating a possible mechanism of rotavirus dissemination. Extraintestinal infectious rotavirus, but not diarrhea, was observed in the presence of passively or actively acquired rotavirus-specific antibody. These findings alter the previously accepted concept of rotavirus pathogenesis to include not only gastroenteritis but also viremia, and they indicate that rotavirus could cause a broad array of systemic diseases in a number of different organs.  相似文献   

12.
West Nile virus (WNV) is transmitted to vertebrate hosts primarily by infected Culex mosquitoes. Transmission of arboviruses by the bite of infected mosquitoes can potentiate infection in hosts compared to viral infection by needle inoculation. Here we examined the effect of mosquito transmission on WNV infection and systematically investigated multiple factors that differ between mosquito infection and needle inoculation of WNV. We found that mice infected with WNV through the bite of a single infected Culex tarsalis mosquito exhibited 5- to 10-fold-higher viremia and tissue titers at 24 and 48 h postinoculation and faster neuroinvasion than mice given a median mosquito-inoculated dose of WNV (10(5) PFU) by needle. Mosquito-induced enhancement was not due to differences in inoculation location, because additional intravenous inoculation of WNV did not enhance viremia or tissue titers. Inoculation of WNV into a location where uninfected mosquitoes had fed resulted in enhanced viremia and tissue titers in mice similar to those in mice infected by a single infected mosquito bite, suggesting that differences in where virus is deposited in the skin and in the virus particle itself were not responsible for the enhanced early infection in mosquito-infected mice. In addition, inoculation of mice with WNV mixed with salivary gland extract (SGE) led to higher viremia, demonstrating that mosquito saliva is the major cause of mosquito-induced enhancement. Enhanced viremia was not observed when SGE was inoculated at a distal site, suggesting that SGE enhances WNV replication by exerting a local effect. Furthermore, enhancement of WNV infection still occurred in mice with antibodies against mosquito saliva. In conclusion, saliva from C. tarsalis is responsible for enhancement of early WNV infection in vertebrate hosts.  相似文献   

13.
Cloned cytotoxic T lymphocytes (CTL) specific for lymphocytic choriomeningitis virus (LCMV) were adoptively transferred to syngeneic mice acutely or persistently (carrier mice) infected with LCMV. Although infectious virus was cleared from the spleens during acute LCMV infection begun 24 hr earlier and the spleens remained clear of virus for the 4 days of testing, there was no concomitant reduction of viral titers in lymph nodes. In contrast, adoptive transfer of cloned CTL into animals with persistent rather than acute LCMV infection resulted in deaths of syngeneic but not allogeneic recipients. LCMV-immune spleen cells taken 30 to 50 days after a primary immunization and activated by in vitro stimulation before transfer also caused death of syngeneic carrier mice. However, LCMV-immune spleen cell per se provoked no clinical manifestations when transferred but cleared infectious virus and viral nucleic acid sequences from syngeneic carrier mice. The migration of 51Cr-labeled, LCMV-specific, H-2-restricted cloned CTL was assessed in vivo. The circulation of these CTL clearly differed from that of spleen cells freshly isolated from uninfected mice and from non-LCMV-specific CTL clone. Further, the circulatory pattern of LCMV-specific, H-2-restricted, cloned CTL in carrier mice was markedly different than in uninfected animals; only 7% of the injected cells remained in the lungs of uninfected mice 8 hr after injection, whereas 30% had accumulated in the liver. However, 55% of the cells injected into carrier mice still remained in their lungs 8 to 16 hr later. Hence, LCMV-specific, H-2-restricted, cloned CTL have unique trafficking patterns in the presence of LCMV antigens and immune activities in vivo.  相似文献   

14.
To investigate the cell tropism and pathogenicity of varicella-zoster virus (VZV) strains, we analyzed VZV replication by using SCID-hu mice that carry human fetal thymus/liver implants under the kidney capsule or as subcutaneous fetal skin implants. MRC-5 cells infected with wild-type VZV or the Oka strain, used in the live attenuated varicella vaccine, were injected into the implants. The implants were surgically removed 2, 7, 14, and 21 days postinfection. The VZV titer from infected thymus/liver implants peaked on day 7 for the wild-type strain and on day 14 for the Oka strain. Histological analysis showed necrotic areas characterized by thymocyte depletion and fibrosis. VZV protein synthesis was detectable by immunohistochemical staining in the necrotic areas and in distant regions that did not show cytopathic changes, and VZV DNA was detected by in situ hybridization in the same distribution. Fluorescence-activated cell sorting analysis of thymocytes harvested at day 7 postinfection showed that VZV proteins were expressed in CD4+, CD8+, and CD4+ CD8+ T cells; VZV was cultured from each T-cell subpopulation. The Oka strain had tropism for human cell types similar to that of wild-type VZV. T lymphocytes released infectious VZV, which is a novel and important observation about the replication of this otherwise highly cell associated virus. VZV-infected skin implants exhibited microscopic epidermal lesions that were indistinguishable histologically from the characteristic lesions of varicella. These experiments demonstrate a unique tropism of VZV for human T lymphocytes, explaining its capacity to cause viremia in natural disease, and demonstrate the value of the SCID-hu model for studies of VZV pathogenesis.  相似文献   

15.
Summary Thirteen cell lines were established and characterized from brain, kidney, lung, spleen, heart, liver, gall bladder, urinary bladder, pancreas, testis, skin, and periorbital and tumor tissues of an immature male green turtle (Chelonia mydas) with fibropapillomas. Cell lines were optimally maintained at 30° C in RPMI 1640 medium supplemented with 10% fetal bovine serum. Propagation of the turtle cell lines was serum dependent, and plating efficiencies ranged from 13 to 37%. The cell lines, which have been subcultivated more than 20 times, had a doubling time of approximately 30 to 36 h. When tested for their sensitivity to several fish viruses, most of the cell lines were susceptible to a rhabdovirus, spring viremia carp virus, but refractory to channel catfish virus (a herpesvirus), infectious pancreatic necrosis virus (a birnavirus), and two other fish rhabdoviruses, infectious hematopoietic necrosis virus and viral hemorrhagic septicemia virus. During in vitro subcultivation, tumor-like cell aggregates appeared in cell lines derived from lungs, testis, and periorbital and tumor tissues, and small, naked intranuclear virus particles were detected by thin-section electron microscopy. These cell lines are currently being used in attempts to isolate the putative etiologic virus of green turtle fibropapilloma.  相似文献   

16.
17.
Experimental simian varicella virus (SVV) infection of St. Kitts vervet monkeys was evaluated as an animal model to investigate human varicella-zoster virus (VZV) infections. During the incubation period, viremia disseminated infectious virus throughout the body via infected peripheral blood lymphocytes (PBLs). A vesicular skin rash in the inguinal area, and on the abdomen, extremities, and face appeared on day 7–10 postinfection. Necrosis and hemorrhage in lung and liver tissues from acutely infected monkeys were evident upon histologic analysis. Recovery from simian varicella was accompanied by a rise in the serum neutralizing antibody response to the virus. SVV latency was established in trigeminal ganglia of monkeys which resolved the acute infection. This study indicates that experimental SVV infection of St. Kitts vervets is a useful animal model to investigate SVV and VZV pathogenesis and to evaluate potential antiviral agents and vaccines.  相似文献   

18.
Rabbits were either inoculated with Sendai virus (SV), strain MN, or caged with virus-inoculated rabbits on the same day of the viral inoculation, and examined for viral shedding and detection of viral antigens in the respiratory tract, histopathologic changes, and serum antibodies. Infectious virus was recovered from nasal swabs at postinoculation day (PID) 3 and disappeared by PID 10. Viral antigens were detected by immunofluorescence in epithelial cells of the nasal cavities, but not of the trachea and lungs from PID 3 to PID 10, and antibodies were detected after PID 7. Rabbits had no clinical manifestations and only exhibited a moderate increase in goblet cells of the nasal epithelium. In the transmission study, virus was recovered from one of three uninoculated rabbits at postexposure day (PED) 10 and antibodies were detected at PED 15 in the same rabbit. These data suggest that, although viral multiplication was limited to the nasal epithelium, laboratory rabbits are susceptible to Sendai virus infection.  相似文献   

19.
Progressive hepatitis in athymic nude (nu/nu) mice due to a low-virulent mouse hepatitis virus, MHV-2 cc, was examined for involvement of immunocytes and serum antibodies. At 3 to 6 weeks postinoculation (p.i.) a considerable number of Mac 1- and asialo GM1-positive cells were accumulated in the affected liver and spleen. There were also some Thy-1-positive cells. Later than 2 weeks p.i., serum IgG and IgM antibodies were detected in parallel with virus-neutralizing activity, while the IgG levels were lower than those of infected euthymic (nu/+) littermates. By transfer of the infected nu/nu mouse serum, the recipient euthymic mice acquired resistance to lethal challenge infection with a virulent virus, MHV-2.  相似文献   

20.
Residual hepatitis B virus (HBV) DNA can be detected in serum and liver after apparent recovery from transient infection. However, it is not known if this residual HBV DNA represents ongoing viral replication and antigen expression. In the current study, ducks inoculated with duck hepatitis B virus (DHBV) were monitored for residual DHBV DNA following recovery from transient infection until 9 months postinoculation (p.i.). Resolution of DHBV infection occurred in 13 out of 15 ducks by 1-month p.i., defined as clearance of DHBV surface antigen-positive hepatocytes from the liver and development of anti-DHBV surface antibodies. At 9 months p.i., residual DHBV DNA was detected using nested PCR in 10/11 liver, 7/11 spleen, 2/11 kidney, 1/11 heart, and 1/11 adrenal samples. Residual DHBV DNA was not detected in serum or peripheral blood mononuclear cells. Within the liver, levels of residual DHBV DNA were 0.0024 to 0.016 copies per cell, 40 to 80% of which were identified as covalently closed circular viral DNA by quantitative PCR assay. This result, which was confirmed by Southern blot hybridization, is consistent with suppressed viral replication or inactive infection. Samples of liver and spleen cells from recovered animals did not transmit DHBV infection when inoculated into 1- to 2-day-old ducklings, and immunosuppressive treatment of ducks with cyclosporine and dexamethasone for 4 weeks did not alter levels of residual DHBV DNA in the liver. These findings further characterize a second form of hepadnavirus persistence in a suppressed or inactive state, quite distinct from the classical chronic carrier state.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号