首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Enrichment was performed to isolate organisms that could utilize reduced phosphorus compounds as their sole phosphorus sources. One isolate that grew well with either hypophosphite or phosphite was identified by 16S rRNA gene analysis as a strain of Alcaligenes faecalis. The genes required for oxidation of hypophosphite and phosphite by this organism were identified by using transposon mutagenesis and include homologs of the ptxD and htxA genes of Pseudomonas stutzeri WM88, which encode an NAD-dependent phosphite dehydrogenase (PtxD) and 2-oxoglutarate-dependent hypophosphite dioxygenase (HtxA). This organism also has the htxB, htxC, and htxD genes that comprise an ABC-type transporter, presumably for hypophosphite and phosphite transport. The role of these genes in reduced phosphorus metabolism was confirmed by analyzing the growth of mutants in which these genes were deleted. Sequencing data showed that htxA, htxB, htxC, and htxD are virtually identical to their homologs in P. stutzeri at the DNA level, indicating that horizontal gene transfer occurred. However, A. faecalis ptxD is very different from its P. stutzeri homolog and represents a new ptxD lineage. Therefore, this gene has ancient evolutionary roots in bacteria. These data suggest that there is strong evolutionary selection for the ability of microorganisms to oxidize hypophosphite and phosphite.  相似文献   

2.
Desulfotignum phosphitoxidans is a strictly anaerobic, Gram-negative bacterium that utilizes phosphite as the sole electron source for homoacetogenic CO2 reduction or sulfate reduction. A genomic library of D. phosphitoxidans, constructed using the fosmid vector pJK050, was screened for clones harboring the genes involved in phosphite oxidation via PCR using primers developed based on the amino acid sequences of phosphite-induced proteins. Sequence analysis of two positive clones revealed a putative operon of seven genes predicted to be involved in phosphite oxidation. Four of these genes (ptxD-ptdFCG) were cloned and heterologously expressed in Desulfotignum balticum, a related strain that cannot use phosphite as either an electron donor or as a phosphorus source. The ptxD-ptdFCG gene cluster was sufficient to confer phosphite uptake and oxidation ability to the D. balticum host strain but did not allow use of phosphite as an electron donor for chemolithotrophic growth. Phosphite oxidation activity was measured in cell extracts of D. balticum transconjugants, suggesting that all genes required for phosphite oxidation were cloned. Genes of the phosphite gene cluster were assigned putative functions on the basis of sequence analysis and enzyme assays.Phosphorus (P) is an important nutrient for all living organisms. The predominant forms of phosphorus in biological systems are inorganic phosphate and its organic esters and acid anhydrides in which P is at its highest oxidation state (+V). The P requirements of living cells can be fulfilled with phosphate in various forms, including reduced organic and inorganic phosphorus compounds (23). Several aerobic bacteria were shown to be able to oxidize hypophosphite (+I) and phosphite (+III) to phosphate (+V) and to incorporate the last into their biomass (5, 15-17, 31, 34). Phosphite can also be oxidized under anaerobic conditions, as shown for an anaerobic Bacillus strain (7) and for Pseudomonas stutzeri which can use phosphite under denitrifying conditions (17, 21). The only bacterium known to oxidize phosphite as the sole source of electrons in lithoautotrophic energy metabolism is Desulfotignum phosphitoxidans (24, 25).Three different metabolic pathways for the use of phosphite as a single P source have been characterized so far. Two of them were discovered and characterized with Escherichia coli and one with Pseudomonas stutzeri. The first pathway in E. coli is mediated by the enzyme carbon phosphorus lyase (C-P lyase), and the second one by the alkaline phosphatase encoded by phoA (16, 34). This alkaline phosphatase not only hydrolyzes phosphate esters but also hydrolyzes phosphite to phosphate and molecular hydrogen (32). This is a particular property only of the E. coli alkaline phosphatase and is not observed with alkaline phosphatases of other bacteria. The third pathway is encoded by the ptxABCDE gene cluster in P. stutzeri (17). In this system, phosphite is transported into the cell by a binding protein-dependent phosphite transporter at the expense of ATP (PtxABC). Phosphite is oxidized by a phosphite:NAD+ oxidoreductase (encoded by ptxD), a new member of the 2-hydroxy acid dehydrogenases (8). The ptx operon of P. stutzeri is regulated in response to phosphate starvation by the two-component regulatory system phoBR (28, 29). Furthermore, in Alcaligenes faecalis WM2072, another gene cluster involved in hypophosphite and phosphite uptake and oxidation was characterized: the htxABCD-ptxDE locus (31). The htxABCD-ptxDE genes and their products in A. faecalis WM 2072 have high nucleotide and amino acid sequence identities with those found in the htx and ptx operons in P. stutzeri WM88, which are required for the oxidation of hypophosphite and phosphite, respectively. This unique genetic arrangement of hypophosphite- and phosphite-oxidizing genes in A. faecalis WM2072 suggests a horizontal gene transfer and an ancient evolution of phosphite oxidation.The diversity of pathways used for assimilatory phosphite oxidation and the fact that D. phosphitoxidans is so far the only bacterium known to use phosphite as an electron source caused us to investigate the phosphite uptake and oxidation gene cluster of this bacterium. The aims of our study were (i) to establish enzymatic assays for measurement of phosphite oxidation activity in cell extracts, (ii) to identify the genes involved in phosphite uptake and oxidation, and (iii) to characterize these genes physiologically.  相似文献   

3.

Key message

This report demonstrates the usefulness of ptxD/phosphite as a selection system that not only provides a highly efficient and simple means to generate transgenic cotton plants, but also helps address many of the concerns related to the use of antibiotic and herbicide resistance genes in the production of transgenic crops.

Abstract

Two of the most popular dominant selectable marker systems for plant transformation are based on either antibiotic or herbicide resistance genes. Due to concerns regarding their safety and in order to stack multiple traits in a single plant, there is a need for alternative selectable marker genes. The ptxD gene, derived from Pseudomonas stutzeri WM88, that confers to cells the ability to convert phosphite (Phi) into orthophosphate (Pi) offers an alternative selectable marker gene as demonstrated for tobacco and maize. Here, we show that the ptxD gene in combination with a protocol based on selection medium containing Phi, as the sole source of phosphorus (P), can serve as an effective and efficient system to select for transformed cells and generate transgenic cotton plants. Fluorescence microscopy examination of the cultures under selection and molecular analyses on the regenerated plants demonstrate the efficacy of the system in recovering cotton transformants following Agrobacterium-mediated transformation. Under the ptxD/Phi selection, an average of 3.43 transgenic events per 100 infected explants were recovered as opposed to only 0.41% recovery when bar/phosphinothricin (PPT) selection was used. The event recovery rates for nptII/kanamycin and hpt/hygromycin systems were 2.88 and 2.47%, respectively. Molecular analysis on regenerated events showed a selection efficiency of ~?97% under the ptxD/Phi system. Thus, ptxD/Phi has proven to be a very efficient, positive selection system for the generation of transgenic cotton plants with equal or higher transformation efficiencies compared to the commonly used, negative selection systems.
  相似文献   

4.
5.
Microalgal cultivation that takes advantage of solar energy is one of the most cost‐effective systems for the biotechnological production of biofuels, and a range of high value products, including pharmaceuticals, fertilizers and feed. However, one of the main constraints for the cultivation of microalgae is the potential contamination with biological pollutants, such as bacteria, fungi, zooplankton or other undesirable microalgae. In closed bioreactors, the control of contamination requires the sterilization of the media, containers and all materials, which increases the cost of production, whereas open pond systems severely limits the number of species that can be cultivated under extreme environmental conditions to prevent contaminations. Here, we report the metabolic engineering of Chlamydomonas reinhardtii to use phosphite as its sole phosphorus source by expressing the ptxD gene from Pseudomonas stutzeri WM88, which encodes a phosphite oxidoreductase able to oxidize phosphite into phosphate using NAD as a cofactor. Engineered C. reinhardtii lines are capable of becoming the dominant species in a mixed culture when fertilized with phosphite as a sole phosphorus source. Our results represent a new platform for the production of microalgae, potentially useful for both closed photobioreactors and open pond systems without the need for using sterile conditions nor antibiotics or herbicides to prevent contamination with biological pollutants.  相似文献   

6.
7.
A Bacillus sp. capable of utilizing phosphite and hypophosphite under anaerobic conditions was isolated from Cape Canerval soil samples. The organism was isolated on a glucose-mineral salts medium with phosphate deleted. Anaerobic cultivation of this isolate resulted in decreases in the hypophosphite or phosphite concentration, increases in turbidity, cell count, and dry-cell weight, and decreases in pH and glucose concentration. The optimum hypophosphite concentration for this isolate was 60 microgram/ml, whereas the optimum phosphate concentration was greater than 1,000 microgram/ml, suggesting that higher concentrations of hypophosphite may be toxic to this isolate. Hypophosphite or phosphite utilization was accompanied by little or no detectable accumulation of phosphate in the medium, and 32P-labeled hypophosphite was incorporated into the cell as organic phosphate. When phosphate was present in the medium, the isolate failed to metabolize phosphite. In the presence of phosphite and hypophosphite, the isolate first utilized phosphite and then hypophosphite.  相似文献   

8.
T L Foster  L Winans  Jr    S J Helms 《Applied microbiology》1978,35(5):937-944
A Bacillus sp. capable of utilizing phosphite and hypophosphite under anaerobic conditions was isolated from Cape Canerval soil samples. The organism was isolated on a glucose-mineral salts medium with phosphate deleted. Anaerobic cultivation of this isolate resulted in decreases in the hypophosphite or phosphite concentration, increases in turbidity, cell count, and dry-cell weight, and decreases in pH and glucose concentration. The optimum hypophosphite concentration for this isolate was 60 microgram/ml, whereas the optimum phosphate concentration was greater than 1,000 microgram/ml, suggesting that higher concentrations of hypophosphite may be toxic to this isolate. Hypophosphite or phosphite utilization was accompanied by little or no detectable accumulation of phosphate in the medium, and 32P-labeled hypophosphite was incorporated into the cell as organic phosphate. When phosphate was present in the medium, the isolate failed to metabolize phosphite. In the presence of phosphite and hypophosphite, the isolate first utilized phosphite and then hypophosphite.  相似文献   

9.
Through the fixation of atmospheric nitrogen and photosynthesis, marine diazotrophs play a critical role inthe global cycling of nitrogen and carbon. Crocosphaera watsonii is a recently described unicellular diazotroph that may significantly contribute to marine nitrogen fixation in tropical environments. One of the many factors that can constrain the growth and nitrogen fixation rates of marine diazotrophs is phosphorus bioavailability. Using genomic and physiological approaches, we examined phosphorus scavenging mechanisms in strains of C. watsonii from both the Atlantic and the Pacific. Observations from the C. watsonii WH8501 genome suggest that this organism has the capacity for high-affinity phosphate transport (e.g., homologs of pstSCAB) in low-phosphate, oligotrophic systems. The pstS gene (high-affinity phosphate binding) is present in strains isolated from both the Atlantic and the Pacific, and its expression was regulated by the exogenous phosphate supply in strain WH8501. Genomic observation also indicated a broad capacity for phosphomonoester hydrolysis (e.g., a putative alkaline phosphatase). In contrast, no clear homologs of genes for phosphonate transport and hydrolysis could be identified. Consistent with these genomic observations, C. watsonii WH8501 is able to grow on phosphomonoesters as a sole source of added phosphorus but not on the phosphonates tested to date. Taken together these data suggest that C. watsonii has a robust capacity for scavenging phosphorus in oligotrophic systems, although this capacity differs from that of other marine cyanobacterial genera, such as Synechococcus, Prochlorococcus, and Trichodesmium.  相似文献   

10.
Concentrations of hypophosphite and phosphite oxidizing bacteria were found to be high, relative to bacterial concentrations growing on phosphate, in sediment and soil during winter and summer seasons from 12 common terrestrial and aquatic sites using a most probable number method. The percent of total culturable bacterial concentrations that could use these reduced phosphorus compounds as a sole source of phosphorus were as follows: hypophosphite, 7–100%; phosphite, 10–67%; aminoethylphosphonate, 34–270%. The average MPN/g (±SEM) was as follows: phosphate, 6.19 × 106 (±2.40 × 106); hypophosphite, 2.61 × 106 (±1.35 × 106) phosphite, 1.91 × 106 (±1.02 × 106); aminoethylphosphonate, 3.90 × 106 (± 1.95 × 106). Relatively high concentrations of reduced phosphorus oxidizing bacteria were found in both pristine sites and sites with urban and agricultural disturbance. Concentrations of reduced phosphorus oxidizing bacteria in anoxic sediments and soil were equivalent. Our data indicate that reduced phosphorus oxidizing bacteria are abundant in the environment and provide strong evidence for the importance of bacterial P oxidation in nature.  相似文献   

11.
Antibiotic and herbicide resistance genes are currently the most frequently used selectable marker genes for plant research and crop development. However, the use of antibiotics and herbicides must be carefully controlled because the degree of susceptibility to these compounds varies widely among plant species and because they can also affect plant regeneration. Therefore, new selectable marker systems that are effective for a broad range of plant species are still needed. Here, we report a simple and inexpensive system based on providing transgenic plant cells the capacity to convert a nonmetabolizable compound (phosphite, Phi) into an essential nutrient for cell growth (phosphate) trough the expression of a bacterial gene encoding a phosphite oxidoreductase (PTXD). This system is effective for the selection of Arabidopsis transgenic plants by germinating T0 seeds directly on media supplemented with Phi and to select transgenic tobacco shoots from cocultivated leaf disc explants using nutrient media supplemented with Phi as both a source of phosphorus and selective agent. Because the ptxD/Phi system also allows the establishment of large‐scale screening systems under greenhouse conditions completely eliminating false transformation events, it should facilitate the development of novel plant transformation methods.  相似文献   

12.
The htx and ptx operons of Pseudomonas stutzeri WM88 allow for the use of the inorganic reduced phosphorus (P) compounds hypophosphite (P valence, +1) and phosphite (P valence, +3) as sole P sources. To support the proposed in vivo role for the htx and ptx operons, namely the use of phosphite and hypophosphite as alternative P sources, we used reporter gene fusions to examine their expression levels with respect to various P conditions. Expression of the htx and ptx operons was induced up to 17- and 22-fold, respectively, in cultures grown under phosphate starvation conditions relative to expression in medium with excess phosphate (Pi). However, the presence of the reduced P substrate hypophosphite, phosphite, or methylphosphonate, in addition to excess Pi, did not result in an increase in the expression of either operon. To provide further support for a role of the htx and ptx operons in Pi acquisition, we identified P. stutzeri phoBR homologs and constructed deletion mutants. Induction of the htx and ptx reporter gene fusions in response to growth on limiting Pi was abolished in DeltaphoB, DeltaphoR, and DeltaphoBR mutants, demonstrating that htx and ptx expression is phoBR dependent. The putative LysR-type regulator encoded by ptxE has no apparent role in the expression of the htx and ptx operons, as no effect was observed on the level of induction of either operon in a DeltaptxE mutant.  相似文献   

13.
14.
Cytoplasmic incompatibility is a selfish reproductive manipulation induced by the endosymbiont Wolbachia in arthropods. In males Wolbachia modifies sperm, leading to embryonic mortality in crosses with Wolbachia-free females. In females, Wolbachia rescues the cross and allows development to proceed normally. This provides a reproductive advantage to infected females, allowing the maternally transmitted symbiont to spread rapidly through host populations. We identified homologs of the genes underlying this phenotype, cifA and cifB, in 52 of 71 new and published Wolbachia genome sequences. They are strongly associated with cytoplasmic incompatibility. There are up to seven copies of the genes in each genome, and phylogenetic analysis shows that Wolbachia frequently acquires new copies due to pervasive horizontal transfer between strains. In many cases, the genes have subsequently acquired loss-of-function mutations to become pseudogenes. As predicted by theory, this tends to occur first in cifB, whose sole function is to modify sperm, and then in cifA, which is required to rescue the cross in females. Although cif genes recombine, recombination is largely restricted to closely related homologs. This is predicted under a model of coevolution between sperm modification and embryonic rescue, where recombination between distantly related pairs of genes would create a self-incompatible strain. Together, these patterns of gene gain, loss, and recombination support evolutionary models of cytoplasmic incompatibility.  相似文献   

15.
The presence of nitrogen fixers within the genus Pseudomonas has been established and so far most isolated strains are phylogenetically affiliated to Pseudomonas stutzeri. A gene ortholog neighborhood analysis of the nitrogen fixation island (NFI) in four diazotrophic P. stutzeri strains and Pseudomonas azotifigens revealed that all are flanked by genes coding for cobalamin synthase (cobS) and glutathione peroxidise (gshP). The putative NFIs lack all the features characterizing a mobilizable genomic island. Nevertheless, bioinformatic analysis P. stutzeri DSM 4166 NFI demonstrated the presence of short inverted and/or direct repeats within both flanking regions. The other P. stutzeri strains carry only one set of repeats. The genetic diversity of eleven diazotrophic Pseudomonas isolates was also investigated. Multilocus sequence typing grouped nine isolates along with P. stutzeri and two isolates are grouped in a separate clade. A Rep-PCR fingerprinting analysis grouped the eleven isolates into four distinct genotypes. We also provided evidence that the putative NFI in our diazotrophic Pseudomonas isolates is flanked by cobS and gshP genes. Furthermore, we demonstrated that the putative NFI of Pseudomonas sp. Gr65 is flanked by inverted repeats identical to those found in P. stutzeri DSM 4166 and while the other P. stutzeri isolates harbor the repeats located in the intergenic region between cobS and glutaredoxin genes as in the case of P. stutzeri A1501. Taken together these data suggest that all putative NFIs of diazotrophic Pseudomonas isolates are anchored in an intergenic region between cobS and gshP genes and their flanking regions are designated by distinct repeats patterns. Moreover, the presence of almost identical NFIs in diazotrophic Pseudomonas strains isolated from distal geographical locations around the world suggested that this horizontal gene transfer event may have taken place early in the evolution.  相似文献   

16.
17.
Plant disease resistance (R) genes have undergone significant evolutionary divergence to cope with rapid changes in pathogens. These highly variable evolutionary patterns may have contributed to diversity in R gene protein families or structures. Here, the evolutionary patterns of 76 identified R genes and their homologs were investigated within and between plant species. Results demonstrated that nucleotide binding sites and leucine-rich-repeat genes located in loci with complex evolutionary histories tended to evolve rapidly, have high variation in copy numbers, exhibit high levels of nucleotide variation and frequent gene conversion events, and also exhibit high non-synonymous to synonymous substitution ratios in LRR regions. However, non-NBS-LRR R genes are relatively well conserved with constrained variation and are more likely to participate in the basic defense system of hosts. In addition, both conserved and highly divergent evolutionary patterns were observed for the same R genes and were consistent with inter- and intra-specific distributions of some R genes. These results thus indicate either continuous or altered evolutionary patterns between and within species. The present investigation is the first attempt to investigate evolutionary patterns among all clearly functional R genes. The results reported here thus provide a foundation for future plant disease studies.  相似文献   

18.
Bacillus caldolyticus can utilize phosphorus either as phosphate, phosphite, or hypophosphite. When cultures are supplied with PO2 as the sole source of phosphorus, the hypophosphite is oxidized to phosphate, which accumulates in the medium prior to the beginning of the log phase, and is then metabolised during growth. Resting cell suspensions also have the ability to oxidise PO2 to PO4. The reaction is specific for hypophosphite: PO3 is not oxidised to PO4, regardless of whether the cells are grown in PO3- or PO2-medium. The hypophosphite oxidase works optimally between pH 7.0 to 7.5, with a temperature optimum at 75°C; theK m for NaH2PO2 is 320 μM. Sonication of cells, followed by high-speed centrifugation and ammonium sulfate fractionation of the cell-free extract showed that the PO2 oxidation, which is accompanied by the formation of NADH, requires at least three components: An ammonium sulfate fraction of the cell-free extract, the residue fraction containing the respiratory chain, and NAD as cofactor. Most probably a second cofactor, so far not characterized, is required to accomplish full activity.  相似文献   

19.

Background

achaete-scute complexe (AS-C) has been widely studied at genetic, developmental and evolutional levels. Genes of this family encode proteins containing a highly conserved bHLH domain, which take part in the regulation of the development of central nervous system and peripheral nervous system. Many AS-C homologs have been isolated from various vertebrates and invertebrates. Also, AS-C genes are duplicated during the evolution of Diptera. Functions besides neural development controlling have also been found in Drosophila AS-C genes.

Results

We cloned four achaete-scute homologs (ASH) from the lepidopteran model organism Bombyx mori, including three proneural genes and one neural precursor gene. Proteins encoded by them contained the characteristic bHLH domain and the three proneural ones were also found to have the C-terminal conserved motif. These genes regulated promoter activity through the Class A E-boxes in vitro. Though both Bm-ASH and Drosophila AS-C have four members, they are not in one by one corresponding relationships. Results of RT-PCR and real-time PCR showed that Bm-ASH genes were expressed in different larval tissues, and had well-regulated expressional profiles during the development of embryo and wing/wing disc.

Conclusion

There are four achaete-scute homologs in Bombyx mori, the second insect having four AS-C genes so far, and these genes have multiple functions in silkworm life cycle. AS-C gene duplication in insects occurs after or parallel to, but not before the taxonomic order formation during evolution.  相似文献   

20.
Pseudomonas stutzeri OX1 meta pathway genes for toluene and o-xylene catabolism were analyzed, and loci encoding phenol hydroxylase, catechol 2,3-dioxygenase, 2-hydroxymuconate semialdehyde dehydrogenase, and 2-hydroxymuconate semialdehyde hydrolase were mapped. Phenol hydroxylase converted a broad range of substrates, as it was also able to transform the nongrowth substrates 2,4-dimethylphenol and 2,5-dimethylphenol into 3,5-dimethylcatechol and 3,6-dimethylcatechol, respectively, which, however, were not cleaved by catechol 2,3-dioxygenase. The identified gene cluster displayed a gene order similar to that of the Pseudomonas sp. strain CF600 dmp operon for phenol catabolism and was found to be coregulated by the tou operon activator TouR. A hypothesis about the evolution of the toluene and o-xylene catabolic pathway in P. stutzeri OX1 is discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号