首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The nucleotide sequences of the subgenomic coat protein messengers (RNA4's) of two related bromoviruses, brome mosaic virus (BMV) and cowpea chlorotic mottle virus (CCMV), have been determined by direct RNA and CDNA sequencing without cloning. BMV RNA4 is 876 b long including a 5' noncoding region of nine nucleotides and a 3' noncoding region of 300 nucleotides. CCMV RNA 4 is 824 b long, including a 5' noncoding region of 10 nucleotides and a 3' noncoding region of 244 nucleotides. The encoded coat proteins are similar in length (188 amino acids for BMV and 189 amino acids for CCMV) and display about 70% homology in their amino acid sequences. Length difference between the two RNAs is due mostly to a single deletion, in CCMV with respect to BMV, of about 57 b immediately following the coding region. Allowing for this deletion the RNAs are indicate that mutations leading to divergence were constrained in the coding region primarily by the requirement of maintaining a favorable coat protein structure and in the 3' noncoding region primarily by the requirement of maintaining a favorable RNA spatial configuration.  相似文献   

2.
A fragment representing the 3'-terminal 'tRNA-like' region of turnip yellow mosaic (TYM) virus RNA has been purified following incubation of intact TYM virus RNA with Escherichia coli 'RNase P'. This fragment, which is 112+3-nucleotides long has been completely digested with T1 RNase and pancreatic RNase and all the oligonucleotides present in such digests have been sequenced using 32P-end labelling techniques in vitro. The TYM virus RNA fragment is free of modified nucleosides and does not contain a G-U-U-C-R sequence. Using nuclease P1 from Penicillium citrinum, the sequence of 26 nucleotides from the 5' end and 16 nucleotides from the 3' end of this fragment has been deduced. The nucleotide sequence at the 5' end of the TYM virus RNA fragment indicates that this fragment includes the end of the TYM virus coat protein gene.  相似文献   

3.
Sequence of 1000 nucleotides at the 3'' end of tobacco mosaic virus RNA.   总被引:32,自引:16,他引:16       下载免费PDF全文
The sequence of 1000 nucleotides at the 3' end of tobacco mosaic virus RNA has been determined. The sequence contains the entire coat protein cistron as well as regions to its left and right. Sequence characterization was by conventional methods for use with uniformly 32P labeled RNA complemented by newer methods for in vitro 5' and 3' 32P end-labeling of RNA and its subsequent rapid analysis. The noncoding region separating the coat protein cistron from the 3' terminus is 204 residues long and may be folded into a clover-leaf-type secondary structure. The distribution of termination codons to the left of the coat protein cistron suggests that the end of the adjacent cistron is separated from the beginning of the coat protein cistron by only two nucleotides. The subgenomic viral coat protein mRNA was isolated from infected tissue and shown to be capped. The nontranslated sequence separating the cap from the AUG initiation codon is 9 residues long and thus overlaps a portion of the adjacent cistron on the genome RNA.  相似文献   

4.
5.
The nucleotide sequence of cowpea mosaic virus B RNA   总被引:22,自引:6,他引:16       下载免费PDF全文
The complete sequence of the bottom component RNA (B RNA) of cowpea mosaic virus (CPMV) has been determined. Restriction enzyme fragments of double-stranded cDNA were cloned in M13 and the sequence of the inserts was determined by a combination of enzymatic and chemical sequencing techniques. Additional sequence information was obtained by primed synthesis on first strand cDNA. The complete sequence deduced is 5889 nucleotides long excluding the 3' poly(A), and contains an open reading frame sufficient to code for a polypeptide of mol. wt. 207 760. The coding region is flanked by a 5' leader sequence of 206 nucleotides and a 3' non-coding region of 82 residues which does not contain a polyadenylation signal.  相似文献   

6.
Complete nucleotide sequence of alfalfa mosaic virus RNA 1.   总被引:10,自引:5,他引:5       下载免费PDF全文
Double-stranded cDNA of alfalfa mosaic virus (AlMV) RNA 1 has been cloned and sequenced. From clones with overlapping inserts, and other sequence data, the complete primary sequence of the 3644 nucleotides of RNA 1 was deduced: a long open reading frame for a protein of Mr 125,685 is flanked by a 5'-terminal sequence of 100 nucleotides and a 3' noncoding region of 163 nucleotides, including the sequence of 145 nucleotides the three genomic RNAs of AlMV have in common. The two UGA-termination codons halfway RNA 1, that were postulated by Van Tol et al. (FEBS Lett. 118, 67-71, 1980) to account for partial translation of RNA 1 in vitro into Mr 58,000 and Mr 62,000 proteins, were not found in the reading frame of the Mr 125,685 protein.  相似文献   

7.
The sequence of about 70 nucleotides at the 5' end of the RNAs of nine different aphthoviruses (foot-and-mouth disease viruses), including representatives of the seven serotypes of the virus, has been determined by partial enzyme digestion of (32)P-end-labeled S fragment-that part of the RNA lying to the 5' side of the poly(C) tract and including the 5' end of the molecule. The S fragments were prepared from polyadenylated virus-specific RNA extracted from infected cells by digestion with RNase H in the presence of oligo(dG)(12-18). The first 27 nucleotides from the 5' end were highly conserved in all the RNAs. This region was followed by a more variable region of about 15 nucleotides, showing some length and sequence heterogeneity and including potential but probably nonutilized initiation codons. In agreement with previous homology studies, the sequencing results showed that the European serotypes A, O, and C form a group distinct from the SAT serotypes and that the Asia 1 serotype is closely related to the European group. The lengths of the S fragments of two different RNAs were confirmed as containing 360 to 400 nucleotides by gel electrophoresis with reference to nucleotide markers of known size.  相似文献   

8.
Nucleotide sequence of turnip yellow mosaic virus coat protein mRNA   总被引:1,自引:0,他引:1  
H. Guilley  J.P. Briand 《Cell》1978,15(1):113-122
The primary structure of the coat protein messenger RNA of turnip yellow mosaic virus is presented. This sequence is the first complete nucleotide sequence of the coat protein messenger of a plant virus to be reported. The coding region, consisting of 567 nucleotides, is flanked by a 5′ noncoding region of 19 nucleotides (not including the initiation codon and the cap structure) and by a 3′ noncoding region of 109 nucleotides (including the termination signal). The coat protein mRNA has a base composition identical to that of the genome RNA with, in particular, the same high content in cytosine (38%). The codons that govern the incorporation of amino acids into the coat protein are nonrandomly utilized: >50% of the time the third base of the codons used is a cytosine. This pattern of codon preference is particularly marked for Leu, lie, Val, Thr and Cys.  相似文献   

9.
Cell-free translation of the RNA of encephalomyocarditis virus was examined after hybridization of chemically synthesized cDNA fragments to different sites of the 5' noncoding region of the viral RNA. The following results were obtained. The binding of cDNA fragments to the first 41 nucleotides, to the poly(C) tract (between nucleotides 149 and 263), and to the sequence between nucleotides 309 and 338 did not affect translation of the viral RNA; the binding of cDNA fragments to the sequence between nucleotides 420 and 449 caused a slight inhibition; and the binding of fragments to eight different sites between nucleotides 450 and the initiator AUG codon (nucleotide 834) caused high degrees of inhibition. The results suggest that the first part of the 5' untranslated region, at least to nucleotide 338, may not be required for encephalomyocarditis viral RNA translation; however, the region near nucleotide 450 is important for translation of the viral RNA. The possibility that initiation occurs at an internal site is discussed.  相似文献   

10.
The incubation of 25-S tobacco mosaic virus (TMV) protein with a mixture of RNA fragments produced by partial T1 RNase digestion of TMV RNA results in the encapsidation of only a few species of RNA. In addition to the most predominant species, fragment 1, whose sequence has been described in the prededing paper, two other species, fragment 41 and fragment 21 are coated by the protein. These two RNA fragments were purified by polyacrylamide gel electrophoresis and subjected to total digestion with pancreatic and T1 RNase. The oligonucleotides were separated by paper electrophoresis and characterized insofar as possible by digestion with the complementary ribonuclease. From the amino acid coding capacity of the oligonucleotides liberated from fragments 41 and 21 by T1 RNase digestion, it appears that these two fragments, like fragment 1, are derived from the coat protein cistron. They are situated immediately prior to fragment 1 and, together with this fragment, consitute a continuous stretch of 232 nucleotides of the cistron which codes for animo acids 53 to 130 of the coat protein. The order of the fragments in the sequence is 21-41-1. A possible model for the secondary structure of this portion of the sequence is proposed.  相似文献   

11.
F E Baralle 《Cell》1977,10(4):549-558
  相似文献   

12.
The sequence of the 5'-terminal 106 nucleotides of cucumber mosaic virus (strain Y) RNA 4, the mRNA coding for viral coat protein, has been determined. The first AUG was located at 77 nucleotides from the 5'-terminus and was confirmed to be an initiation codon by analysis of the N-terminal amino acid sequence of the protein. The nucleotide sequence (positions 77-106) beyond the AUG codon predicted the sequence of ten amino acids corresponding to the N-terminal region of the protein, which exactly matched the determined amino acid sequence containing an acetyl methionine as the N-terminal amino acid. The distance of the initiation codon AUG from the cap structure was 76 nucleotides and the longest among the mRNAs for coat protein of plant viruses so far reported (9-36 nucleotides). This noncoding region is rich in U residues (40%) and the number of G residues (21 nucleotides) is the largest among these mRNAs (usually 1 or 2 residues). A possible secondary structure is postulated for the region, which might be implicated in efficient translation of the RNA 4 in vivo.  相似文献   

13.
A method is described to classify, in regard to their location within the genome, fragments obtained by partial cleavage of 32P-labeled bacteriophage Qbeta RNA. The location of many fragments suitable for sequence analysis could be established using as markers 29 large RNase T1-resistant oligonucleotides with known map positions. Applying this method four fragments originating from the coat protein cistron were isolated and analyzed. The sequence of a segment of 239 nucleotides located immediately adjacent to the initiation triplet was determined to be G-C-A-A-A-A-U-U-A-G-A-G-A-C-U-G-U-U-A-C-U-U-U-A-G-G-U-A-A-C-A-U-C-G-G-G-A-A-A-G-A-U-G-G-A-A-A-A-C-A-A-A-C-U-C-U-G-G-U-C-C-U-C-A-A-U-C-C-G-C-G-U-G-G-G-G-U-A-A-A-U-C-C-C-A-C-U-A-A-C-G-G-C-G-U-U-G-C-C-U-C-G-C-U-U-U-C-A-C-A-A-G-C-G-G-G-U-G-C-A-G-U-U-C-C-U-G-C-G-C-U-G-G-A-G-A-A-G-C-G-U-G-U-U-A-C-C-G-U-U-U-C-G-G-U-A-U-C-U-C-A-G-C-C-U-U-C-U-C-G-C-A-A-U-C-G-U-A-A-G-A-A-C-U-A-C-A-A-G-G-U-C-C-A-G-G-U-U-A-A-G-A-U-C-C-A-G-A-A-C-C-C-G-A-C-C-G-C-U-U-G-C-A-C-U-G-C-A-A-A-C-G-G-U-U-C-U-U-Gp. The primary structure and the secondary structure model derived from it did not provide any evidence of homology with the corresponding RNA region of bacteriophage MS2.  相似文献   

14.
以甜菜坏死黄脉病毒(Beet Necrotic Yellow Vein Virus,简称BNYVV)内蒙分离物(NM)RNA为模板,通过反转录和PCR扩增得到了BNYVV RNA4基因组的cDNA克隆pGBF6。序列分析结果表明,pGBF6含有全长RNA4 cDNA插入片段,大小为1465个核苷酸,含有一个849个核苷酸的开放阅读框架,编码产生由282个氨基酸组成的分子量为31kDa的蛋白。与法国F2分离物RNA4相比,其核苷酸序列和由此推导的氨基酸序列同源性分别为97.1%和96.4%,并在5'端非编码区比F2分离物缺失了3个核苷酸。将RNA4编码区cDNA克隆到原核表达载体pFLAG·MAC上,获得融合蛋白表达质粒pFMBF87。所构建的融合蛋白由载体序列编码的14个氨基酸和31kDa蛋白C端的233个氨基酸组成。经IPTG诱导,Westem blotting分析表明,该融合蛋白在大肠杆菌中得到高效表达。本文还对内蒙分离物的株系划分进行了讨论。  相似文献   

15.
Foot and mouth disease virus RNA has been treated with RNase H in the presence of oligo (dG) specifically to digest the poly(C) tract which lies near the 5' end of the molecule (10). The short (S) fragment containing the 5' end of the RNA was separated from the remainder of the RNA (L fragment) by gel electrophoresis. RNA ligase mediated labelling of the 3' end of S fragment showed that the RNase H digestion gave rise to molecules that differed only in the number of cytidylic acid residues remaining at their 3' ends and did not leave the unique 3' end necessary for fast sequence analysis. As the 5' end of S fragment prepared form virus RNA is blocked by VPg, S fragment was prepared from virus specific messenger RNA which does not contain this protein. This RNA was labelled at the 5' end using polynucleotide kinase and the sequence of 70 nucleotides at the 5' end determined by partial enzyme digestion sequencing on polyacrylamide gels. Some of this sequence was confirmed from an analysis of the oligonucleotides derived by RNase T1 digestion of S fragment. The sequence obtained indicates that there is a stable hairpin loop at the 5' terminus of the RNA before an initiation codon 33 nucleotides from the 5' end. In addition, the RNase T1 analysis suggests that there are short repeated sequences in S fragment and that an eleven nucleotide inverted complementary repeat of a sequence near the 3' end of the RNA is present at the junction of S fragment and the poly(C) tract.  相似文献   

16.
A method for the isolation of RNA fragments originating from defined regions of bacteriophage Qbeta RNA minus strands is described. Large RNase T1 oligonucleotides were isolated on a preparative scale from Qbeta RNA. The nucleotide sequences (13 to 26 nucleotides) and map positions of these oligonucleotides were known from previous work (Billeter, M. A. (1978) J. Biol. Chem. 253, 8381-8389). After addition of AMP residues (50 in the average) using terminal adenylate transferase, these pure oligonucleotides were hybridized to 32P-labeled Qbeta RNA minus strands synthesized in vitro. Fragments in the size range of 100 to 500 nucleotides were then generated by partial digestion with RNase T1. Fragments hybridized to such oligonucleotides were recovered by chromatography on poly(U)-Sephadex and then resolved according to their size by polyacrylamide gel electrophoresis. The specificity and reproducibility of the method as well as its suitability for the sequence analysis of Qbeta RNA was verified by using in particular a linker oligonucleotide derived from a Qbeta RNA region near the 3' end. The sequence catalogues of the RNase T1 and RNase A oligonucleotides of two fragments isolated in this way, 202 and 310 nucleotides in length, were established and all fragments isolated were shown to contain a sequence complementary to the linker oligonucleotide.  相似文献   

17.
Treatment of tobacco mosaic virus (TMV) RNA with T1 RNase under mild conditions cuts the RNA molecule into a large number of fragments, only a few of which may be specifically recognized by disks of TMV protein. It has been shown elsewhere that these specifically recognized RNA fragments are a part of the coat protein cistron, the portion coding for amino acids 95 to 129 of the coat protein. It is reported that different size classes of partially uncoated virus particles were prepared by limited reconstitution between TMV RNA and protein or by partial stripping of intact virus with DMSO. Both procedures produce nucleoprotein rods in which the 5'-terminal portion of the RNA is encapsidated and the 3'-terminal region is free. The free and the encapsidated portions of the RNA were each tested for the ability to give rise to the aforesaid specifically recognized fragments of the coat protein cistron upon partial T1 RNase digestion. It was found that only the 3'-terminal third of the virus particle need to be uncoated in order to expose the portion of the RNA molecule from which these fragments are derived. We conclude, therefore, that the coat protein cistron is situated upon the 3'-terminal third of the RNA chain, i.e. within 2000 nucleotides of the 3'-end.  相似文献   

18.
19.
Structural studies of turnip crinkle virus have been extended to include the identification of high-affinity coat protein binding sites on the RNA genome. Virus was dissociated at elevated pH and ionic strength, and a ribonucleoprotein complex (rp-complex) was isolated by chromatography on Sephacryl S-200. Genomic RNA fragments in the rp-complex, resistant to RNase A and RNase T1 digestion and associated with tightly bound coat protein subunits, were isolated using coat-protein-specific antibodies. The identity of the protected fragments was determined by direct RNA sequencing. These approaches allowed us to study the specific RNA-protein interactions in the rp-complex obtained from dissociated virus particles. The location of one protected fragment downstream from the amber terminator codon in the first and largest of the three viral open reading frames suggests that the coat protein may play a role in the regulation of the expression of the polymerase gene. We have also identified an additional cluster of T1-protected fragments in the region of the coat protein gene that may represent further high-affinity sites involved in assembly recognition.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号