首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
After Wistar male rats had been fed on a diet containing 0.25% of ethyl p-chlorophenoxyisobutyrate (CPIB) for 28 days, changes in the enzyme activities and centrifugal behavior of rat liver peroxisomes were investigated. (1) Compared with control rats fed on the basal diet, the catalase [EC 1.11.1.6] activity of rat livers after the administration of CPIB increased about 2.5-fold, while urate oxidase [EC 1.7.3.3] activity did not change significantly. Though D-amino acid oxidase [EC 1.4.3.3] activity markedly decreased to approximately one-sixth of the control, the activity of L-alpha-hydroxy acid oxidase [EC 1.1.3.15], a flavin enzyme like D-amino acid oxidase, was not affected significnatly after the administration of CPIB. (2) When the hepatic cells of CPIB-treated rats were fractionated by differential centrifugation, most of the increase of catalase activity appeared in the supernatant fraction. A decrease in the hepatic D-amino acid oxidase activity of CPIB-treated rats was observed in all the fractions. As for the subcellular distribution of the particle-bound enzymes, the specific activities of both catalase and urate oxidase of CPIB-treated rat livers were higher in the light mitochondrial fraction than in other fractions. (3) Sedimentation patterns in a sucrose density gradient did not show any difference between normal peroxisomers, and CPIB-treated ones. (4) In the case of CPIB-treated rats, studies of their sedimentation patterns by Ficoll density gradient centrifugation showed two main particulate peaks containing both catalase and urate oxidase, although only a single peak was observed in the case of control rats.  相似文献   

2.
The incorporation of 55Fe-labeled ferrous sulfate and 3H-labeled γ-aminolaevulinic acid into the catalase of mouse liver was measured at intervals up to 96 hr after intraperitoneal injection, and the intracellular location of radioactive catalase followed, as well as the distribution of radiolabel between the multiple forms of this enzyme. At 10 min, catalase radioactivity was present in all the cellular fractions studied, but after this time, label began to disappear from the microsomal fraction and from the peroxisomal detergent extract. By comparison, catalase incorporation reached a peak at about 6 hr in the peroxisomal aqueous extract, and rose to a broad peak after about 30 hr in the cytosol fraction. On resolving the multiple forms of catalase in the supernatant fraction by electrophoresis, it was found that label first appeared in the fastest moving heteromorph, and appeared sequentially in the other multiple forms over a period of 96 hr.The sequence of degradation of catalase was also studied by examination of residual catalase activity subsequent to the injection of allyl-isopropyl acetamide, a heme synthesis antagonist which blocks catalase synthesis. Blood catalase levels did not seem to be significantly affected by this treatment, but in the liver, the decay rates of catalase activity were appreciable, and varied significantly between the intracellular pools. The rate of decrease was greatest in the peroxisomal detergent extract, and least in the supernatant fraction.These findings have been discussed in relation to current understanding of the subcellular disposition, multiplicity, and turnover of hepatic catalase.  相似文献   

3.
The in vivo hepatic lipid peroxide content of rats was increased by aspirin or 4-pentenoic acid (4-PA) administration but was decreased by clofibrate (CPIB) administration. The increase by aspirin or 4-PA treatment was depressed by simultaneous administration of CPIB. However, the in vitro formation of lipid peroxide in liver mitochondria and microsomes of rats treated with CPIB as well as aspirin and 4-PA was also elevated compared to that of control rats. The formation of lipid peroxide in mitochondria and microsomes of control rats in vitro was depressed by the addition of cytosols obtained from untreated (control), aspirin-treated, 4-PA-treated, and CPIB-treated rats, but was not depressed by the addition of albumin or heated cytosols. The most effective depression was obtained by the addition of cytosol obtained from CPIB-treated rats. In addition, glutathione peroxidase activity and nonprotein sulfhydryl content in cytosol obtained from CPIB-treated rats were elevated compared to those from control, aspirin, and 4-PA-treated rats. The results suggest that the action of CPIB may be mainly related to the increase of cytosolic glutathione peroxidase activity and nonprotein sulfhydryl content. Hepatic triglyceride and phospholipid contents of rats treated with aspirin or 4-PA were increased compared to those of control rats. These increases were also reversed by simultaneous administration of CPIB.  相似文献   

4.
Peroxisome proliferation has been induced with 2-methyl-2-(p-[1,2,3,4-tetrahydro-1-naphthyl]-phenoxy)-propionic acid (Su-13437). DNA, protein, cytochrome oxidase, glucose-6-phosphatase, and acid phosphatase concentrations remain almost constant. Peroxisomal enzyme activities change to approximately 165%, 50%, 30%, and 0% of the controls for catalase, urate oxidase, L-alpha-hydroxy acid oxidase, and D-amino acid oxidase, respectively. For catalase the change results from a decrease in particle-bound activity and a fivefold increase in soluble activity. The average diameter of peroxisome sections is 0.58 +/- 0.15 mum in controls and 0.73 +/- 0.25 mum after treatment. Therefore, the measured peroxisomal enzymes are highly diluted in proliferated particles. After tissue fractionation, approximately one-half of the normal peroxisomes and all proliferated peroxisomes show matric extraction with ghost formation, but no change in size. In homogenates submitted to mechanical stress, proliferated peroxisomes do not reveal increased fragility; unexpectedly, Su-13437 stabilizes lysosomes. Our results suggest that matrix extraction and increased soluble enzyme activities result from transmembrane passage of peroxisomal proteins. The changes in concentration of peroxisomal oxidases and soluble catalase after Su-13437 allow the calculation of their half-lives. These are the same as those found for total catalase, in normal and treated rats, after allyl isopropyl acetamide: about 1.3 days, a result compatible with peroxisome degradation by autophagy. A sequential increase in liver RNA concentration, [14C]leucine incorporation into DOC-soluble proteins and into immunoprecipitable catalase, and an increase in liver size and peroxisomal volume per gram liver, characterize the trophic effect of the drug used. In males, Su-13437 is more active than CPIB, another peroxisome proliferation-inducing drug; in females, only Su-13437 is active.  相似文献   

5.
In order to clarify the nature of the heterogeneity of mouse liver catalase, the enzyme was purified and characterized by several criteria. Absorption and sedimentation properties provided little indication of significant differences between the mouse liver enzyme and catalases from other mammalian sources which do not display multiplicity. A denotement of the nature of the variformity in mouse liver catalase was provided, however, by the demonstration that the heteromorphs may be interconverted under conditions which favor the addition or removal of sialic acid residues. It was also observed that CMP-sialic acid, together with microsomal extract, protected the supernatant (desialated) pool of catalase from inactivation upon storage; and that the pattern of multiplicity which was exhibited by the purified enzyme on isoelectric focusing, was considerably altered by incubation with neuraminidase. With regard to the individual characteristics of the separate forms of purified mouse liver catalase, significant differences were noticeable in relation to their isoelectric points, specific activities, heme content, and specific binding of [14C]aminotriazole.  相似文献   

6.
1. Activities of peroxisomal oxidases and catalase were assayed at neutral and alkaline pH in liver and kidney homogenates from male rats fed a diet with or without 2% di(2-ethylhexyl)phthalate (DEHP) for 12 days. 2. All enzyme activities were higher at alkaline than at neutral pH in both groups. 3. The effect of the DEHP-diet on the peroxisomal enzymes was different in kidney and liver. Acyl-CoA oxidase activity was raised three- and sixfold in kidney and liver homogenates, respectively. The activity of D-amino acid oxidase decrease in liver, but increased in kidney homogenates. In liver homogenates, urate oxidase activity was not affected by the DEHP diet. The catalase activity was twofold induced in liver, but not in kidney. 4. The differences suggest that the changes of peroxisomal enzyme activities by DEHP treatment are not directly related to peroxisome proliferation. 5. DEHP treatment caused a marked increase of total and peroxisomal fatty acid oxidation in rat liver homogenates. 6. In the control group the rate of peroxisomal fatty acid oxidation was higher at alkaline pH than at neutral pH. 7. This rate was equal at both pH values in the DEHP-fed group, in contrast to the acyl-CoA oxidase activity. These results indicate that after DEHP treatment other parameters than acyl-CoA oxidase activity become limiting for peroxisomal beta-oxidation.  相似文献   

7.
Subcellular organellles from livers of rats three days prenatal to 50 weeks postnatal were separated on sucrose gradients. The peroxisomes had a constant density of 1.243 g/ml throughout the life of the animal. The density of the mitochondria changed from about 1.236 g/ml at birth to a constant value of 1.200 g/ml after two weeks. The peroxisomal and mitochondrial fatty acid beta-oxidation and the peroxisomal and supernatant activities of catalase and glycerol-3-phosphate dehydrogenase were measured at each age, as well as the peroxisomal core enzyme, urate oxidase, and the mitochondrial matrix enzyme, glutamate dehydrogenase. All of these activities were very low or undetectable before birth. Mitochondrial glutamate dehydrogenase and peroxisomal urate oxidase reached maximal activities per g of liver at two and five weeks of age, respectively. Fatty acid beta-oxidation in both peroxisomes and mitochondria and peroxisomal glycerol-3-phosphate dehydrogenase exhibited maximum activities per g of liver between one and two weeks of age before weaning and then decreased to steady state levels in the adult. Peroxisomal beta-oxidation accounted for at least 10% of the total beta-oxidation activity in the young rat liver, but became 30% of the total in the liver of the adult female and 20% in the adult male due to a decrease in mitochondrial beta-oxidation after two weeks of age. The greatest change in beta-oxidation was in the mitochondrial fraction rather than in the peroxisomes. At two weeks of age, four times as much beta-oxidation activity was in the mitochondria as in the peroxisomal fraction. Peroxisomal glycerol-3-phosphate dehydrogenase activity accounted for 5% to 7% of the total activity in animals younger than one week, but only 1% to 2% in animals older than one week. Up to three weeks of age, 85% to 90% of the liver catalase was recovered in the peroxisomes. The activity of peroxisomal catalase per g of rat liver remained constant after three weeks of age, but the total activity of catalase further increased 2.5- to 3-fold, and all of the increased activity was in the supernatant fraction.  相似文献   

8.
Intact or sonicated mitochondria from the livers of rats fed a diet containing 0.2% ethyl chlorophenoxyisobutyrate (CPIB) for 3 wk showed acetoacetyl-CoA deacylase activity enhanced 26 and 39%, respectively, over that shown by comparable fractions from rats fed the same diet without CPIB. The corresponding supernatant fractions did not differ in activity. The enhanced activity of mitochondrial acetoacetyl-CoA deacylase in the livers of the CPIB-treated rats could effectively decrease the amount of acetoacetyl CoA available within the cell for synthetic processes.  相似文献   

9.
Catalase activity in the heart of male rabbits was 21% of that found in the liver; clofibrate feeding (0.3% w/w for 10 days) resulted in an 80% increase in both cardiac and hepatic catalase activities. Fatty acyl-CoA oxidase activity in control heart was 11% of that found in control liver; this peroxisomal activity did not increase subsequent to clofibrate feeding. Only acyl-CoA hydrolase activity in the cardiac supernatant was elevated by clofibrate feeding. Acylcarnitine hydrolase activity was increased significantly in the homogenate, extract and supernatant of both heart and liver from the clofibrate-fed rabbit. Clofibrate feeding increased CoASH and carnitine tissue levels in heart and liver.  相似文献   

10.
The effect of clofibrate (CPIB) on lipid metabolism was studied in male rats rendered diabetic by intravenous injection of 80 mg/kg of streptozotocin. After 1 wk, the rats received by gastric intubation 242 mg/kg/day of CPIB for 7 days. Liver lipid concentration remained unchanged in experimental diabetes and after treatment with CPIB; however, due to decreased liver weight, total liver lipids were lower in diabetic rats. Elevation of cholesterol, phospholipids, and triglycerides in the serum of diabetic rats was reversed by CPIB treatment. Hepatic cholesterol synthesis in diabetic rats was suppressed to approximately 1/10 of that in normal rats. Treatment with CPIB abolished this residual cholesterogenic activity. Diabetes had no effect on intestinal cholesterol synthesis; a slight increase was noted after CPIB treatment. Basal and norepinephrine-induced lipolysis in fat pads was elevated in diabetic rats; CPIB had no effect on these changes. The data show that the elevated serum lipids in diabetic rats are lowered by treatment with C-IB. It was concluded that the hypocholesterolemic activity of clofibrate in rats is not caused by its suppression of hepatic cholesterol synthesis.  相似文献   

11.
Dietary treatment of male C57B1/6 mice with clofibrate, nafenopin or WY-14.643 resulted in a modest (at most 2-fold) increase in the total catalase activity in the whole homogenate and mitochondrial fraction prepared from the livers of these animals. On the other hand, the catalase activity recovered in the cytosolic fraction was increased 12- to 18-fold, i.e. 30-35% of the total catalase activity in the hepatic homogenate was present in the high-speed supernatant fraction after treatment with these peroxisome proliferators. A study of the time course of the changes in peroxisomal and cytosolic catalase activities demonstrated that the peroxisomal activity both increased upon initiation of exposure and decreased after termination of treatment several days after the increase and decrease, respectively, in the corresponding cytosolic activity. This finding suggests that the cytosolic catalase may be on its way to incorporation into peroxisomes.  相似文献   

12.
The liver cells of intact male rats given ethyl-α-p-chlorophenoxyisobutyrate (CPIB) characteristically show a marked increase in microbodies and in catalase activity, while those of intact female rats do not. In castrated males given estradiol benzoate and CPIB the increase in catalase activity and microbody proliferation is abolished, while in castrated females given testosterone propionate and CPIB the livers show a marked increase in microbodies and in catalase activity. No sex difference in microbody and catalase response is apparent in fetal and neonatal rats. Both sexes show a sharp rise in catalase activity on the day of birth, with a rapid decline at 5 days after birth. Thyroidectomy abolishes the hypolipidemic effect of CPIB in rats, but microbody proliferation and increase in catalase activity persists in thyroidectomized male rats, indicating that microbody proliferation can be independent of hypolipidemia. Adrenalectomy does not alter appreciably the microbody-catalase response to CPIB. These experiments demonstrate that (1) in adult rats, hepatic microbody proliferation is dependent to a significant degree upon male sex hormone but is largely independent of thyroid or adrenal gland hormones; (2) hepatic microbody proliferation is independent of the hypolipidemic effect of CPIB; (3) displacement of thyroxine from serum protein may not be sufficient cause for stimulation of microbody formation.  相似文献   

13.
Coenzyme A (CoASH) is an obligate cofactor for lipids undergoing beta-oxidation in peroxisomes. Although the peroxisomal membrane appears to be impermeable to CoASH, peroxisomes contain their own pool of CoASH. It is believed that CoASH enters peroxisomes as acyl-CoAs, but it is not known how this pool is regulated. The mouse nudix hydrolase 7 (NUDT7alpha) was previously identified in peroxisomes as a CoA-diphosphatase, and therefore suggested to be involved in regulation of peroxisomal CoASH levels. Here we show that mouse NUDT7alpha mainly acts as an acyl-CoA diphosphatase, with highest activity towards medium-chain acyl-CoAs, and much lower activity with CoASH. Nudt7alpha mRNA is highly expressed in liver, brown adipose tissue and heart, similar to enzymes involved in peroxisomal lipid degradation. Nudt7alpha mRNA is down-regulated by Wy-14,643, a peroxisome proliferator-activated receptor alpha (PPARalpha) ligand, in a PPARalpha-dependent manner in mouse liver. In highly purified peroxisomes, nudix hydrolase activity is highest with C(6)-CoA and is decreased by fibrate treatment. Under certain conditions, such as treatment with peroxisome proliferators or fasting, an increase in peroxisomal CoASH levels has been reported, which is in line with a decreased expression/activity of NUDT7alpha. Taken together these data suggest that NUDT7alpha function is tightly linked to peroxisomal CoASH/acyl-CoA homeostasis.  相似文献   

14.
We studied the in vivo and in vitro effect of p-chlorophenoxyisobutyrate (CPIB) on insulin binding and glucose transport in isolated rat adipocytes. In the in vitro study, adipocytes were incubated with 1mM of CPIB for 2 h at 37 degrees C, pH 7.4, and then insulin binding (37 degrees C, 60 min) and 3-0-methylglucose transport (37 degrees C, 2s) were measured. Incubation with CPIB did not affect either insulin binding or glucose transport in the cells. The addition of insulin (10 ng/ml) with CPIB to the incubation media also did not affect the following insulin binding and glucose transport. In the in vivo study, rats were fed a high sucrose-diet containing 0.25% CPIB for 7 days. Serum cholesterol, plasma free fatty acid, and insulin levels were significantly decreased in the CPIB-treated rats. The treated rats demonstrated an almost 2 fold increased maximal binding capacity for insulin (189,000 sites/cell for treated vs 123,000 sites/cell for control cells). Basal glucose transport (glucose transport in the absence of insulin) significantly decreased in the CPIB-treated rats, although insulin-stimulated glucose transport was comparable in treated and control cells. Thus, CPIB might have no direct effect on glucose transport and insulin binding, as determined by the in vitro studies. Furthermore, a relatively short-term in vivo treatment with CPIB, such as 7 days, did not stimulate glucose transport.  相似文献   

15.
Summary This paper describes spontaneous post-mortem changes of peroxisomal staining in normal liver and kidney of rats and in human autopsy liver. At room temperature, regional staining loss is observed at 18h after death in rat kidney, at 24h in human liver and at 48 h in rat liver. Preservation at 4°C delays this phenomenon. In human liver, the peroxisomal volume density is decreased at both temperatures at 48 h. After freezing of fresh tissue in dry ice, peroxisomal staining is decreased homogeneously. Under the electron microscope, peroxisomal alterations suggest a loss of catalase activity. These changes do not necessarily preclude the study of peroxisomal features since, even after 48 h at room temperature, peroxisomes are still well stained in the less affected regions. Catalase and three -oxidation enzymes, namely acyl-CoA oxidase, bifunctional protein (with enoyl-CoA hydratase and 3-hydroxyacyl-CoA dehydrogenase) and 3-oxoacyl-CoA thiolase, could be visualized immunocytochemically in human autopsy livers up to 48 h after death. However, the study of certain peroxisomal features such as catalase activity and peroxisomal distribution, may be hampered as the post-mortem period is prolonged.  相似文献   

16.
1. The activities of acyl-CoA hydrolase, catalase, urate oxidase and peroxisomal palmitoyl-CoA oxidation as well as the protein content and the level of CoASH and long-chain acyl-CoA were measured in subcellular fractions of liver from rats fed diets containing phenobarbital (0.1% w/w) or clofibrate (0.3% w/w). 2. Whereas phenobarbital administration resulted in increased microsomal protein, the clofibrate-induced increase was almost entirely attributed to the mitochondrial fraction with minor contribution from the light mitochondrial fraction. 3. The specific activity of palmitoyl-CoA hydrolase in the microsomal fraction was only slightly affected while the mitochondrial enzyme was increased to a marked extent (3-4-fold) by clofibrate. 4. Phenobarbital administration mainly enhanced the microsomal palmitoyl-CoA hydrolase. 5. The increased long-chain acyl-CoA and CoASH level observed after clofibrate treatment was mainly associated with the mitochondrial, light mitochondrial and cytosolic fractions, while the slight increase in the levels of these compounds found after phenobarbital feeding was largely of microsomal origin. 6. The findings suggest that there is an intraperoxisomal CoASH and long-chain acyl-CoA pool. 7. The specific activity of palmitoyl-CoA hydrolase, catalase and peroxisomal palmitoyl-CoA oxidation was increased in the lipid-rich floating layer of the cytosol-fraction. 8. The changes distribution of the peroxisomal marker enzymes and microsomal palmitoyl-CoA hydrolase after treatment with hypolipidemic drugs may be related to the origin of peroxisomes.  相似文献   

17.
The interaction of mouse liver catalase with subcellular membranes was studied, and an ionic interaction with a variety of membranes, including those derived from the microsomes, was observed. The interaction with microsomal membranes was found to be abolished by pre-treatment of catalase with neuraminidase, indicating a functional significance for catalase-bound sialic acid. Catalase activity was found to be enhanced when bound to membranes, and evidence for a weak association of catalase with peroxisomal structure in mouse liver was also obtained. It is concluded that mouse liver catalase has a capacity to bind to a variety of subcellular membranes in vivo and that this interaction may be consistent with a general protective role for the enzyme, as well as being compatible with a model of peroxisomal biogenesis which involves the interaction of catalase with microsomal membranes.Abbreviations LGF Large Granule Fraction  相似文献   

18.
Our earlier electron microscopic observations revealed that prolonged exposure of glutaraldehyde-fixed rat liver sections to buffer solutions induced focal membrane disruptions of peroxisomes with catalase diffusion as shown cytochemically. Recently, it was suggested that 15-lipoxygenase (15-LOX) might be involved in natural degradation of membrane-bound organelles in reticulocytes by integrating into and permeabilizing the organelle membranes, leading to the release of matrix proteins. We have now investigated the localization of 15-LOX and its role in degradation of peroxisomal membranes in rat liver. Aldehyde-fixed liver slices were incubated in a medium that conserved the 15-LOX activity, consisting of 50 mM HEPES-KOH buffer (pH 7.4), 5 mM mercaptoethanol, 1 mM MgCl(2), 15 mM NaN(3), and 0.2 M sucrose, in presence or absence of 0.5-0.05 mM propyl gallate or esculetin, two inhibitors of 15-LOX. The exposure of aldehyde-fixed liver sections to this medium induced focal disruptions of peroxisome membranes and catalase diffusion around some but not all peroxisomes. This was significantly reduced by both 15-LOX inhibitors, propyl gallate and esculetin, with the latter being more effective. Double immunofluorescent staining for 15-LOX and catalase revealed that 15-LOX was co-localized with catalase in some but not all peroxisomes in rat hepatocytes. By postembedding immunoelectron microscopy, gold labeling was localized on membranes of some peroxisomes. These observations suggest that 15-LOX is involved in degradation of peroxisomal membranes and might have a physiological role in programmed degradation and turnover of peroxisomes in hepatocytes. (J Histochem Cytochem 49:613-621, 2001)  相似文献   

19.
We administered the hypolipidemic drug ciprofibrate to lactating rats and examined the enzymatic content and ultrastructural features of liver and kidney peroxisomes, both in treated animals and in their pups. The peroxisomal morphometric parameters, in particular, were measured in specimens submitted to the cytochemical reaction for the marker enzyme catalase. In liver of treated rats, the activities of peroxisomal enzymes involved in the fatty acid catabolism were significantly increased, while D-amino acid oxidase activity was lower than in controls; increments were also found in relative volume and pleiomorphism degree of the peroxisomal compartment, where a catalase dilution was supposed to occur. In the kidney, the treatment induced generalized increases of all examined enzymes; values significantly higher than controls were found in peroxisomal relative volume and numerical density, while the peroxisomal mean diameter practically did not change. The two organs, moreover, were affected by the drug in an age-dependent way, the pups being more responsive than the adults. The organ- and age-specific responses to the drug are interpreted as possibly related to the tissue-specific distribution of the peroxisomal proliferator activated receptor isotypes.  相似文献   

20.
Administration of p-chlorophenoxyisobutyric acid (clofibric acid) markedly increased the activity of microsomal 1-acylglycerophosphorylcholine (1-acyl-GPC) acyltransferase in kidney, intestinal mucosa and liver, but not in brain, heart, lung, spleen, testis or skeletal muscle. In both kidney and liver, a marked dose-dependent increase in the activities of both microsomal 1-acyl-GPC acyltransferase and peroxisomal beta-oxidation was observed. In the rats treated with clofibric acid at a relatively low dose, the increase in the activity of 1-acyl-GPC acyltransferase in kidney was more marked than that in liver. The extent of the relative increase in the activity of 1-acyl-GPC acyltransferase to the activity of peroxisomal beta-oxidation in kidney was more marked than that in liver. The increased activity of 1-acyl-GPC acyltransferase in both kidney and liver lasted throughout the 8-week treatment period of rat with clofibric acid.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号