首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The occurrence and distribution of calcitonin gene-related peptide (CGRP) in the lower airways was studied by means of immunohistochemistry and radioimmunoassay (RIA) in combination with high performance liquid chromatography (HPLC). CGRP-like immunoreactivity (-LI) was observed in nerves from the epiglottis down to peripheral bronchi in rat, cat and guinea pig and also in human bronchi. Double staining revealed colocalization of CGRP-LI and substance P (SP)-LI in cell bodies of nodose and jugular ganglia as well as in axons and nerve terminals of the airways. Systemic capsaicin pretreatment induced a marked loss of the CGRP- and SP-immunoreactive (-IR) nerves in the lower airways. CGRP-IR was also present in epithelial endocrine cells and neuroepithelial bodies. The content of CGRP-LI as measured with RIA in guinea pig bronchi was significantly lower after capsaicin pretreatment. Analysis of human bronchial extracts revealed that CGRP-LI coeluted with synthetic human CGRP on HPLC. In the isolated perfused guinea pig lung capsaicin exposure caused overflow of CGRP-LI suggesting release from peripheral branches of sensory nerves. Both in vivo experiments in the guinea pig measuring insufflation pressure as well as in vitro studies on isolated guinea pig and human bronchi showed that whereas tachykinins contracted bronchial smooth muscle no contractile or relaxing effect was elicited by human or rat CGRP. However, CGRP caused relaxation of serotonin precontracted guinea pig and human pulmonary arteries. In conclusion, the presence and release of CGRP-LI from capsaicin sensitive nerves in the lower airways adds another possible mediator, in addition to tachykinins, of vascular reactions upon sensory nerve irritation.  相似文献   

2.
The formation, release, clearance and vascular effects of endothelin (ET)-like immunoreactivity (-LI) was studied in the pig in vivo. Intravenous infusion of ET-1, 2 and 3 (20 pmol/kg/min for 20 min) increased vascular resistance in the kidney, spleen and skeletal muscle. The most pronounced effects were evoked by ET-1 which caused increases in renal, splenic and skeletal muscle vascular resistance of 554, 528 and 38%, respectively, and a threshold response was observed at 80 pmol/l ET-LI in arterial plasma. During the infusion a large portion of arterial plasma, ET-LI was cleared over the kidney, spleen and skeletal muscle, whereby the most pronounced clearance was observed for ET-1 (73–93%). The ET-1 precursor Big-ET (1–39) given in a similar dose produced only a slight increase in renal vascular resistance (by 20%) and was cleared only over the kidney and not over the spleen or skeletal muscle. Using an ET-1 specific antiserum it was found that plasma ET-1 levels increased 11-fold during the infusion of Big-ET, indicating formation of ET-1 from Big-ET. The half-lives of circulating ET-1, 2 and 3 were 1.3–2.1 min and of Big-ET 8.9 min. Induction of asphyxia for 2 min increased the overflow of ET-LI from the spleen, suggesting local release, and caused splenic vasoconstriction. During i.v. administration of endotoxin for 4 h, arterial plasma ET-LI increased 7-fold and renal and splenic vasoconstrictor responses developed that correlated significantly with the arterial plasma ET-LI. Furthermore, a local release of ET-LI in the spleen was observed during endotoxin administration. Chromatographic characterization of the ET-LI in plasma during endotoxin administration revealed presence of ET-1 and Big-ET. It is concluded that there exists specificity both concerning the vasoconstrictor effects and removal from the circulation of ET peptides, both mechanisms being most prominent for ET-1 in the kidney. Furthermore ET-1 seems to be formed from circulating Big-ET and release of ET-LI can be detected during situations like asphyxia and sepsis.  相似文献   

3.
The presence of calcitonin-gene related peptide (CGRP)-like immunoreactivity (-LI) in sensory neurons was established by immunohistochemistry and radioimmunoassay (RIA) in combination with high performance liquid chromatography (HPLC). CGRP-immunoreactive (-IR) nerve fibres were present in many peripheral organs including heart, ureter, uterus and gall bladder of guinea-pig and man. The distribution of CGRP-IR nerves in the dorsal horn of the spinal cord, of positive cell bodies in thoracic spinal and nodose ganglia and nerves in peripheral organs was closely related to that of substance P-LI. Double staining experiments revealed that in most cases peripheral CGRP-IR nerve terminals also contained SP-LI. However, different localization of SP- and CGRP-IR neurons was observed in the nucleus of the solitary tract as well as in the ventral horn of the spinal cord. In the heart, CGRP-IR nerves were associated with myocardial cells (mainly atria), coronary vessels, local parasympathetic ganglia as well as with the epi- and endocardia. Three to 4-fold higher levels of native CGRP-LI were observed in the atria than in the ventricles of the heart. HPLC analysis revealed that the major peak of CGRP-LI in the heart of rat and man had the same retention times as the synthetic equivalents. Systemic capsaicin pretreatment and adult guinea-pigs caused a loss of CGRP-IR terminals in the dorsal horn of the spinal cord as well as in peripheral organs including the heart. After capsaicin treatment, the content of CGRP-IR was reduced by 70% in the heart and by 60% in the dorsal part of the spinal cord. In superfusion experiments with slices from the rat spinal cord, a release of CGRP-LI was induced by 60 mM K+ and 3 microM capsaicin in a calcium-dependent manner.  相似文献   

4.
Distribution of adrenomedullin (AM)-containing perivascular nerve fibers was studied in rat mesenteric arteries. Many fibers containing AM-like immunoreactivity (LI) were observed in the adventitia. AM-LI fibers were abolished by cold storage denervation or capsaicin but not 6-hydroxydopamine. Double immunostainings showed colocalization of AM-LI with calcitonin gene-related peptide (CGRP)-LI. The dorsal root ganglia had many AM-positive cells and AM mRNA detected by RT-PCR. Electron microscopy study revealed high proportions of immunogold labeling for AM and colocalization of both AM-LI and CGRP-LI in unmyelinated nerve axons. These results suggest that AM-containing perivascular nerves are distributed in the rat mesenteric artery.  相似文献   

5.
By immunohistochemistry, CGRP-like immunoreactive (CGRP-LI) nerve fibres were found in the lamina propria along small vessels and in the lamina muscularis mucosae in the porcine ileum. Immunoreactive nerve cell bodies were found in the submucous and myenteric plexus. Upon HPLC-analysis of ileal extracts, CGRP-LI corresponded entirely to porcine CGRP plus smaller amounts of oxidised CGRP. Using isolated vascularly perfused segments of the ileum, we studied the release of CGRP-LI in response to electrical stimulation of the mixed extrinsic periarterial nerves and to infusion of different neuroblockers. In addition, the effect of infusion of capsaicin was studied. The basal output of CGRP-LI was 2.9+/-0.7 pmol/5 min (mean+/-S.D.). Electrical nerve stimulation (8 Hz) significantly increased the release of CGRP-LI to 167+/-16% (mean+/-S.E.M.) of the basal output (n=13). This response was unaffected by the addition of atropine (10(-6) M). Nerve stimulation during infusion of phentolamine (10(-5) M) with and without additional infusion of atropine resulted in a significant further increase in the release of CGRP-LI to 261+/-134% (n=5) and 240+/-80% (n=9), respectively. This response was abolished by infusion of hexamethonium (3x10(-5) M). Infusion of capsaicin (10(-5) M) caused a significant increase in the release of CGRP-LI to 485+/-82% of basal output (n=5). Our results suggest a dual origin of CGRP innervation of the porcine ileum (intrinsic and extrinsic). The intrinsic CGRP neurons receive excitatory input by parasympathetic, possibly vagal, preganglionic fibres, via release of acetylcholine acting on nicotinic receptors. The stimulatory effect of capsaicin suggests that CGRP is also released from extrinsic sensory neurons.  相似文献   

6.
In the guinea pig isolated perfused lung, we have examined the relationship between the effects of capsaicin and neuropeptide release and the possible existence of an axon reflex arrangement. Bolus injections into the pulmonary artery of capsaicin (1-100 pmol), substance P (10-1,000 pmol), and neurokinin (NK) A (10-100 pmol) produced a concentration-dependent bronchoconstriction, whereas calcitonin gene-related peptide (CGRP, 20-40 nmol) was without effect. Repeated administration of capsaicin at 40- to 60-min intervals was not associated with tachyphylaxis. These data support the presence of a NK2- (or NKA) type of tachykinin receptor in the guinea pig airways. Tetrodotoxin (0.3-3 microM) inhibited the effect of capsaicin, indicating that an axon reflex was operant. Capsaicin increased overflow of CGRP-like immunoreactivity (-LI) and NKA-LI, the latter only during concurrent infusion of the enkephalinase inhibitor phosphoramidon (3 microM). Phosphoramidon also increased overflow of CGRP-LI, suggesting that both NKA and CGRP were catabolized by a similar enzyme. The purine nucleoside adenosine did not cause any detectable overflow of CGRP-LI, indicating that neuropeptides may not be involved in adenosine-evoked bronchoconstriction and that bronchoconstriction per se does not induce neuropeptide overflow. Capsaicin and NKA had only minor effects on buffer flow, whereas substance P produced pulmonary vasoconstriction. These data clearly demonstrate that capsaicin acts via an axon reflex in the guinea pig airways. Supramaximal concentrations of capsaicin are needed to detect neuropeptide overflow, but the possibility exists that released neuropeptides mediate its effects.  相似文献   

7.
8.
The distribution of endothelin (ET) peptides in the pig was studied in a variety of tissues using selective radioimmunoassays combined with reverse-phase high performance liquid chromatography (HPLC). The levels of ET-like immunoreactivity (LI) were overall relatively low. The highest levels of ET-LI were found in blood vessels, cerebral and coronary arteries containing 3190 +/- 910 and 1330 +/- 450 fmol/g, respectively. Veins generally contained higher levels of ET-LI per tissue weight than corresponding arteries. Peripheral sympathetic and sensory ganglia contained a higher concentration of ET-LI than the studied central nervous system (CNS) areas. In the CNS the highest concentration of ET-LI was found in a non-neuronal structure, the choroid plexus. The levels of ET-LI were also relatively high in the respiratory tract (100-400 fmol/g). In the heart, the endocardium contained the highest levels (190 +/- 44 fmol/g). In the kidney, the concentration of ET-LI was 3-fold higher in the medulla than in the cortex. In the gastrointestinal tract all levels were below 100 fmol/g, except for the colon which contained 120 +/- 50 fmol/g. The characterization of ET-LI in extracts of some of these tissues revealed that ET-1 dominated in the lung, spleen and hypothalamus while ET-3 and ET-1 were present in approximately equal amounts in renal medulla and thoracic spinal cord. The HPLC analysis provided no clear-cut evidence for significant presence of vasoactive intestinal contractor, ET-2 or big ET-1(1-39) in the lung, spleen, kidney, spinal cord or hypothalamus. It is concluded that mature ET-1 and ET-3 are the predominant ET peptides in peripheral tissues and CNS.  相似文献   

9.
Using immunofluorescence and cytofluorimetric scanning (CFS), we investigated the short-term (1-7 days) influence of lower thoracic spinal cord transection on lumbar motor neurons. The content of calcitonin gene-related peptide- (CGRP) like immunoreactivity (LI), chromogranin A (Chr A)-LI, vasoactive intestinal polypeptide (VIP)-LI, Syn I-LI, and synaptophysin (p38)-LI in motor perikarya, and the anterograde and retrograde axonal transport of these substances in the sciatic nerve, were studied in nerve crush (6 h) experiments. During the week after transection, CGRP-LI in perikarya decreased, whereas Chr A-LI increased. VIP-LI, co-localized with Chr A-LI in motor perikarya, did not change after transection. The antero- and retrograde transport of CGRP-LI in the sciatic nerve, occurring in both motor and sensory axons, appeared unchanged in cytofluorimetric scanning (CFS) graphs, but the microscopical picture clearly showed that large motor axons had a decreased content of CGRP-LI at 3 and 7 days posttransection, whereas thinner axons were unchanged in fluorescence intensity. The anterograde transport of Chr A-LI, present in both motor and postganglionic adrenergic axons, was decreased 1 and 3 days after lesion, but returned to control by day 7. There was a marked decrease in anterograde transport of VIP-LI, present mainly in postganglionic sympathetic axons, at day 3, but at 7 days transport was normal. The amounts of transported p38, the synaptic vesicle marker, were in the normal range during the whole period. Syn I-LI accumulation anterogradely was somewhat decreased at 3 and 7 days posttransection, and at 1 day the retrograde accumulation was significantly increased. The results suggest that removal of supraspinal input to intact lower motor neurons causes alterations in metabolism and axonal transport of organelle-associated substances, partly probably related to the complex pattern of transmitter leakage from degenerating, descending nerve terminals. These alterations appear to take place also in postganglionic sympathetic neurons in the sciatic nerve, that originate in the lumbar sympathetic chain.  相似文献   

10.
Using immunofluorescence and cytofluorimetric scanning (CFS), we investigated the short-term (1-7 days) influence of lower thoracic spinal cord transection on lumbar motor neurons. The content of calcitonin gene-related peptide- (CGRP) like immunoreactivity (LI), chromogranin A (Chr A) -LI, vasoactive intestinal polypeptide (VIP)-LI, Syn I-LI, and synaptophysin (p38)-LI in motor perikarya, and the anterograde and retrograde axonal transport of these substances in the sciatic nerve, were studied in nerve crush (6 h) experiments. During the week after transection, CGRP-LI in perikarya decreased, whereas Chr A-LI increased. VIP-LI, co-localized with Chr A-LI in motor perikarya, did not change after transection. The antero- and retrograde transport of CGRP-LI in the sciatic nerve, occurring in both motor and sensory axons, appeared unchanged in cytofluorimetric scanning (CFS) graphs, but the microscopical picture clearly showed that large motor axons had a decreased content of CGRP-LI at 3 and 7 days posttransection, whereas thinner axons were unchanged in fluorescence intensity. The anterograde transport of Chr A-LI, present in both motor and postganglionic adrenergic axons, was decreased 1 and 3 days after lesion, but returned to control by day 7. There was a marked decrease in anterograde transport of VIP-LI, present mainly in postganglionic sympathetic axons, at day 3, but at 7 days transport was normal. The amounts of transported p38, the synaptic vesicle marker, were in the normal range during the whole period. Syn I-LI accumulation anterogradely was somewhat decreased at 3 and 7 days posttransection, and at 1 day the retrograde accumulation was significantly increased. The results suggest that removal of supraspinal input to intact lower motor neurons causes alterations in metabolism and axonal transport of organelle-associated substances, partly probably related to the complex pattern of transmitter leakage from degenerating, descending nerve terminals. These alterations appear to take place also in postganglionic sympathetic neurons in the sciatic nerve, that originate in the lumbar sympathetic chain. © 1992 John Wiley & Sons, Inc.  相似文献   

11.
To investigate the effect of pulmonary alveolar hypoxia on the synthesis and release of endothelin (ET)-1, ET-1-like immunoreactivity (-LI) levels of the lung and plasma were measured in conscious unrestrained rats under hypoxic conditions. Sixty-min exposure to alveolar hypoxia (10% O2 or 5% O2) increased the ET-1-LI level in the lung. The plasma ET-1-LI level in hypoxic rats also increased significantly. The increase of plasma and lung ET-1-LI levels were parallel to the severity of hypoxia. These results demonstrates that acute pulmonary alveolar hypoxia increases lung and plasma ET-1-LI levels in conscious unrestrained rats, suggesting a possible physiological or pathophysiological significance of ET in alveolar hypoxia.  相似文献   

12.
Slices of human iris or ciliary body, obtained post-mortem (8-12 h after death, n = 5), were superfused in vitro with capsaicin (10 microM) and the immunoreactivity for substance P (SP-LI) or calcitonin gene-related peptide (CGRP-LI) was measured in the effluent. In the iris and in the ciliary body CGRP-LI was 3.71 +/- 0.74 pmol/g and 3.01 +/- 0.55 pmol/g and SP-LI was 6.68 +/- 0.75 pmol/g and 6.55 +/- 0.84 pmol/g, respectively. A first exposure to capsaicin increased the CGRP-LI outflow from the ciliary body (427 +/- 46 fmol/g/30 min), whereas a second challenge with the drug 30 min later, failed to significantly enhance the CGRP-LI outflow (21.8 +/- 15.6 fmol/g/30 min). Likewise, the capsaicin-evoked increase in CGRP-LI outflow from the iris slices (472 +/- 62 fmol/g/30 min) was no longer observed at the second drug administration (38.4 +/- 12.8 fmol/g/30 min). Capsaicin failed to increase the SP-LI outflow from either the iris or the ciliary body. Reverse phase HPLC analysis of CGRP-LI indicated that authentic CGRP was contained in the tissue and in the superfusate collected during exposure to capsaicin. The present results show that in the human iris and ciliary body, capsaicin releases CGRP possibly contained in terminals of sensory nerves.  相似文献   

13.
Low pH medium has been shown to activate the 'efferent' function of capsaicin-sensitive primary sensory neurons. Calcitonin gene-related peptide (CGRP) is released from capsaicin-sensitive afferents of guinea-pig superior sagittal and transverse sinuses (SSTS), by capsaicin or bradykinin. Here, we report that low pH medium produces a remarkable release of CGRP from SSTS, which was dependent on the concentration of hydrogen ions of the medium (pH 7-5). Moreover, the pH 5-evoked release of CGRP-LI was markedly reduced (by about 70%) in a calcium-free medium containing 1 mM EDTA or abolished in samples pre-exposed to 10 microM capsaicin. The present observation that lowering of the pH promotes release of a powerful vasoactive peptide from perivascular capsaicin-sensitive sensory nerves may have some relevance in the pathophysiology of brain injury and migraine headaches.  相似文献   

14.
Summary The coexistence of serotonin and calcitonin gene-related peptide (CGRP) in neuroepithelial bodies of the bandicoot, Isoodon macrourus, has been examined using immunocytochemistry at the light- and electronmicroscope levels. The avidin-biotin technique of antigen localisation was used initially to identify serotonin-like and CGRP-like immunoreactivity (-LI). Serotonin-LI and CGRP-LI were found in neuroepithelial cells in the lungs of 30-day-old bandicoots. CGRP-LI could also be demonstrated in nerve fibres associated with some neuroepithelial bodies. The protein A-gold technique of antigen localisation was used to label neuroepithelial cells and nerve fibres at the subcellular level. Serotonin-LI and CGRP-LI were observed in the same dense-cored vesicles of most neuroepithelial cells; however, some neuroepithelial cells were shown to possess serotonin-LI without CGRP-LI. Nerve fibres immediately adjacent to neuroepithelial bodies exhibited mainly CGRP-LI. These results show that serotonin-LI and CGRP-LI are present in neuroepithelial cells of the bandicoot in the same secretory vesicles. This pattern of co-localisation may reflect co-ordinated or synergistic actions of these two neuroactive substances.  相似文献   

15.
Primary cultures of adult rat dorsal root ganglia (DRG) sensory neurons were used to determine whether bradykinin and prostaglandins E? (PGE?), E? (PGE?) or I? (PGI?) stimulate long-term calcitonin gene-related peptide (CGRP) mRNA accumulation and peptide release. Treatment (24 h) of neurons with either bradykinin or PGE?, significantly increased CGRP mRNA content and iCGRP release. However, PGE? or PGI? was without effect. Exposure of the cultured neurons to increasing concentrations of bradykinin or PGE? demonstrated that the stimulation of CGRP expression was concentration-dependent, while time-course studies showed that maximal levels of CGRP mRNA accumulation and peptide release were maintained for at least 48 h. Treatment of the neuronal cultures with a bradykinin B? receptor antagonist significantly inhibited the bradykinin-induced increase in CGRP expression and release. In addition, preincubation of neuronal cultures with the cyclooxygenase inhibitor indomethacin did not alter the PGE?-mediated stimulation of CGRP but blocked completely the bradykinin-induced increase in CGRP production. Therefore, these data indicate that bradykinin and PGE? can regulate the synthesis and release of CGRP in DRG neurons and that the stimulatory effects of bradykinin on CGRP are mediated by a cyclooxygenase product(s). Thus, these findings suggest a direct relationship between chronic alterations in bradykinin/prostaglandin production that may arise from pathophysiological causes and long-term changes in CGRP expression.  相似文献   

16.
The effect of calcitonin gene-related peptide (CGRP) on the feline lower esophageal sphincter (LES) was determined and correlated with its anatomic distribution as determined by immunohistochemistry. Intraluminal pressures of the esophagus and LES were recorded in anesthetized cats. In separate cats, gastroesophageal junctions were removed after locating the LES manometrically and stained for CGRP-like immunoreactivity (LI) and substance P-LI (SP-LI) by indirect immunohistochemistry. CGRP-LI in the LES was most prominent in large nerve fascicles between the circular and longitudinal muscle layers and only rarely seen in nerve fibers within the circular muscle. The myenteric plexus contained numerous CGRP-LI nerve fibers but cell bodies were not seen. Many CGRP-LI nerve fibers in the myenteric plexus and occasional varicose nerves in the circular muscle demonstrated colocalization with SP-LI. Colocalization of CGRP-LI with SP-LI was also seen in the perivascular nerves of the submucosal and intramural blood vessels and in varicose fibers in the lamina propria of the gastric fundic mucosa. In the esophagus, CGRP-LI nerves extended through the muscularis mucosa and penetrated the squamous epithelium to the lumen. CGRP, given intra-arterially caused a dose-dependent fall in basal LES pressure, with a threshold dose of 10(-8) g/kg (2.63 pmol/kg). At the maximal effective dose, 5 x 10(-6) g/kg (1.31 x 10(3) pmol/kg), CGRP produced 61.0 +/- 6.0% decrease in basal LES pressure. At this dose, mean systemic blood pressure fell by 40.9 +/- 7.8%. The LES relaxation induced by a submaximal dose of CGRP (10(-6) g/kg, 262.7 pmol/kg), 50.3 +/- 3.2% relaxation was partially inhibited by tetrodotoxin (26.9 +/- 10.8% relaxation, P less than 0.025). The inhibitory effect of CGRP was not affected by cervical vagotomy, hexamethonium, atropine, propranolol, or naloxone. The LES contractile response to the D90 of SP (5 x 10(-8) g/kg, 37.1 pmol/kg) was not altered by CGRP 10(-8) or 10(-6) g/kg and the CGRP relaxation effect was not altered by the threshold dose of substance P (5 X 10(-9) g/kg, 3.71 pmol/kg). CONCLUSIONS: (1) CGRP-LI is present at the feline LES and is primarily seen in large nerve fascicles which pass from the intermuscular plane and through the circular muscle layer to the submucosa and in mucosal nerves. (2) CGRP colocalizes with SP-LI in some varicose nerve fibers of the circular muscle of the esophagus, LES and fundus, in perivascular nerves of the submucosal and intramucosal blood vessels, and in nerves of the lamina propria of the gastric fundus. (3) The luminal penetration of CGRP-LI nerves in the squamous mucosa of the esophagus suggests a sensory func  相似文献   

17.
A Modin  J Pernow  J M Lundberg 《Life sciences》1991,49(22):1619-1625
Intravenous injections of big endothelin (ET)-1 (700 pmol/kg) in the pig increased arterial plasma levels of ET-1-like immunoreactivity (ET-1-LI) from 11.1 +/- 0.7 pM to 46.3 +/- 6.7 pM in the control situation and from 11.5 +/- 0.4 pM to 58.2 +/- 17 pM in the presence of the neutral endopeptidase inhibitor phosphoramidon (3 mg/kg). Big ET-1 increased splenic vascular resistance by 29% in the control situation. The vasoconstriction evoked by big ET-1 in the spleen was reduced after phosphoramidon treatment whereas the elevation of arterial ET-1-LI was not influenced. Furthermore the splenic vasoconstriction evoked by ET-1 was reduced after phosphoramidon without influencing plasma ET-1-LI. Also in rats the pressor effect of big ET-1 (1 nmol/kg) was inhibited by phosphoramidon (5 mg/kg) whereas the elevation of plasma ET-1 was not influenced. It is concluded that the vasoconstrictor effects of both big ET-1 and ET-1 are inhibited, but the increase in plasma ET-1 is unaffected by phosphoramidon.  相似文献   

18.
Summary By use of the indirect immunofluorescence technique the distribution of calcitonin gene-related peptide (CGRP)-like immunoreactivity (LI) has been analyzed in cervical and lumbar dorsal root ganglia of untreated and colchicine-treated rats. In addition, lumbar ganglia were examined 2 weeks after transection of the sciatic nerve. The occurrence of CGRP-positive cells in relation to ganglion cells containing substance P-, somatostatin-, galanin-, cholecystokinin (CCK)-, and vasoactive intestinal polypeptide (VIP)/peptide histidine isoleucin (PHI)-LI has been evaluated on consecutive sections as well as using elution-restaining and double-staining techniques.CGRP-LI was observed in many ganglion cells of all sizes ranging in diameter from 15 m to 65 m. Thus, this peptide occurs also in the large primary sensory neurons. In contrast to the sensory peptides described to date, CGRP-positive cells constituted up to 50% of all and 70% of the medium-sized neurons, thus being the most frequently occurring peptide in sensory neurons so far encountered. Subpulations of CGRP-positive neurons were shown to contain substance P-, somatostatin-, or galanin-LI and some CGRP-positive neurons contained both substance P- and galanin-LI. In fact, most substance P-, somatostatin- and galanin-positive cell bodies were CGRP-immunoreactive. The coexistence analysis further revealed that galanin and substance P often coexisted and that some cells contained both substance P- and somatostatin-LI, whereas no coexistence between galanin and somatostatin has as yet been seen. VIP/PHI-LI was only shown in a few cells in untreated or colchicine-treated rats. However, after transcetion of the sciatic nerve numerous VIP/PHI-positive cells were observed, some of which also contained CGRP-LI.The present results indicate that a CGRP-like peptide is present in a wide range of primary sensory neurons probably not related to specific sensory modalities. Often this peptide coexists with other biologically active peptides. Taken together these findings suggest that CGRP may have a generalized function.  相似文献   

19.
The innervation pattern of port-wine stains was investigated using indirect immunohistochemistry with antibodies to protein gene product 9.5 (PGP 9.5), neuron-specific enolase (NSE), calcitonin gene-related peptide (CGRP), and neurofilament (NF). The pathologically dilated vessels in the middle and deep dermis were found to have defective innervation with only single or no nerve fibers in their vicinity, while other structures in the skin showed a normal density of fibers. NSE- and PGP-like immunoreactive (-LI) nerve fibers were observed innervating vessels with a normal morphology and other structures in the skin, such as sweat glands and hair follicles, as free nerve endings and in nerve bundles. The nerve bundles were often seen to pass the ectatic vessels without giving off any branches. CGRP-LI nerve fibers were detected running toward epidermis, whereas no fibers were found around the ectatic vessels. NF-LI fibers were seen innervating normal vessels in dermis, while in relation to the dilated vessels, no or only occasional fibers were observed. The lack of innervation may be of importance for the development of the disease as a result of decreased tonus of the vessels and/or a loss of neuronal trophic factors.  相似文献   

20.
The overflow of calcitonin gene-related peptide like-immunoreactivity (CGRP-LI) in the nasal venous effluent upon antidromic stimulation of the maxillary division of the trigeminal nerve with 6.9 Hz for 3 min or upon capsaicin (0.3 mumol bolus injection) were analysed in the nasal mucosa of sympathectomized pentobarbital anaesthetized pigs. The overflow of CGRP-LI upon antidromic stimulation displayed a slower appearance in the venous effluent than the overflow upon bolus injection of capsaicin. The vascular effects as revealed by the arterial blood flow, the venous blood flow, the blood volume of the nasal mucosa, i.e., the filling of the capacitance vessels and the superficial mucosal blood flow as revealed by the laser-Doppler signal were also studied. Antidromic stimulation of the trigeminal nerve as well as capsaicin bolus injection induced a marked vasodilation which was parallel to the overflow of CGRP. However, capsaicin bolus injection also resulted in a marked increase in the mean arterial blood pressure which may be due to reflex activation of sympathetic fibers. In conclusion, we have demonstrated that chemical stimulation with capsaicin as well as antidromic stimulation of nasal sensory nerves in sympathectomized animals induces both vasodilation and overflow of CGRP-LI in vivo. This indicates that CGRP may contribute to the sensory regulation of the microcirculation in the nasal mucosa.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号