首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Mesenchymal stem cells (MSCs) have been isolated not only from bone marrow, but also from many other tissues such as adipose tissue, skeletal muscle, liver, brain and pancreas. Because MSC were found to have the ability to differentiate into cells of multiple organs and systems such as bone, fat, cartilage, muscle, neurons, hepatocytes and insulin-producing cells, MSCs have generated a great deal of interest for their potential use in regenerative medicine and tissue engineering. Furthermore, given the ease of their isolation and their extensive expansion rate and differentiation potential, mesenchymal stem cells are among the first stem cell types that have a great potential to be introduced in the clinic. Finally, mesenchymal stem cells seem to be not only hypoimmunogenic and thus be suitable for allogeneic transplantation, but they are also able to produce immunosuppression upon transplantation. In this review we summarize the latest research in the use of mesenchymal stem cells in transplantation for generalized diseases, local implantation for local tissue defects, and as a vehicle for genes in gene therapy protocols.  相似文献   

2.
干细胞是一类具有自我更新和增殖分化能力的细胞,按其发育阶段可分为胚胎干细胞(embryonic stem cell,ESC)和成体干细胞(adult stem cell,ASC)。由于干细胞这种特殊的增殖分化潜能,使其具备着多学科临床治疗的可塑性,研究意义巨大。随着子宫内膜干细胞的发现以及对其他类型干细胞提取手段的进步,干细胞为治疗子宫内膜相关性疾病带来了全新的思路。此外,宫内干细胞移植治疗胎儿疾病,干细胞介导损伤后血管内皮的修复以及改善生育功能、治疗不孕症等几个领域的研究也取得了显著的成果。本文参考近7年国内外文献,以干细胞治疗妇产科几种常见疾病的最新研究进展为主要内容进行综述。  相似文献   

3.
Mesenchymal stem cells (MSC) are clonogenic, non-hematpoietic stem cells present in the bone marrow and are able to differentiate into multiple mesoderm-type cell lineages, for example, osteoblasts, chondrocytes, endothelial-cells and also non-mesoderm-type lineages, for example, neuronal-like cells. Several methods are currently available for isolation of the MSC based on their physical and physico-chemical characteristics, for example, adherence to plastics or other extracellular matrix components. Because of the ease of their isolation and their extensive differentiation potential, MSC are among the first stem cell types to be introduced in the clinic. Several studies have demonstrated the possible use of MSC in systemic transplantation for systemic diseases, local implantation for local tissue defects, as a vehicle for genes in gene therapy protocols or to generate transplantable tissues and organs in tissue engineering protocols. Before their widespread use in therapy, methods allowing the generation of large number of cells without affecting their differentiation potential as well as technologies that overcome immunological rejection (in case allogenic transplantation) must be developed.  相似文献   

4.
The aim of the study was to compare the effects of neurotransplantation of cultural neural stem cells (NSC) and mesenchymal stem cells (MSC) on the rat behaviour and brain state after acute hypoxia. It was shown that development of two-way avoidance defensive conditioning in a shuttle box improved in rats-recipients with NSC, but not MSC as compared to control. Both the transplants of NSC and transplants of MSC exert neuroprotective influence on the rat brain. NSC both in vitro (before transplantation) and in vivo (on day 27 after transplantation) gave rise to all neural cell types: stem/progenitor cells, precursors of neurons and glia, neurons and glial cells. MSC population in vitro and in vivo (on day 10 after transplantation) consisted of fibroblast-like cells which were eliminated by day 20 after transplantation and were surrounded by reactive glia. We suggest that effects of NSC may be connected with their good survival and potential to differentiate into neurons and with trophic influence on the brain of recipient, whereas MSC only have possible positive trophic effect at early stages after transplantation.  相似文献   

5.
Mesenchymal stem cells (MSC) have generated a great amount of enthusiasm over the past decade as a novel therapeutic paradigm for a variety of diseases. Currently, MSC based clinical trials have been conducted for at least 12 kinds of pathological conditions, with many completed trials demonstrating the safety and efficacy. This review provides an overview of the recent clinical findings related to MSC therapeutic effects. Roles of MSCs in clinical trials conducted to treat graft-versus-host-disease (GVHD) and cardiovascular diseases are highlighted. Clinical application of MSC are mainly attributed to their important four biological properties- the ability to home to sites of inflammation following tissue injury when injected intravenously; to differentiate into various cell types; to secrete multiple bioactive molecules capable of stimulating recovery of injured cells and inhibiting inflammation and to perform immunomodulatory functions. Here, we will discuss these four properties. Moreover, the issues surrounding clinical grade MSCs and principles for MSC therapeutic approaches are also addressed on the transition of MSCs therapy from bench side to bedside.  相似文献   

6.
Otto WR  Rao J 《Cell proliferation》2004,37(1):97-110
Stem cells are regenerating medicine. Advances in stem cell biology, and bone marrow-derived mesenchymal stem cells in particular, are demonstrating that many clinical options once thought to be science fiction may be attainable as fact. The extra- and intra-cellular signalling used by stem cells as they differentiate into lineages appropriate to their destination are becoming understood. Thus, the growth stimuli afforded by LIF, FGF-2 and HGF, as well as the complementary roles of Wnt and Dickkopf-1 in stem cell proliferation are evident. The ability to direct multi-lineage mesenchymal stem sell (MSC) potential towards an osteogenic phenotype by stimulation with Menin and Shh are important, as are the modulatory roles of Notch-1 and PPARgamma. Control of chondrocytic differentiation is effected by interplay of Brachyury, BMP-4 and TGFbeta3. Smads 1, 4 and 5 also play a role in these phenotypic expressions. The ability to culture MSC has led to their use in tissue repair, both as precursor and differentiated cell substitutes, and with successful animal models of bone and cartilage repair using MSC, their clinical use is accelerating. However, MSC also suppress some T-cell functions in transplanted hosts, and could facilitate tumour growth, so a cautious approach is needed.  相似文献   

7.
Mesenchymal stem cells (MSC) that can differentiate to various connective tissue cells may be useful for autologous cell transplantation to defects of bone, cartilage, and tendon, if MSC can be expanded in vitro. However, a short life span of MSC and a reduction in their differentiation potential in culture have limited their clinical application. The purpose of this study is to identify a growth factor(s) involved in self-renewal of MSC and the maintenance of their multilineage differentiation potential. Fibroblast growth factor-2 (FGF-2) markedly increased the growth rate and the life span of rabbit, canine, and human bone marrow MSC in monolayer cultures. This effect of FGF-2 was more prominent in low-density cultures than in high-density cultures. In addition, all MSC expanded in vitro with FGF-2, but not without FGF-2, differentiated to chondrocytes in pellet cultures. The FGF+ MSC also retained the osteogenic and adipogenic potential throughout many mitotic divisions. These findings suggest that FGFs play a crucial role in self-renewal of MSC.  相似文献   

8.
The potential of mesenchymal stem cells (MSC) to differentiate into neural lineages has raised the possibility of autologous cell transplantation as a therapy for neurodegenerative diseases. We have identified a population of circulating human fetal mesenchymal stem cells (hfMSC) that are highly proliferative and can readily differentiate into mesodermal lineages such as bone, cartilage, fat and muscle. Here, we demonstrate for the first time that primary hfMSC can differentiate into cells with an oligodendrocyte phenotype both in vitro and in vivo. By exposing hfMSC to neuronal conditioned medium or by introducing the pro-oligodendrocyte gene, Olig-2, hfMSC adopted an oligodendrocyte-like morphology, expressed oligodendrocyte markers and appeared to mature appropriately in culture. Importantly we also demonstrate the differentiation of a clonal population of hfMSC into both mesodermal (bone) and ectodermal (oligodendrocyte) lineages. In the developing murine brain transplanted hfMSC integrated into the parenchyma but oligodendrocyte differentiation of these naïve hfMSC was very low. However, the proportion of cells expressing oligodendrocyte markers increased significantly (from 0.2% to 4%) by pre-exposing the cells to differentiation medium in vitro prior to transplantation. Importantly, the process of in vivo differentiation occurred without cell fusion. These findings suggest that hfMSC may provide a potential source of oligodendrocytes for study and potential therapy.  相似文献   

9.
BACKGROUND: Accumulating evidence has demonstrated that the NT2 embryonal carcinoma cell line and multipotential stem cells found in BM, mesenchymal stromal cells (MSC), have the ability to differentiate into a wide variety of cell types. This study was designed to explore the efficacy of these two human stem cell types as a graft source for the treatment of demyelinating disorders such as Krabbe's disease and multiple sclerosis (MS). METHODS: We examined the engraftment and in vivo differentiation of adult MSC and NT2 cells after transplantation into two demyelinating environments, the neonatal and postnatal twitcher mouse brain. RESULTS: Both types of xenografts led to anatomical integration, without tumor formation, and remained viable in the normal and twitcher mouse brain, showing differentiation into neurons, astrocytes and oligodendrocytes. DISCUSSION: This study represents a platform for further stem cell transplantation studies in the twitcher model and potentially has important therapeutic implications.  相似文献   

10.
Pluripotent stem cells, which are capable of differentiating in various species of cells, are hoped to be donor cells in transplantation in regenerative medicine. Embryonic stem (ES) cells and induced pluripotent stem cells have the potential to differentiate in approximately all species of cells. However, the proliferating ability of these cells is high and the cancer formation ability is also recognized. In addition, ethical problems exist in using ES cells. Somatic stem cells with the ability to differentiate in various species of cells have been used as donor cells for neuronal diseases, such as amyotrophic lateral sclerosis, spinal cord injury, Alzheimer disease, cerebral infarction and congenital neuronal diseases. Human mesenchymal stem cells derived from bone marrow, adipose tissue, dermal tissue, umbilical cord blood and placenta are usually used for intractable neuronal diseases as somatic stem cells, while neural progenitor/stem cells and retinal progenitor/stem cells are used for a few congenital neuronal diseases and retinal degenerative disease, respectively. However, non-treated somatic stem cells seldom differentiate to neural cells in recipient neural tissue. Therefore, the contribution to neuronal regeneration using non-treated somatic stem cells has been poor and various differential trials, such as the addition of neurotrophic factors, gene transfer, peptide transfer for neuronal differentiation of somatic stem cells, have been performed. Here, the recent progress of regenerative therapies using various somatic stem cells is described.  相似文献   

11.
12.
Nagai A  Kim WK  Lee HJ  Jeong HS  Kim KS  Hong SH  Park IH  Kim SU 《PloS one》2007,2(12):e1272
Human bone marrow contains two major cell types, hematopoietic stem cells (HSCs) and mesenchymal stem cells (MSCs). MSCs possess self-renewal capacity and pluripotency defined by their ability to differentiate into osteoblasts, chondrocytes, adipocytes and muscle cells. MSCs are also known to differentiate into neurons and glial cells in vitro, and in vivo following transplantation into the brain of animal models of neurological disorders including ischemia and intracerebral hemorrhage (ICH) stroke. In order to obtain sufficient number and homogeneous population of human MSCs, we have clonally isolated permanent and stable human MSC lines by transfecting primary cell cultures of fetal human bone marrow MSCs with a retroviral vector encoding v-myc gene. One of the cell lines, HM3.B10 (B10), was found to differentiate into neural cell types including neural stem cells, neurons, astrocytes and oligodendrocytes in vitro as shown by expression of genetic markers for neural stem cells (nestin and Musashi1), neurons (neurofilament protein, synapsin and MAP2), astrocytes (glial fibrillary acidic protein, GFAP) and oligodendrocytes (myelin basic protein, MBP) as determined by RT-PCR assay. In addition, B10 cells were found to differentiate into neural cell types as shown by immunocytochical demonstration of nestin (for neural stem cells), neurofilament protein and beta-tubulin III (neurons) GFAP (astrocytes), and galactocerebroside (oligodendrocytes). Following brain transplantation in mouse ICH stroke model, B10 human MSCs integrate into host brain, survive, differentiate into neurons and astrocytes and induce behavioral improvement in the ICH animals. B10 human MSC cell line is not only a useful tool for the studies of organogenesis and specifically for the neurogenesis, but also provides a valuable source of cells for cell therapy studies in animal models of stroke and other neurological disorders.  相似文献   

13.
Mesenchymal stem cells (MSC) can be obtained from human bone marrow aspirates and, thanks to their differentiation potential and excellent in vitro culture properties, represent an attractive cell line for the regeneration of mesenchymal tissue. Both in vitro and in vivo, they can differentiate into cartilage, bone, tendons and fat cells, and-in contrast to embryonic stem cells-they are not under ethical scrutiny. Cultured on three-dimensional scaffolds according to the tissue engineering concept, they have already been successfully employed for reconstruction of mesenchymal tissues in numerous studies involving both small and large animal models. Recently, immunological properties of MSC have been investigated by several groups. On the basis of the available literature, MSC have to be referred to as immune privileged, and they seem to be available for HLA-independent cell transplantation. While clinical MSC transplantation has also been successfully performed in pilot studies in humans, numerous points still remain to be clarified, underscoring the need for further intensive research before large-scale clinical application can be contemplated. Only then can it be shown whether the associated high expectations are justified.  相似文献   

14.
Bone marrow mesenchymal stem cells (MSC) have been tested and proven effective in some neurodegenerative diseases, but their tracking after transplantation may be challenging. Our group has previously demonstrated the feasibility and biosafety of rat MSC labeling with iron oxide superparamagnetic nanoparticles (SPION). In this study, we investigated the therapeutic potential of SPION-labeled MSC in a rat model of Huntington's disease, a genetic degenerative disease with characteristic deletion of striatal GABAergic neurons. MSC labeled with SPION were injected into the striatum 1h after quinolinic acid injection. FJ-C analysis demonstrated that MSC transplantation significantly decreased the number of degenerating neurons in the damaged striatum 7 days after lesion. In this period, MSC transplantation enhanced the striatal expression of FGF-2 but did not affect subventricular zone proliferation, as demonstrated by Ki67 proliferation assay. In addition, MSC transplantation significantly reduced the ventriculomegaly in the lesioned brain. MRI and histological techniques detected the presence of the SPION-labeled cells at the lesion site. SPION-labeled MSC produced magnetic resonance imaging (MRI) signals that were visible for at least 60 days after transplantation. Our data highlight the potential of adult MSC to reduce brain damage under neurodegenerative diseases and indicate the use of nanoparticles in cell tracking, supporting their potential as valuable tools for cell therapy.  相似文献   

15.
Because of their ability to self-renew and differentiate, adult stem cells are the in vivo source for replacing cells lost on a daily basis in high turnover tissues during the life of an organism. Adult stem cells however, do suffer the effects of aging resulting in decreased ability to self-renew and properly differentiate. Aging is a complex process and identification of the mechanisms underlying the aging of (stem) cell population(s) requires that relatively homogenous and well characterized populations can be isolated. Evaluation of the effect of aging on one such adult stem cell population, namely the hematopoietic stem cell (HSC), which can be purified to near homogeneity, has demonstrate that they do suffer cell intrinsic age associated changes. The cells that support HSC, namely marrow stromal cells, or mesenchymal stem cells (MSC), may similarly be affected by aging, although the inability to purify these cells to homogeneity precludes definitive assessment. As HSC and MSC are being used in cell-based therapies clinically, improved insight in the effect of aging on these two stem cell populations will probably impact the selection of sources for these stem cells.  相似文献   

16.
Mesenchymal stem cells (MSC) are resident pluripotent cells of bone marrow stroma. MSC have the ability to differentiate into osteoblasts, chondroblasts and adipocytes, neurons, glia and also into cardiomyocytes. The problem of MSC use in cell therapy of various diseases and in myocardial infarction therapy is widely discussed at present. The experiments were carried out on the inbred line Wistar--Kyoto rats. Myocardial experimental infarction (EI) was induced by left descending coronary artery ligation. MSC were isolated from bone marrow, cultivated in vitro and injected into the tail vein on the day of experimental infarction operation. It was shown that the structure of injured myocardium in experimental group significantly differed from that in control group. MSC transplantation led to inflammatory process acceleration and to increased angiogenesis in the damaged myocardium; also, live cardiomyocyte layers were detected in the scar. As a result, ventricular dilatation and overload of the border zone of infarct region decreased, no features of infarction relapse were shown in the border zone.  相似文献   

17.
Mesenchymal stem cells (MSCs) are progenitor cells capable of self-renewal that can differentiate in multiple tissues and, under specific and standardized culture conditions, expand in vitro with little phenotypic alterations. In recent years, preclinical and clinical studies have focused on MSC analysis and understanding the potential use of these cells as a therapy in a wide range of pathologies, and many applications have been tested. Clinical trials using MSCs have been performed (e.g., for cardiac events, stroke, multiple sclerosis, blood diseases, auto-immune disorders, ischemia, and articular cartilage and bone pathologies), and for many genetic diseases, these cells are considered an important resource. Considering of the biology of MSCs, these cells may also be useful tools for understanding the physiopathology of different diseases, and they can be used to develop specific biomarkers for a broad range of diseases. In this editorial, we discuss the literature related to the use of MSCs for diagnostic applications and we suggest new technologies to improve their employment.  相似文献   

18.
The use of stem cells offers new and powerful strategies for future tissue development and engineering. Common features of stem cells are both their capacity for self-renewal and the ability to differentiate into mature effector cells. Since the establishment of embryonic stem cells from early human embryos, research on and clinical application of human ES cells belong to the most controversial topics in our society. Great hopes are based upon the remarkable observation that human ES cells can be greatly expanded in vitro, and that they can differentiate into various clinically important cell types. Recent advances in the cloning of mammals by nuclear transplantation provide new concepts for autologous replacement of damaged and degenerated tissues. In contrast, somatic stem cells of the adult organism were considered to be more restricted in their developmental potential. However, recent investigations suggest that somatic stem cells may have a wider differentiation potential than previously thought. In otology, initial experiments have revealed neural stem cell survival in cochlear cell cultures and under neurotrophin influence, neural stem cells seemed to develop into a neuronal phenotype. Further studies have to be carried out to investigate the full potential of stem cells as well as the molecular mechanisms that are involved in regulating cellular identity and plasticity. Clinically, advances in stem cell biology may provide a permanent source of replacement cells for treating human diseases and could open the development of new concepts for cell and tissue regeneration for a causal treatment of chronic degenerative diseases.  相似文献   

19.
Human placenta is an attractive source of mesenchymal stem cells (MSC) for regenerative medicine. The cell surface markers expressed on MSC have been proposed as useful tools for the isolation of MSC from other cell populations. However, the correlation between the expression of MSC markers and the ability to support tissue regeneration in vivo has not been well examined. Here, we established several MSC lines from human placenta and examined the expression of their cell surface markers and their ability to differentiate toward mesenchymal cell lineages. We found that the expression of CD349/frizzled‐9, a receptor for Wnt ligands, was positive in placenta‐derived MSC. So, we isolated CD349‐negative and ‐positive fractions from an MSC line and examined how successfully cell engraftment repaired fractured bone and recovered blood flow in ischemic regions using mouse models. CD349‐negative and ‐positive cells displayed a similar expression pattern of cell surface markers and facilitated the repair of fractured bone in transplantation experiments in mice. Interestingly, CD349‐negative, but not CD349‐positive cells, showed significant effects on recovering blood flow following vascular occlusion. We found that induction of PDGFβ and bFGF mRNAs by hypoxia was greater in CD349‐negative cells than in CD349‐positive cells while the expression of VEGF was not significantly different in CD349‐negative and CD349‐positive cells. These findings suggest the possibility that CD349 could be utilized as a specialized marker for MSC isolation for re‐endothelialization. J. Cell. Physiol. 226: 224–235, 2010. © 2010 Wiley‐Liss, Inc.  相似文献   

20.
Mesenchymal stem or stromal cells (MSCs) were initially isolated from the bone marrow and received their name on the basis of their ability to differentiate into multiple lineages such as bone, cartilage, fat and muscle. However, more recent studies suggest that MSCs residing in perivascular compartments of the small and large blood vessels play a regulatory function supporting physiologic and pathologic responses of parenchymal cells, which define the functional representation of an organ or tissue. MSCs secrete or express factors that reach neighbouring parenchymal cells via either a paracrine effect or a direct cell‐to‐cell interaction promoting functional activity, survival and proliferation of the parenchymal cells. Previous concept of ‘epithelial–stromal’ interactions can now be widened. Given that MSC can also support hematopoietic, neuronal and other non‐epithelial parenchymal lineages, terms ‘parenchymal–stromal’ or ‘parenchymal–mesenchymal’ interactions may better describe the supportive or ‘trophic’ functions of MSC. Importantly, in many cases, MSCs specifically provide supportive microenvironment for the most primitive stem or progenitor populations and therefore can play a role as ‘stem/progenitor niche’ forming cells. So far, regulatory roles of MSCs have been reported in many tissues. In this review article, we summarize the latest studies that focused on the supportive function of MSC. This thread of research leads to a new perspective on the interactions between parenchymal and mesenchymal cells and justifies a principally novel approach for regenerative medicine based on co‐application of MSC and parenchymal cell for the most efficient tissue repair. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号