首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Localization of the maternal determinant Oskar at the posterior pole of Drosophila melanogaster oocyte provides the positional information for pole plasm formation. Spatial control of Oskar expression is achieved through the tight coupling of mRNA localization to translational control, such that only posterior-localized oskar mRNA is translated, producing the two Oskar isoforms Long Osk and Short Osk. We present evidence that this coupling is not sufficient to restrict Oskar to the posterior pole of the oocyte. We show that Long Osk anchors both oskar mRNA and Short Osk, the isoform active in pole plasm assembly, at the posterior pole. In the absence of anchoring by Long Osk, Short Osk disperses into the bulk cytoplasm during late oogenesis, impairing pole cell formation in the embryo. In addition, the pool of untethered Short Osk causes anteroposterior patterning defects, owing to the dispersion of pole plasm and its abdomen-inducing activity throughout the oocyte. We show that the N-terminal extension of Long Osk is necessary but not sufficient for posterior anchoring, arguing for multiple docking elements in Oskar. This study reveals cortical anchoring of the posterior determinant Oskar as a crucial step in pole plasm assembly and restriction, required for proper development of Drosophila melanogaster.  相似文献   

2.
Cell fate is often determined by the intracellular localization of RNAs and proteins. In Drosophila oocytes, oskar (osk) RNA localization and the subsequent Osk synthesis at the posterior pole direct the assembly of the pole plasm, where factors for the germline and abdomen formation accumulate. osk RNA produces two isoforms, long and short Osk, which have distinct functions in pole plasm assembly. Short Osk recruits downstream components of the pole plasm, whose anchoring to the posterior cortex requires long Osk. The anchoring of pole plasm components also requires actin cytoskeleton, and Osk promotes long F-actin projections in the oocyte posterior cytoplasm. However, the mechanism by which Osk mediates F-actin reorganization remains elusive. Furthermore, although long Osk is known to associate with endosomes under immuno-electron microscopy, it was not known whether this association is functionally significant. Here we show that Rabenosyn-5 (Rbsn-5), a Rab5 effector protein required for the early endocytic pathway, is crucial for pole plasm assembly. rbsn-5(-) oocytes fail to maintain microtubule polarity, which secondarily disrupts osk RNA localization. Nevertheless, anteriorly misexpressed Osk, particularly long Osk, recruits endosomal proteins, including Rbsn-5, and stimulates endocytosis. In oocytes lacking rbsn-5, the ectopic Osk induces aberrant F-actin aggregates, which diffuse into the cytoplasm along with pole plasm components. We propose that Osk stimulates endosomal cycling, which in turn promotes F-actin reorganization to anchor the pole plasm components to the oocyte cortex.  相似文献   

3.
Drosophila pole (germ) plasm contains germline and abdominal determinants. Its assembly begins with the localization and translation of oskar (osk) RNA at the oocyte posterior, to which the pole plasm must be restricted for proper embryonic development. Osk stimulates endocytosis, which in turn promotes actin remodeling to form long F-actin projections at the oocyte posterior pole. Although the endocytosis-coupled actin remodeling appears to be crucial for the pole plasm anchoring, the mechanism linking Osk-induced endocytic activity and actin remodeling is unknown. Here, we report that a Golgi-endosomal protein, Mon2, acts downstream of Osk to remodel cortical actin and to anchor the pole plasm. Mon2 interacts with two actin nucleators known to be involved in osk RNA localization in the oocyte, Cappuccino (Capu) and Spire (Spir), and promotes the accumulation of the small GTPase Rho1 at the oocyte posterior. We also found that these actin regulators are required for Osk-dependent formation of long F-actin projections and cortical anchoring of pole plasm components. We propose that, in response to the Osk-mediated endocytic activation, vesicle-localized Mon2 acts as a scaffold that instructs the actin-remodeling complex to form long F-actin projections. This Mon2-mediated coupling event is crucial to restrict the pole plasm to the oocyte posterior cortex.  相似文献   

4.
Local translation of oskar (osk) mRNA at the posterior pole of the Drosophila oocyte is essential for axial patterning of the embryo, and is achieved by a program of translational repression, mRNA localization, and translational activation. Multiple forms of repression are used to prevent Oskar protein from accumulating at sites other than the oocyte posterior. Activation is mediated by several types of cis-acting elements, which presumably control different forms of activation. We characterize a 5'' element, positioned in the coding region for the Long Osk isoform and in the extended 5'' UTR for translation of the Short Osk isoform. This element was previously thought to be essential for osk mRNA translation, with a role in posterior-specific release from repression. From our work, which includes assays which separate the effects of mutations on RNA regulatory elements and protein coding capacity, we find that the element is not essential, and conclude that there is no evidence supporting a role for the element only at the posterior of the oocyte. The 5'' element has a redundant role, and is only required when Long Osk is not translated from the same mRNA. Mutations in the element do disrupt the anchoring function of Long Osk protein through their effects on the amino acid sequence, a confounding influence on interpretation of previous experiments.  相似文献   

5.
The Drosophila embryonic body plan is specified by asymmetries that arise in the oocyte during oogenesis. These asymmetries are apparent in the subcellular distribution of key mRNAs and proteins and in the organization of the microtubule cytoskeleton. We present evidence that the Drosophila oocyte also contains important asymmetries in its membrane trafficking pathways. Specifically, we show that alpha-adaptin and Rab11, which function critically in the endocytic pathways of all previously examined animal cells, are localized to neighboring compartments at the posterior pole of stage 8-10 oocytes. Rab11 and alpha-adaptin localization occurs in the absence of a polarized microtubule cytoskeleton, i.e. in grk null mutants, but is later reinforced and/or refined by Osk, the localization of which is microtubule dependent. Analyses of germline clones of a rab11 partial loss-of-function mutation reveal a requirement for Rab11 in endocytic recycling and in the organization of posterior membrane compartments. Such analyses also reveal a requirement for Rab11 in the organization of microtubule plus ends and osk mRNA localization and translation. We propose that microtubule plus ends and, possibly, translation factors for osk mRNA are anchored to posterior membrane compartments that are defined by Rab11-mediated trafficking and reinforced by Rab11-Osk interactions.  相似文献   

6.
After its specification, the Drosophila oocyte undergoes a critical polarization event that involves a reorganization of the microtubules (MT) and relocalization of the determinant Orb within the oocyte. This polarization requires Par-1 kinase and the PDZ-containing Par-3 homolog, Bazooka (Baz). Par-1 has been observed on the fusome, which degenerates before the onset of oocyte polarization. How Par-1 acts to polarize the oocyte has been unclear. Here we show that Par-1 becomes restricted to the oocyte in a MT-dependent fashion after disappearance of the fusome. At the time of polarization, the kinase itself and the determinant BicaudalD (BicD) are relocalized from the anterior to the posterior of the oocyte. Par-1 and BicD are interdependent and require MT and the minus end-directed motor Dynein for their relocalization. We show that baz is required for Par-1 relocalization within the oocyte and that the distributions of Baz and Par-1 in the Drosophila oocyte are complementary and strikingly reminiscent of the two PAR proteins in the C. elegans embryo. We propose that, through the combined actions of the fusome, MT, and Baz, Par-1 is selectively enriched and localized within the oocyte, where, in conjunction with BicD, Egalitarian (Egl), and Dynein, it acts on the MT cytoskeleton to effect polarization.  相似文献   

7.
The Par-1 kinase is required for anterior-posterior axis formation in Drosophila. New work has identified the posterior determinant, Oskar, as a Par-1 substrate. Phosphorylation stabilises Oskar, revealing a novel mechanism controlling its asymmetric distribution.  相似文献   

8.
In Drosophila, posterior embryonic body patterning and germ cell formation rely on Oskar, a protein that is concentrated at the posterior pole of the oocyte. A program of mRNA localization and translational regulation ensures that Oskar is only expressed at the proper location. One key regulatory factor is Bruno, which represses translation of oskar mRNA before its localization. Ectopic expression of a bruno cDNA prolongs repression, even after oskar mRNA is localized, and posterior body patterning is efficiently and selectively blocked. Surprisingly, the initial accumulation of Oskar, while frequently reduced, is not eliminated, arguing that levels of Oskar previously thought to be sufficient for patterning do not suffice, or that Bruno acts at a downstream step in patterning. Expression of the bruno cDNA does not inhibit posterior patterning when Oskar is expressed independent of Bruno-mediated regulation, ruling out a downstream requirement for Bruno. Notably, an Oskar::GFP reporter protein reveals continual accumulation during the late phases of oogenesis. Taken together, these results strongly argue that a late phase in accumulation of Osk protein, typically not monitored because of imperviousness of late stage oocytes to antibodies, is crucial for body patterning.  相似文献   

9.
Par-3 controls tight junction assembly through the Rac exchange factor Tiam1   总被引:14,自引:0,他引:14  
The par (partitioning-defective) genes express a set of conserved proteins that function in polarization and asymmetric cell division. Par-3 has multiple protein-interaction domains, and associates with Par-6 and atypical protein kinase C (aPKC). In Drosophila, Par-3 is essential for epithelial cell polarization. However, its function in mammals is unclear. Here we show that depletion of Par-3 in mammalian epithelial cells profoundly disrupts tight junction assembly. Expression of a carboxy-terminal fragment plus the third PDZ domain of Par-3 partially rescues junction assembly, but neither Par-6 nor aPKC binding is required. Unexpectedly, Rac is constitutively activated in cells lacking Par-3, and the assembly of tight junctions is efficiently restored by a dominant-negative Rac mutant. The Rac exchange factor Tiam1 (ref. 7) binds directly to the carboxy-terminal region of Par-3, and knockdown of Tiam1 enhances tight junction formation in cells lacking Par-3. These results define a critical function for Par-3 in tight junction assembly, and reveal a novel mechanism through which Par-3 engages in the spatial regulation of Rac activity and establishment of epithelial polarity.  相似文献   

10.
Anteroposterior patterning of the Drosophila embryo depends on a gradient of Nanos protein arising from the posterior pole. This gradient results from both nanos mRNA translational repression in the bulk of the embryo and translational activation of nanos mRNA localized at the posterior pole. Two mechanisms of nanos translational repression have been described, at the initiation step and after this step. Here we identify a novel level of nanos translational control. We show that the Smaug protein bound to the nanos 3' UTR recruits the deadenylation complex CCR4-NOT, leading to rapid deadenylation and subsequent decay of nanos mRNA. Inhibition of deadenylation causes stabilization of nanos mRNA, ectopic synthesis of Nanos protein and head defects. Therefore, deadenylation is essential for both translational repression and decay of nanos mRNA. We further propose a mechanism for translational activation at the posterior pole. Translation of nanos mRNA at the posterior pole depends on oskar function. We show that Oskar prevents the rapid deadenylation of nanos mRNA by precluding its binding to Smaug, thus leading to its stabilization and translation. This study provides insights into molecular mechanisms of regulated deadenylation by specific proteins and demonstrates its importance in development.  相似文献   

11.
12.
Establishment and maintenance of apical basal cell polarity are essential for epithelial morphogenesis and have been studied extensively using the Drosophila eye as a model system. Bazooka (Baz), a component of the Par-6 complex, plays important roles in cell polarity in diverse cell types including the photoreceptor cells. In ovarian follicle cells, localization of Baz at the apical region is regulated by Par-1 protein kinase. In contrast, Baz in photoreceptor cells is targeted to adherens junctions (AJs). To examine the regulatory pathways responsible for Baz localization in photoreceptor cells, we studied the effects of Par-1 on Baz localization in the pupal retina. Loss of Par-1 impairs the maintenance of AJ markers including Baz and apical polarity proteins of photoreceptor cells but not the establishment of cell polarity. In contrast, overexpression of Par-1 or Baz causes severe mislocalization of junctional and apical markers, resulting in abnormal cell polarity. However, flies with similar overexpression of kinase-inactive mutant Par-1 or unphosphorylatable mutant Baz protein show relatively normal photoreceptor development. These results suggest that dephosphorylation of Baz at the Par-1 phosphorylation sites is essential for proper Baz localization. We also show that the inhibition of protein phosphatase 2A (PP2A) mimics the polarity defects caused by Par-1 overexpression. Furthermore, Par-1 gain-of-function phenotypes are strongly enhanced by reduced PP2A function. Thus, we propose that antagonism between PP2A and Par-1 plays a key role in Baz localization at AJ in photoreceptor morphogenesis.  相似文献   

13.
Staufen, a gene required to localize maternal RNAs in the Drosophila egg.   总被引:25,自引:0,他引:25  
The posterior group gene staufen is required both for the localization of maternal determinants to the posterior pole of the Drosophila egg and for bicoid RNA to localize correctly to the anterior pole. We report the cloning and sequencing of staufen and show that staufen protein is one of the first molecules to localize to the posterior pole of the oocyte, perhaps in association with oskar RNA. Once localized, staufen is found in the polar granules and is required to hold other polar granule components at the posterior pole. By the time the egg is laid, staufen protein is also concentrated at the anterior pole, in the same region as bicoid RNA.  相似文献   

14.
A complex program of translational repression, mRNA localization, and translational activation ensures that Oskar (Osk) protein accumulates only at the posterior pole of the Drosophila oocyte. Inappropriate expression of Osk disrupts embryonic axial patterning, and is lethal. A key factor in translational repression is Bruno (Bru), which binds to regulatory elements in the osk mRNA 3′ UTR. After posterior localization of osk mRNA, repression by Bru must be alleviated. Here we describe an in vivo assay system to monitor the spatial pattern of Bru-dependent repression, separate from the full complexity of osk regulation. This assay reveals a form of translational activation—region-specific activation—which acts regionally in the oocyte, is not mechanistically coupled to mRNA localization, and functions by inhibiting repression by Bru. We also show that Bru dimerizes and identify mutations that disrupt this interaction to test its role in vivo. Loss of dimerization does not disrupt repression, as might have been expected from an existing model for the mechanism of repression. However, loss of dimerization does impair regional activation of translation, suggesting that dimerization may constrain, not promote, repression. Our work provides new insight into the question of how localized mRNAs become translationally active, showing that repression of osk mRNA is locally inactivated by a mechanism acting independent of mRNA localization.  相似文献   

15.
How epithelial cells subdivide their plasma membrane into an apical and a basolateral domain is largely unclear. In Drosophila embryos, epithelial cells are generated from a syncytium during cellularization. We show here that polarity is established shortly after cellularization when Par-6 and the atypical protein kinase C concentrate on the apical side of the newly formed cells. Apical localization of Par-6 requires its interaction with activated Cdc42 and dominant-active or dominant-negative Cdc42 disrupt epithelial polarity, suggesting that activation of this GTPase is crucial for the establishment of epithelial polarity. Maintenance of Par-6 localization requires the cytoskeletal protein Lgl. Genetic and biochemical experiments suggest that phosphorylation by aPKC inactivates Lgl on the apical side. On the basolateral side, Lgl is active and excludes Par-6 from the cell cortex, suggesting that complementary cortical domains are maintained by mutual inhibition of aPKC and Lgl on opposite sides of an epithelial cell.  相似文献   

16.
Specification of the anteroposterior (AP) axis in Drosophila oocytes requires proper organization of the microtubule and actin cytoskeleton. The establishment and regulation of cytoskeletal polarity remain poorly understood, however. Here, we show important roles for the tumor suppressor Lethal (2) giant larvae (Lgl) and atypical protein kinase C (aPKC) in regulating microtubule polarity and setting up the AP axis of the oocyte. Lgl in the germline cells regulates the localization of axis-specifying morphogens. aPKC phosphorylation of Lgl restricts Lgl activity to the oocyte posterior, thereby dividing the cortex into different domains along the AP axis. Active Lgl promotes the formation of actin-rich projections at the oocyte cortex and the posterior enrichment of the serine/threonine kinase Par-1, a key step for oocyte polarization. Our studies suggest that Lgl and its phosphorylation by aPKC may form a conserved regulatory circuitry in polarization of various cell types.  相似文献   

17.
In Drosophila, localized activity of oskar at the posterior pole of the oocyte induces germline and abdomen formation in the embryo. Oskar has two isoforms, a short isoform encoding the patterning determinant and a long isoform of unknown function. Here, we show by immuno-electron microscopy that the two Oskar isoforms have different subcellular localizations in the oocyte: Short Oskar mainly localizes to polar granules, and Long Oskar is specifically associated with endocytic membranes along the posterior cortex. Our cell biological and genetic analyses reveal that Oskar stimulates endocytosis, and that its two isoforms are required to regulate this process. Furthermore, we describe long F-actin projections at the oocyte posterior pole that are induced by and intermingled with Oskar protein. We propose that Oskar maintains its localization at the posterior pole through dual functions in regulating endocytosis and F-actin dynamics.  相似文献   

18.
Targeting proteins to specific domains within the cell is central to the generation of polarity, which underlies many processes including cell fate specification and pattern formation during development. The anteroposterior and dorsoventral axes of the Drosophila melanogaster embryo are determined by the activities of localized maternal gene products. At the posterior pole of the oocyte, Oskar directs the assembly of the pole plasm, and is thus responsible for formation of abdomen and germline in the embryo. Tight restriction of oskar activity is achieved by mRNA localization, localization-dependent translation, anchoring of the RNA and protein, and stabilization of Oskar at the posterior pole. Here we report that the type 1 regulatory subunit of cAMP-dependent protein kinase (Pka-R1) is crucial for the restriction of Oskar protein to the oocyte posterior. Mutations in PKA-R1 cause premature and ectopic accumulation of Oskar protein throughout the oocyte. This phenotype is due to misregulation of PKA catalytic subunit activity and is suppressed by reducing catalytic subunit gene dosage. These data demonstrate that PKA mediates the spatial restriction of Oskar for anteroposterior patterning of the Drosophila embryo and that control of PKA activity by PKA-R1 is crucial in this process.  相似文献   

19.
BACKGROUND: mRNA localization is a powerful and widely employed mechanism for generating cell asymmetry. In Drosophila, localization of mRNAs in the oocyte determines the axes of the future embryo. oskar mRNA localization at the posterior pole is essential and sufficient for the specification of the germline and the abdomen. Its posterior transport along the microtubules is mediated by Kinesin I and several proteins, such as Mago-nashi, which, together with oskar mRNA, form a posterior localization complex. It was recently shown that human Y14, a nuclear protein that associates with mRNAs upon splicing and shuttles to the cytoplasm, interacts with MAGOH, the human homolog of Mago-nashi. RESULTS: Here, we show that Drosophila Y14 interacts with Mago-nashi in vivo. Immunohistochemistry reveals that Y14 is predominantly nuclear and colocalizes with oskar mRNA at the posterior pole. We show that, in y14 mutant oocytes, oskar mRNA localization to the posterior pole is specifically affected, while the cytoskeleton appears to be intact. CONCLUSIONS: Our findings indicate that Y14 is part of the oskar mRNA localization complex and that the nuclear shuttling protein Y14 has a specific and direct role in oskar mRNA cytoplasmic localization.  相似文献   

20.
Song Y  Fee L  Lee TH  Wharton RP 《Genetics》2007,176(4):2213-2222
Localization of maternal nanos mRNA to the posterior pole is essential for development of both the abdominal segments and primordial germ cells in the Drosophila embryo. Unlike maternal mRNAs such as bicoid and oskar that are localized by directed transport along microtubules, nanos is thought to be trapped as it swirls past the posterior pole during cytoplasmic streaming. Anchoring of nanos depends on integrity of the actin cytoskeleton and the pole plasm; other factors involved specifically in its localization have not been described to date. Here we use genetic approaches to show that the Hsp90 chaperone (encoded by Hsp83 in Drosophila) is a localization factor for two mRNAs, nanos and pgc. Other components of the pole plasm are localized normally when Hsp90 function is partially compromised, suggesting a specific role for the chaperone in localization of nanos and pgc mRNAs. Although the mechanism by which Hsp90 acts is unclear, we find that levels of the LKB1 kinase are reduced in Hsp83 mutant egg chambers and that localization of pgc (but not nos) is rescued upon overexpression of LKB1 in such mutants. These observations suggest that LKB1 is a primary Hsp90 target for pgc localization and that other Hsp90 partners mediate localization of nos.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号