首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Summary VariousEscherichia coli strains differ in the composition of their major outer membrane proteins. However, allE. coli K12 strains tested possess the same major outer membrane proteinsa, b, c andd although quantitative differences were detected.The influence of growth conditions on the composition of the major outer membrane proteins ofE. coli was analyzed. It was found that neither the growth phase at which the cells are harvested, nor the fatty acid composition of the phospholipids has a considerable influence on the composition of these proteins. However, the composition of the growth medium, and, to a less extent, the growth temperature, have a pronounced influence.Certain mutants, changed in the composition of their lipopolysaccharide, are deficient in proteinb. Also mutants deficient in proteinc andd respectively, are described.Proteinsb andc ofE. coli K12 were found to be associated with peptidoglycan. Protein bands, corresponding with flagellin and pilin respectively, were identified.  相似文献   

2.
The involvement of lipopolysaccharide and outer membrane proteins in the binding ofEscherichia coli to cellulose was investigated. Cellulose binding was assayed in defined strains with or without O-antigenic polysaccharide and in mutants with defects in lipopolysaccharide core synthesis. Binding was also tested in strains lacking major outer membrane proteins. Optimal cellulose binding was exhibited by rough strains and was reduced to various extents in the presence of different O-antigens. Core defects also reduced but did not abolish binding to cellulose. Reduced binding was also found in mutants lacking OmpC protein, but OmpC/OmpA double mutants orompB mutants lacking OmpC and OmpF were not affected. Mutants with reduced cellulose binding were also isolated directly through selection of nonbinding populations after chromatography on cellulose columns. Each of the independent isolates derived fromE. coli K12 with reduced cellulose binding had multiple mutations, with additional phenotypic changes such as phage resistance, increased sensitivity to bile salts, or altered patterns of outer membrane proteins. These results suggest that no single receptor that could be altered by mutation was responsible for the binding ofE. coli to cellulose. Rather, the nonspecific binding of cellulose was more likely to be due to interaction with, or the combined activity of, several integral outer membrane components that could be masked by O-antigen.  相似文献   

3.
Freeze etching showed that the loss of each of the major outer membrane proteins b, c or d in mutants of Escherichia coli K12 does not influence the morphology of fracture faces of the outer membrane.Mutants that possess a heptose-deficient lipopolysaccharide and which in addition are deficient in one or more major outer membrane proteins exhibit a reduction in the number of intramembranous particles of the outer membrane.Moreover it was shown that lipid phase transitions induce a lateral lipid protein separation in the outer membrane, similar to that found in the cytoplasmic membrane.  相似文献   

4.
Summary To collect information on synthesis and regulation of the peptidoglycan-associated pore-forming outer membrane proteins b and c, mutants resistant to phages Mel and TuIa were analyzed. Genetic analysis showed three linkage groups, corresponding with the genes tolF (phenotype b-c+), meo A (phenotype b+c-) and ompB (phenotypes b-c-, b- c+, b++ c- and b++ c±). It has recently been described that also a b+ c- phenotype can occur in the latter linkage group [Chai, T., Foulds, J., J. Bacteriol. 130, 781–786 (1977)]. Among ompB (b- c+)/meoA (b+ c-) double mutants strains were found with the b+ c- phenotype, showing that ompB is not the structural gene for protein b. Studies on purified proteins b and c showed profound differences between the two proteins with respect to the electrophoretic mobility of fragments obtained by treatment with cyanogen bromide, trypsin and chymotrypsin. The amino acid in position three of the amino-termini of proteins b and c, isolated from isogenic strains, were identified as isoleucine and valine respectively. Both the genetic and biochemical results are consistent with a model recently published [Ichihara, S., Mizushima, S., J. Biochem. (Japan) 83, 1095–1100 (1978)] which predicts that tolF and meoA are the structural genes for the proteins b and c respectively and that ompB is a regulatory gene whose product regulates the levels of both proteins.  相似文献   

5.
Mutants resistant to bacteriophages (P221 and PH105 or PH51) were isolated from a rfa strain of Salmonella typhimurium. They were found deficient in separate 33,000- to 36,000-dalton band proteins (major band proteins). Double mutants derived from both types of mutants were deficient in both of the bands. The growth behavior of all the mutants was normal. The outer membrane of the mutants appeared to be more wrinkled than normal and formed vesicles in many of the mutants. In freeze-fractured cells, changes were seen in the outer membrane (particleless patches in the concave fracture face, the particles themselves being smaller than normal). These changes were more marked in the double mutants.  相似文献   

6.
Mutants of the luminescent bacterial strain NRRL B-11177 were isolated with pleiotropic hypersensitivity towards hydrophobic antimicrobial agents. SDS-PAGE analyses of outer membrane proteins and lipopolysaccharides revealed that the outer membrane structure of the ahs-mutants was altered. QSAR analysis showed that the inhibitory effect of chloro-substituted phenols on bioluminescence of the ahs-mutants depended on their hydrophobicity. The effect of chlorinated phenols and detergents on bioluminescence was increased in the ahs-mutants. The potential use of these mutants in bioluminescent toxicity tests was discussed.  相似文献   

7.
To study the role of the E. coli recipient cell in conjugation recipient cell mutants deficient in conjugation (Con-) were isolated. Mutants specific for F-type E. coli donor cells (ConF-) and mutants specific deficient in conjugation with I-type donor cells (ConI-) were isolated.Both ConF- and ConI- mutants were blocked in stable mating pair formation. Biochemical analysis of the mutants suggests that the outer membrane protein coded by the ompA gene and LPS are important for recipient activity in F-type conjugation while LPS is important for recipient activity in I-type conjugation.  相似文献   

8.
Role of a major outer membrane protein in Escherichia coli.   总被引:30,自引:22,他引:8       下载免费PDF全文
Mutants of Escherichia coli B/r lacking a major outer membrane protein, protein b, were obtained by selecting for resistance to copper. These mutants showed a decreased ability to utilize a variety of metabolites when the metabolites were present at low concentrations. Also, mutants of E. coli K-12 lacking proteins b and c from the outer membrane were shown to have an identical defect in the uptake of various metabolites. These results are discussed with regard to their implications as to the role of these proteins in permeability of the outer membrane,  相似文献   

9.
Growth of the hopanoid-producing bacterium Zymomonas mobilis was inhibited at low concentrations of the cationic detergent octadecyltrimethylammoniumchloride (OTAC). A relationship between sensitivity of Zymomonas mobilis to OTAC, presence of hopanoids and ethanol tolerance was postulated. Mutants resistant to OTAC were isolated from strains ZM1 and ZM4. They did not present any alteration of the hopanoid content and their squalene cyclases showed the same sensitity to OTAC as the parent enzymes. Resistance to OTAC paralleled pleiotropic effects including, enhanced accessibility of the membrane-bound alkaline phosphatase, important release of proteins from cells by Tris/HCl treatment, increased resistance to antibiotics and increased sensitivity to ethanol. In addition, OTACR mutants were also characterized by the synthesis or the overproduction of an outer membrane protein (F53) not detected on 2D-PAGE maps of parent strains and by a normal heat shock response. The role of hopanoids, heat shock proteins, protein F53 and membrane organization in ethanol tolerance is discussed.Abbreviations OTAC octadecyltrimethylammoniumchloride - SLS sodium lauryl sarcosinate  相似文献   

10.
The protein composition of the outer membrane of Salmonella typhimurium has been analyzed by electrophoresis on slabs of sodium dodecyl sulfate-acrylamide gel. This powerful technique allows very high resolution of protein mixtures and has permitted the identification of multiple major protein components of the outer membrane; no evidence for a single major component of molecular weight 44,000 was obtained. These proteins were shown to be decreased in amount in mutants which have defective lipopolysaccharides. Mutants of an apparently new type were also found which contain decreased amounts of the proteins and the parent-like lipopolysaccharide, yet are resistant to a lipopolysaccharide-specific phage, C21. Several outer membrane proteins are insoluble in sodium dodecyl sulfate unless heated at high temperature (above 70 C). A purification procedure based on this property is tentatively suggested.  相似文献   

11.
Summary A protein of molecular weight 78,000 daltons, missing in albomycin and phage ES18 resistant mutants, has been identified in the outer membrane of Salmonella typhimurium SL1027. Mutants with a tonB like resistance and overproduction of outer membrane proteins due to iron shortage were also isolated. The mutation which leads to the protein deficiency maps in the sid gene region, the mutation related to overproduction of proteins maps near trp. Although the S. typhimurium and the E. coli protein mediate translocation of the iron complex ferrichrome and the structurally analogous antibiotic albomycin through the outer membrane no cross-reactivity exists in binding the phages T5, T1 and ES18 or colicin M.  相似文献   

12.
13.
Summary We have examined mitochondrial (mt) ribosome assembly and-function in five nuclear and six extranuclear mutants of Neurospora crassa which had previously been characterized as deficient in cytochromes b and aa 3. All six extranuclear mutants showed phenotypes similar to that previously described for the extranuclear [poky] mutant: small subunit-deficient with 19 S rRNA rapidly degraded. The nuclear mutants have the following phenotypes: 297-24 is mt small subunit deficient with 19 S RNA rapidly degraded. 289-56 is mt small subunit deficient but contains normal ratios of 19 S to 25 S RNA in whole mitochondria. 289-67 and 299-9 show defects in the processing of 25 S RNA leading to accumulation of a large precursor RNA. 289-4 is deficient in large subunits although a substantial, but less than normal, amount of 25 S RNA is present in the mitochondria.The present work provides new insight into the phenotypes of mt small subunit-deficient mutants. Previous studies using chloramphenicol suggest that some defects in the assembly of mt small subunits may arise secondarily as a result of inhibition of mt protein synthesis (LaPolla and Lambowitz, 1977; Lambowitz et al., 1979). Three mutants (289-56, 289-67 and 299-9) appear to show such defects. These strains contain incomplete mt small subunits which sediment more slowly than normal and are deficient in at least two proteins, S-5 and S-9. Correlation of mutant phenotypes with rates of mt protein synthesis in the different strains suggests that mt protein synthesis must be decreased to less than one half of the wild-type rate before secondary defects in mt small subunit assembly are observed. This threshold value is much lower than that which leads to gross deficiencies of cytochromes b and aa 3. Although several mutants have phenotypes suggestive of alterations in mt ribosomal proteins, no such alterations could be identified by two dimensional gel electrophoresis.  相似文献   

14.
Molecular Genetics and Genomics - Mutants ofEscherichia coli K12, deficient in up to three major outer membrane proteinsb,c andd have been constructed. Mutants that lack the lipopolysaccharide...  相似文献   

15.
Whole cells of Escherichia coli strains 0111, K12 and B as well as the ampicillin-resistant mutant K12 D21 and several lipopolysaccharide (LPS) mutants derived from this strain were analyzed for their molar LPS content per mg dry weight. An increase of the LPS concentration in some LPS mutants was substantiated by analyzing isolated cell walls and relating the molar LPS content to the murein subunit as measure of cell surface area. The increase of LPS was paralleled by increasing amounts of phospholipid while the overall protein content in the outer membrane decreased.According to the pattern of major outer membrane proteins in the various strains and the respective LPS structures, protein-LPS interactions are discussed as important requirements for outer membrane assembly and stability.Abbreviations LPS lipopolysaccharide - SDS sodium dodecyl-sulfate Dedicated to Dr. Otto Lüderitz on the occasion of his 60th birthday  相似文献   

16.
《Gene》1997,192(1):71-77
Defined chromosomal mutations that lead to assembly failure of the toxin coregulated pilus (TCP) of Vibrio cholerae provide useful insights into the biogenesis of a type-4 pilus. Mutants in rfb affecting LPS O-antigen biosynthesis, and strains depleted of the cytoplasmic membrane-associated ATP-binding protein TcpT, provide contrasting TCP export-defective phenotypes acting at different locations. Mutants in the perosamine biosynthesis pathway of V. cholerae 569B result in an rfb phenotype with an LPS consisting only of core oligosaccharide and lipid A. Such strains are unable to assemble TCP, and TcpA subunits are found in the periplasm and membrane fractions. In both rfb and tcpT mutants, the export defect is specific and complete. TcpT is a member of a large family of cytoplasmic membrane-associated ATP-binding proteins which are essential in type-4 pilin systems and in many non-pilin outer membrane transporters in Gram-negative bacteria. The behaviour of translocation-arrested TcpA in rfb and tcpT mutants is indistinguishable from that within assembled pilus under a range of conditions including flotation in density gradients, chemical cross-linking, and detergent extraction experiments. From the data presently available, it would appear that TcpA requires TcpT-mediated translocation from the cytoplasmic membrane and that TcpT stabilizes the subunit at or immediately beyond this stage, before crossing the outer membrane.  相似文献   

17.
Mitochondria (or mitoplasts) and submitochondrial particles from yeast were treated with [125I] diazobenzenesulfonate to label selectively proteins exposed on the outer or inner surface of the inner mitochondrial membrane. Polyacrylamide gel analysis of the immunoprecipitates formed with antibodies against Complex III or cytochromeb revealed that the two core proteins and cytochromeb were labeled in both mitochondria and submitochondrial particles, suggesting that these proteins span the membrane. Cytochromec 1 and the iron sulfur protein were labeled in mitochondria but not in submitochondrial particles, suggesting that these proteins are exposed on the cytosolic side of the inner membrane. The steady-state reduction of cytochromesb andc 1 was determined with succinate and the decyl analogue of coenzyme Q as substrates. Addition of the coenzyme Q analogue to mitochondria caused reduction of 15–30% of the total dithionite-reducibleb and 100% of the cytochromec 1: Addition of the coenzyme Q analogue to submitochondrial particles led to the reduction of 70% of the total dithionite-reducible cytochromeb but insignificant amounts of cytochromec 1. A model to explain the topography of Complex III in the inner membrane is proposed based on these results.Abbreviations used: DABS, diazobenzene sulfonate; DBH2, reduced form of decyl analogue of coenzyme Q (2,3-dimethoxy-5-methyl-6-n-decyl-1,4-benzoquinone); PMSF, phenylmethylsulfonyl fluoride; SDS, sodium dodecyl sulfate.  相似文献   

18.
Phospholipids in whole cells of wild type Escherichia coli K12 are not degraded by exogenous phospholipases, whereas those of isolated outer membranes are completely degraded. It is concluded that the resistance of phospholipids in whole cells is due to shielding by one or more other outer membrane components. The nature of the shielding component(s) was investigated by testing the sensitivity of whole cells of a number of outer membrane mutants. Mutants lacking both major outer membrane proteins b and d or the heptose-bound glucose of their lipopolysaccharide, are sensitive to exogenous phospholipases. Moreover, cells of a mutant which lacks protein d can be sensitized by pretreatment of the cells with EDTA. From these results and from data on the chemical composition of the outer membranes, it is concluded that proteins b and d, the heptose-bound glucose of lipopolysaccharide and divalent cations are responsible for the inaccessibility of phospholipids to exogenous phospholipases.  相似文献   

19.
Growth of E. coli K-12 under severe iron stress results in increased production of the outer membrane receptors for colicins B, D, Ib and M. The increase in colicin receptor activity coincides with the appearance of large amounts of two high molecular weight proteins in the outer membrane of the cells. These proteins are identified as the outer membrane receptors for colicins B and D and for colicin M. Mutants lacking a functional outer membrane receptor for colicins B and D are defective in the uptake of iron complexed with the siderochrome enterochelin, and are thus comparable with tonA mutants which lack a functional receptor for colicin M and are defective in the uptake of iron complexed with ferrichrome (6). The colicin B and D receptor may therefore function in the uptake of ferri-enterochelin.  相似文献   

20.
《The Journal of cell biology》1995,130(6):1333-1344
Glycosylphosphatidylinositol (GPI)-anchored membrane proteins are synthesized by the posttranslational attachment of a preformed glycolipid to newly made glycoproteins. alpha-Agglutinin is a GPI- anchored glycoprotein that gets expressed at the cell surface of MAT alpha cells after induction with type a mating factor. Mutants affecting the biosynthesis of GPI anchors were obtained by selecting for the absence of alpha-agglutinin from the cell wall after induction with a-factor at 37 degrees C. 10 recessive mutants were grouped into 6 complementation classes, gpi4 to gpi9. Mutants are considered to be deficient in the biosynthesis of GPI anchors, since each mutant accumulates an abnormal, incomplete GPI glycolipid containing either zero, two, or four mannoses. One mutant accumulates a complete precursor glycolipid, suggesting that it might be deficient in the transfer of complete precursor lipids to proteins. When labeled with [2- 3H]inositol, mutants accumulate reduced amounts of radiolabeled GPI- anchored proteins, and the export of the GPI-anchored Gas1p out of the ER is severely delayed in several mutant strains. On the other hand, invertase and acid phosphatase are secreted by all but one mutant. All mutants show an increased sensitivity to calcofluor white and hygromycin B. This suggests that GPI-anchored proteins are required for the integrity of the yeast cell wall.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号