首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Recent studies have shown that heteromerization of the chemokine receptors CCR2, CCR5 and CXCR4 is associated to negative binding cooperativity. In the present study, we build on these previous results, and investigate the consequences of chemokine receptor heteromerization with ChemR23, the receptor of chemerin, a leukocyte chemoattractant protein structurally unrelated to chemokines. We show, using BRET and HTRF assays, that ChemR23 forms homomers, and provide data suggesting that ChemR23 also forms heteromers with the chemokine receptors CCR7 and CXCR4. As previously described for other chemokine receptor heteromers, negative binding cooperativity was detected between ChemR23 and chemokine receptors, i.e. the ligands of one receptor competed for the binding of a specific tracer of the other. We also showed, using mouse bone marrow-derived dendritic cells prepared from wild-type and ChemR23 knockout mice, that ChemR23-specific ligands cross-inhibited CXCL12 binding on CXCR4 in a ChemR23-dependent manner, supporting the relevance of the ChemR23/CXCR4 interaction in native leukocytes. Finally, and in contrast to the situation encountered for other previously characterized CXCR4 heteromers, we showed that the CXCR4-specific antagonist AMD3100 did not cross-inhibit chemerin binding in cells co-expressing ChemR23 and CXCR4, demonstrating that cross-regulation by AMD3100 depends on the nature of receptor partners with which CXCR4 is co-expressed.  相似文献   

2.
Stromal cell-derived factor 1 (CXCL12) is an angiogenic chemokine that is believed to act solely via its cognate receptor CXCR4. Evidence is now provided for the existence of a different CXCL12 binding and signaling receptor on endothelial cells. Bovine aortic endothelial cells (BAECs) strongly expressed CXCR4 and exhibited high binding capacity for fluorescently labeled CXCL12. However, CXCL12 binding was not correlated with the CXCR4 expression level and was virtually unaffected by the specific CXCR4 antagonists AMD3100 or T22. Similar observations were made in endothelial cells of mouse and human origin. Also, AMD3100 failed to block CXCL12 internalization and CXCL12-induced intracellular signal transduction via extracellular signal-regulated kinases 1/2 in BAECs. In contrast, CXCL12 binding and signaling were almost completely inhibited by the CXCR4 antagonist in T-lymphoid SupT1 cells. Together, our data point to the existence of an additional receptor through which CXCL12 exerts its biological effects in endothelial cells.  相似文献   

3.
The chemokine receptor CXCR4, which binds the chemokine stromal cell-derived factor 1, has been reported to be involved in the chemotaxis of inflammatory cells. In addition, AMD3100, an antagonist of CXCR4, has been reported to be an attractive drug candidate for therapeutic intervention in several disorders in which CXCR4 is critically involved. However, little is known about the therapeutic value of AMD3100 in the treatment of pulmonary fibrosis. In this study, we examined the effects of AMD3100 on a murine bleomycin-induced pulmonary fibrosis model. Concurrent administration of AMD3100 and bleomycin apparently attenuated bleomycin-induced pulmonary inflammation. In this process, an inhibition of neutrophil recruitment at early stage followed by the decrease of other inflammatory cell recruitment in the lung were observed. In addition, it also inhibited the expression of cytokines, including MCP-1, MIP-2, MIP-1alpha, and TGF-beta. In contrast, when AMD3100 was administered following bleomycin treatment, the bleomycin-induced lung inflammation progressed and resulted in severe pulmonary fibrosis. In this process, an increase of inflammatory cell recruitment, an up-regulation of lung MCP-1 and TGF-beta, and a remarkable activation of p44/42 MAPK in neutrophils were observed. U0126, an inhibitor of p44/42 MAPK, significantly abolished these effects. Thus, AMD3100 has dual effect on bleomycin-induced pulmonary fibrosis. Difference of inflammatory cell recruitment and activation might be associated with the dual effect of AMD3100 on bleomycin-induced pulmonary fibrosis.  相似文献   

4.
To address the issues of redundancy and specificity of chemokines and their receptors in lymphocyte biology, we investigated the expression of CC chemokine receptors CCR1, CCR2, CCR3, CCR5, CXCR3, and CXCR4 and responses to their ligands on memory and naive, CD4 and CD8 human T cells, both freshly isolated and after short term activation in vitro. Activation through CD3 for 3 days had the most dramatic effects on the expression of CXCR3, which was up-regulated and functional on all T cell populations including naive CD4 cells. In contrast, the effects of short term activation on expression of other chemokine receptors was modest, and expression of CCR2, CCR3, and CCR5 on CD4 cells was restricted to memory subsets. In general, patterns of chemotaxis in the resting cells and calcium responses in the activated cells corresponded to the patterns of receptor expression among T cell subsets. In contrast, the pattern of calcium signaling among subsets of freshly isolated cells did not show a simple correlation with receptor expression, so the propensity to produce a global rise in the intracellular calcium concentration differed among the various receptors within a given T cell subset and for an individual receptor depending on the cell where it was expressed. Our data suggest that individual chemokine receptors and their ligands function on T cells at different stages of T cell activation/differentiation, with CXCR3 of particular importance on newly activated cells, and demonstrate T cell subset-specific and activation state-specific responses to chemokines that are achieved by regulating receptor signaling as well as receptor expression.  相似文献   

5.
The chemokine receptor CXCR4 is a co-receptor for T-tropic strains of HIV-1. A number of small molecule antagonists of CXCR4 are in development but all are likely to lead to adverse effects due to the physiological function of CXCR4. To prevent these complications, allosteric agonists may be therapeutically useful as adjuvant therapy in combination with small molecule antagonists. A synthetic cDNA library coding for 160,000 different SDF-based peptides was screened for CXCR4 agonist activity in a yeast strain expressing a functional receptor. Peptides that activated CXCR4 in an autocrine manner induced colony formation. Two peptides, designated RSVM and ASLW, were identified as novel agonists that are insensitive to the CXCR4 antagonist AMD3100. In chemotaxis assays using the acute lymphoblastic leukemia cell line CCRF-CEM, RSVM behaves as a partial agonist and ASLW as a superagonist. The superagonist activity of ASLW may be related to its inability to induce receptor internalization. In CCRF-CEM cells, the two peptides are also not inhibited by another CXCR4 antagonist, T140, or the neutralizing monoclonal antibodies 12G5 and 44717.111. These results suggest that alternative agonist-binding sites are present on CXCR4 that could be screened to develop molecules for therapeutic use.  相似文献   

6.
Here we report that the N-pyridinylmethyl cyclam analog AMD3451 has antiviral activity against a wide variety of R5, R5/X4, and X4 strains of human immunodeficiency virus type 1 (HIV-1) and HIV-2 (50% inhibitory concentration [IC(50)] ranging from 1.2 to 26.5 microM) in various T-cell lines, CCR5- or CXCR4-transfected cells, peripheral blood mononuclear cells (PBMCs), and monocytes/macrophages. AMD3451 also inhibited R5, R5/X4, and X4 HIV-1 primary clinical isolates in PBMCs (IC(50), 1.8 to 7.3 microM). A PCR-based viral entry assay revealed that AMD3451 blocks R5 and X4 HIV-1 infection at the virus entry stage. AMD3451 dose-dependently inhibited the intracellular Ca(2+) signaling induced by the CXCR4 ligand CXCL12 in T-lymphocytic cells and in CXCR4-transfected cells, as well as the Ca(2+) flux induced by the CCR5 ligands CCL5, CCL3, and CCL4 in CCR5-transfected cells. The compound did not interfere with chemokine-induced Ca(2+) signaling through CCR1, CCR2, CCR3, CCR4, CCR6, CCR9, or CXCR3 and did not induce intracellular Ca(2+) signaling by itself at concentrations up to 400 microM. In freshly isolated monocytes, AMD3451 inhibited the Ca(2+) flux induced by CXCL12 and CCL4 but not that induced by CCL2, CCL3, CCL5, and CCL7. The CXCL12- and CCL3-induced chemotaxis was also dose-dependently inhibited by AMD3451. Furthermore, AMD3451 inhibited CXCL12- and CCL3L1-induced endocytosis in CXCR4- and CCR5-transfected cells. AMD3451, in contrast to the specific CXCR4 antagonist AMD3100, did not inhibit but enhanced the binding of several anti-CXCR4 monoclonal antibodies (such as clone 12G5) at the cell surface, pointing to a different interaction with CXCR4. AMD3451 is the first low-molecular-weight anti-HIV agent with selective HIV coreceptor, CCR5 and CXCR4, interaction.  相似文献   

7.
8.
Most human immunodeficiency virus (HIV) strains require both CD4 and a chemokine receptor for entry into a host cell. In order to analyze how the HIV-1 envelope glycoprotein interacts with these cellular molecules, we constructed single-molecule hybrids of CD4 and chemokine receptors and expressed these constructs in the mink cell line Mv-1-lu. The two N-terminal (2D) or all four (4D) extracellular domains of CD4 were linked to the N terminus of the chemokine receptor CXCR4. The CD4(2D)CXCR4 hybrid mediated infection by HIV-1(LAI) to nearly the same extent as the wild-type molecules, whereas CD4(4D)CXCR4 was less efficient. Recombinant SU(LAI) protein competed more efficiently with the CXCR4-specific monoclonal antibody 12G5 for binding to CD4(2D)CXCR4 than for binding to CD4(4D)CXCR4. Stromal cell-derived factor 1 (SDF-1) blocked HIV-1(LAI) infection of cells expressing CD4(2D)CXCR4 less efficiently than for cells expressing wild-type CXCR4 and CD4, whereas down-modulation of CXCR4 by SDF-1 was similar for hybrids and wild-type CXCR4. In contrast, the bicyclam AMD3100, a nonpeptide CXCR4 ligand that did not down-modulate the hybrids, blocked hybrid-mediated infection at least as potently as for wild-type CXCR4. Thus SDF-1, but not the smaller molecule AMD3100, may interfere at multiple points with the binding of the surface unit (SU)-CD4 complex to CXCR4, a mechanism that the covalent linkage of CD4 to CXCR4 impedes. Although the CD4-CXCR4 hybrids yielded enhanced SU interactions with the chemokine receptor moiety, this did not overcome the specific coreceptor requirement of different HIV-1 strains: the X4 virus HIV-1(LAI) and the X4R5 virus HIV-1(89. 6), unlike the R5 strain HIV-1(SF162), infected Mv-1-lu cells expressing the CD4(2D)CXCR4 hybrid, but none could use hybrids of CD4 and the chemokine receptor CCR2b, CCR5, or CXCR2. Thus single-molecule hybrid constructs that mimic receptor-coreceptor complexes can be used to dissect coreceptor function and its inhibition.  相似文献   

9.
Human immunodeficiency virus type 1 (HIV-1) entry into CD4(+) cells requires the chemokine receptors CCR5 or CXCR4 as co-fusion receptors. We have previously demonstrated that chemokine receptors are capable of cross-regulating the functions of each other and, thus, affecting cellular responsiveness at the site of infection. To investigate the effects of chemokine receptor cross-regulation in HIV-1 infection, monocytes and MAGIC5 and rat basophilic leukemia (RBL-2H3) cell lines co-expressing the interleukin-8 (IL-8 or CXCL8) receptor CXCR1 and either CCR5 (ACCR5) or CXCR4 (ACXCR4) were generated. IL-8 activation of CXCR1, but not the IL-8 receptor CXCR2, cross-phosphorylated CCR5 and CXCR4 and cross-desensitized their responsiveness to RANTES (regulated on activation normal T cell expressed and secreted) (CCL5) and stromal derived factor (SDF-1 or CXCL12), respectively. CXCR1 activation internalized CCR5 but not CXCR4 despite cross-phosphorylation of both. IL-8 pretreatment also inhibited CCR5- but not CXCR4-mediated virus entry into MAGIC5 cells. A tail-deleted mutant of CXCR1, DeltaCXCR1, produced greater signals upon activation (Ca(2+) mobilization and phosphoinositide hydrolysis) and cross-internalized CXCR4, inhibiting HIV-1 entry. The protein kinase C inhibitor staurosporine prevented phosphorylation and internalization of the receptors by CXCR1 activation. Taken together, these results indicate that chemokine receptor-mediated HIV-1 cell infection is blocked by receptor internalization but not desensitization alone. Thus, activation of chemokine receptors unrelated to CCR5 and CXCR4 may play a cross-regulatory role in the infection and propagation of HIV-1. Since DeltaCXCR1, but not CXCR1, cross-internalized and cross-inhibited HIV-1 infection to CXCR4, the data indicate the importance of the signal strength of a receptor and, as a consequence, protein kinase C activation in the suppression of HIV-1 infection by cross-receptor-mediated internalization.  相似文献   

10.
11.
The chemokine receptors CCR5 and CXCR4 are the major coreceptors for human immunodeficiency virus (HIV) and simian immunodeficiency virus (SIV). At least 12 other chemokine receptors or close relatives support infection by particular HIV and SIV strains on CD4(+) transformed indicator cell lines in vitro. However, the role of these alternative coreceptors in vivo is presently thought to be insignificant. Infection of cell lines expressing high levels of recombinant CD4 and coreceptors thus does not provide a true indication of coreceptor use in vivo. We therefore tested primary untransformed cell cultures that lack CCR5 and CXCR4, including astrocytes and brain microvascular endothelial cells (BMVECs), for naturally expressed alternative coreceptors functional for HIV and SIV infection. An adenovirus vector (Ad-CD4) was used to express CD4 in CD4(-) astrocytes and thus confer efficient infection if a functional coreceptor is present. Using a large panel of viruses with well-defined coreceptor usage, we identified a subset of HIV and SIV strains able to infect two astrocyte cultures derived from adult brain tissue. Astrocyte infection was partially inhibited by several chemokines, indicating a role for the chemokine receptor family in the observed infection. BMVECs were weakly positive for CD4 but negative for CCR5 and CXCR4 and were susceptible to infection by the same subset of isolates that infected astrocytes. BMVEC infection was efficiently inhibited by the chemokine vMIP-I, implicating one of its receptors as an alternative coreceptor for HIV and SIV infection. Furthermore, we tested whether the HIV type 1 and type 2 strains identified were able to infect peripheral blood mononuclear cells (PBMCs) via an alternative coreceptor. Several strains replicated in Delta32/Delta32 CCR5 PBMCs with CXCR4 blocked by AMD3100. This AMD3100-resistant replication was also sensitive to vMIP-I inhibition. The nature and potential role of this alternative coreceptor(s) in HIV infection in vivo is discussed.  相似文献   

12.
CD1d-restricted T cells (NKT cells) are innate memory cells activated by lipid Ags and play important roles in the initiation and regulation of the immune response. However, little is known about the trafficking patterns of these cells or the tissue compartment in which they exert their regulatory activity. In this study, we determined the chemokine receptor profile expressed by CD1d-restricted T cells found in the peripheral blood of healthy volunteers as well as CD1d-restricted T cell clones. CD1d-restricted T cells were identified by Abs recognizing the invariant Valpha24 TCR rearrangement or by binding to CD1d-Fc fusion tetramers loaded with alpha-GalCer. CD1d-restricted T cells in the peripheral blood and CD1d-restricted T cell clones expressed high levels of CXCR3, CCR5, and CCR6; intermediate levels of CXCR4 and CXCR6; and low levels of CXCR1, CCR1, CCR2, and CX(3)CR1, a receptor pattern often associated with tissue-infiltrating effector Th1 cells and CD8+ T cells. Very few of these cells expressed the lymphoid-homing receptors CCR7 or CXCR5. CCR4 was expressed predominantly on CD4+, but not on double-negative CD1d-restricted T cells, which may indicate differential trafficking patterns for these two functionally distinct subsets. CD1d-restricted T cell clones responded to chemokine ligands for CXCR1/2, CXCR3, CXCR4, CXCR6, CCR4, and CCR5 in calcium flux and/or chemotaxis assays. These data indicate that CD1d-restricted T cells express a chemokine receptor profile most similar to Th1 inflammatory homing cells and suggest that these cells perform their function in peripheral tissue sites rather than in secondary lymphoid organs.  相似文献   

13.
The bicyclam AMD3100 is a potent and selective inhibitor of the replication of human immunodeficiency virus type 1 and type 2 (HIV-1 and HIV-2). It was recently demonstrated that the compound inhibited HIV entry through CXCR4 but not through CCR5. Selectivity of AMD3100 for CXCR4 was further indicated by its lack of effect on HIV-1 and HIV-2 infection mediated by the CCR5, CCR3, Bonzo, BOB, and US28, coreceptors. AMD3100 completely blocked HIV-1 infection mediated by a mutant CXCR4 bearing a deletion of most of the amino-terminal extracellular domain. In contrast, relative resistance to AMD3100 was conferred by different single amino acid substitutions in the second extracellular loop (ECL2) or in the adjacent membrane-spanning domain, TM4. Only substitutions of a neutral residue for aspartic acid and of a nonaromatic residue for phenylalanine (Phe) were associated with drug resistance. This suggests a direct interaction of AMD3100 with these amino acids rather than indirect effects of their mutation on the CXCR4 structure. The interaction of aspartic acids of ECL2 and TM4 with AMD3100 is consistent with the positive charge of bicyclams, which might block HIV-1 entry by preventing electrostatic interactions between CXCR4 and the HIV-1 envelope protein gp120. Other features of AMD3100 must account for its high antiviral activity, in particular the presence of an aromatic linker between the cyclam units. This aromatic group might engage in hydrophobic interactions with the Phe-X-Phe motifs of ECL2 or TM4. These results confirm the importance of ECL2 for the HIV coreceptor activity of CXCR4.  相似文献   

14.
Stromal cell-derived factor-1 (SDF-1) and CXC chemokine receptor 4 (CXCR4) have been found to be tightly correlated with the progression of prostate cancer (PC). In this study, we investigated the effects of an SDF-1α/CXCR4 inhibitor, AMD3100, on cell progression and metastasis potential of human PC cells. Human PC cell lines (LNCaP, PC3, and DU145) were cultured to detect SDF-1α/CXCR4, which showed higher SDF-1α and CXCR4 expression than the normal human prostate epithelial cell line, RWPE-1. AMD3100 was confirmed to be an inhibitor of SDF-1α, and to detect the effect of SDF-1α/CXCR4 inhibition on PC, PC cells were treated with AMD3100 or/and CXCR4 siRNA. The results suggested that inhibition of the SDF-1α/CXCR4 pathway could promote the E-cadherin level but inhibit the levels of invasion and migration of vimentin, N-cadherin and α5β1 integrin. Finally, tumor formation in nude mice was conducted, and the cell experiment results were verfied. These data show that AMD3100 suppresses epithelial–mesenchymal transition and migration of PC cells by inhibiting the SDF-1α/CXCR4 signaling pathway, which provides a clinical target in the treatment of PC.  相似文献   

15.
CXCR7 is an atypical chemokine receptor that signals through β-arrestin in response to agonists without detectable activation of heterotrimeric G-proteins. Its cognate chemokine ligand CXCL12 also binds CXCR4, a chemokine receptor of considerable clinical interest. Here we report that TC14012, a peptidomimetic inverse agonist of CXCR4, is an agonist on CXCR7. The potency of β-arrestin recruitment to CXCR7 by TC14012 is much higher than that of the previously reported CXCR4 antagonist AMD3100 and differs only by one log from that of the natural ligand CXCL12 (EC(50) 350 nM for TC14012, as compared with 30 nM for CXCL12 and 140 μM for AMD3100). Moreover, like CXCL12, TC14012 leads to Erk 1/2 activation in U373 glioma cells that express only CXCR7, but not CXCR4. Given that with TC14012 and AMD3100 two structurally unrelated CXCR4 antagonists turn out to be agonists on CXCR7, this likely reflects differences in the activation mechanism of the arrestin pathway by both receptors. To identify the receptor domain responsible for these opposed effects, we investigated CXCR4 and CXCR7 C terminus-swapping chimeras. Using quantitative bioluminescence resonance energy transfer, we find that the CXCR7 receptor core formed by the seven-transmembrane domains and the connecting loops determines the agonistic activity of both TC14012 and AMD3100. Moreover, we find that the CXCR7 chimera bearing the CXCR4 C-terminal constitutively associates with arrestin in the absence of ligands. Our data suggest that the CXCR4 and CXCR7 cores share ligand-binding surfaces for the binding of the synthetic ligands, indicating that CXCR4 inhibitors should be tested also on CXCR7.  相似文献   

16.
CXCL12 (stromal cell-derived factor 1) is a unique biological ligand for the chemokine receptor CXCR4. We previously reported that treatment with a specific CXCR4 antagonist, AMD3100, exerts a beneficial effect on the development of collagen-induced arthritis (CIA) in the highly susceptible IFN-γ receptor-deficient (IFN-γR KO) mouse. We concluded that CXCL12 plays a central role in the pathogenesis of CIA in IFN-γR KO mice by promoting delayed type hypersensitivity against the auto-antigen and by interfering with chemotaxis of CXCR4+ cells to the inflamed joints. Here, we investigated whether AMD3100 can likewise inhibit CIA in wild-type mice and analysed the underlying mechanism. Parenteral treatment with the drug at the time of onset of arthritis reduced disease incidence and modestly inhibited severity in affected mice. This beneficial effect was associated with reduced serum concentrations of IL-6. AMD3100 did not affect anti-collagen type II antibodies and, in contrast with its action in IFN-γR KO mice, did not inhibit the delayed type hypersensitivity response against collagen type II, suggesting that the beneficial effect cannot be explained by inhibition of humoral or cellular autoimmune responses. AMD3100 inhibited the in vitro chemotactic effect of CXCL12 on splenocytes, as well as in vivo leukocyte infiltration in CXCL12-containing subcutaneous air pouches. We also demonstrate that, in addition to its effect on cell infiltration, CXCL12 potentiates receptor activator of NF-κB ligand-induced osteoclast differentiation from splenocytes and increases the calcium phosphate-resorbing capacity of these osteoclasts, both processes being potently counteracted by AMD3100. Our observations indicate that CXCL12 acts as a pro-inflammatory factor in the pathogenesis of autoimmune arthritis by attracting inflammatory cells to joints and by stimulating the differentiation and activation of osteoclasts.  相似文献   

17.
The synthesis of bipharmacophore anti-HIV compounds which, in a single molecule, combine two ligands, that is, the bicyclam AMD3100 and a GalCer analogue, that might inhibit several steps of the complex virus/cell cascade interactions has been performed. The 'double-drug' Gal-AMD3100 conjugates elicited inhibitory effects on T (or X4)-tropic HIV-1 replication in all CXCR4 expressing cell lines with EC(50) values ranging from 0.25 to 6.0 microM which were however approximately 40- to 125-fold lower than that of AMD3100. Concerning the mechanism of inhibition of the Gal-AMD3100 conjugates, experiments performed with X4 or R5HIV-1 strains and GHOST cells genetically modified to express CD4 and CXCR4 or CCR5 indicated clearly that the conjugates interact with CXCR4 and not with CCR5.  相似文献   

18.
Autoimmune collagen-induced arthritis (CIA) in IFN-gammaR-deficient DBA/1 mice was shown to be reduced in severity by treatment with the bicyclam derivative AMD3100, a specific antagonist of the interaction between the chemokine stromal cell-derived factor-1 (SDF-1) and its receptor CXCR4. The beneficial effect of the CXCR4 antagonist was demonstrable when treatment was initiated between the time of immunization and appearance of the first symptoms. Treatment also reduced the delayed-type hypersensitivity response to the autoantigen, collagen type II. These observations are indicative of an action on a late event in the pathogenesis, such as chemokine-mediated attraction of leukocytes toward joint tissues. The notion of SDF-1 involvement was further supported by the observation that exogenous SDF-1 injected in periarthritic tissue elicited an inflammatory response that could be inhibited by AMD3100. The majority of leukocytes harvested from inflamed joints of mice with CIA were found to be Mac-1(+) and CXCR4(+), and AMD3100 was demonstrated to interfere specifically with chemotaxis and Ca(2+) mobilization induced in vitro by SDF-1 on Mac-1(+)/CXCR4(+) splenocytes. We conclude that SDF-1 plays a central role in the pathogenesis of murine CIA, by attracting Mac-1(+)/CXCR4(+) cells to the inflamed joints.  相似文献   

19.
Membrane cholesterol is required to maintain chemokine receptor conformation and function for CXCR4 and CCR5. We previously demonstrated that chemokines preferentially bind to receptors within lipid rafts, which are cholesterol- and sphingolipid-rich membrane microdomains. To further elucidate the role of cholesterol in chemokine receptor function, we examined the effects of membrane cholesterol oxidation by cholesterol oxidase (CO), which enzymatically converts cholesterol to 4-cholesten-3-one. Here, we demonstrate that CO treatment (0.25-2.0 U/ml) of human T cells inhibits CXCL12 (SDF-1alpha) and CCL4 (MIP-1beta) binding to cell surface CXCR4 and CCR5, respectively, resulting in the inhibition of chemokine-mediated intracellular calcium mobilization and chemotaxis. The effects were significantly enhanced by cotreatment with low-dose sphingomyelinase (SMase) (0.125 mU/ml), which produced little inhibitory effect by itself. CO and SMase treatment also inhibited HIV-1 infection through CXCR4, but not virus replication. Similar to the removal of membrane cholesterol, CO/SMase treatment induced conformation changes in the chemokine receptors as detected by differential loss in binding of epitope-specific monoclonal antibodies. We conclude that the native form of cholesterol with the hydroxyl group at C3 is critical to CXCR4 and CCR5 conformation and function.  相似文献   

20.
The interaction between stromal cell-derived factor-1 (SDF-1) with CXCR4 chemokine receptors plays an important role in hematopoiesis following hematopoietic stem cell transplantation. We examined the efficacy of post transplant administration of a specific CXCR4 antagonist (AMD3100) in improving animal survival and in enhancing donor hematopoietic cell engraftment using a congeneic mouse transplantation model. AMD3100 was administered subcutaneously at 5 mg/kg body weight 3 times a week beginning at day +2 post-transplant. Post-transplant administration of AMD3100 significantly improves animal survival. AMD3100 reduces pro-inflammatory cytokine/chemokine production. Furthermore, post transplant administration of AMD3100 selectively enhances donor cell engraftment and promotes recovery of all donor cell lineages (myeloid cells, T and B lymphocytes, erythrocytes and platelets). This enhancement results from a combined effect of increased marrow niche availability and greater cell division induced by AMD3100. Our studies shed new lights into the biological roles of SDF-1/CXCR4 interaction in hematopoietic stem cell engraftment following transplantation and in transplant-related mortality. Our results indicate that AMD3100 provides a novel approach for enhancing hematological recovery following transplantation, and will likely benefit patients undergoing transplantation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号