共查询到20条相似文献,搜索用时 0 毫秒
1.
From bovine brain an esterase was purified 2,600-fold in an overall yield of 5.6%. For the isolation ion-exchange chromatographies, gel filtration, and preparative isoelectric focusing were used. The molecular mass is 56 kDa after gel chromatography on Sephacryl S-200 and 51 kDa after HPLC, the pH-optimum at 7.4, and the isoelectric point in the range of pH 5.8-6.1, as estimated from preparative isoelectric focusing. The substrate specificity of this enzyme was tested with various naturally occurring O-acylated sialic acids, synthetic carbohydrate acetates, and other esters. Besides aromatic acetyl esters such as e.g. alpha-naphthyl acetate, the highest preference was for N-acetyl-9-O-acetylneuraminic acid, followed by N-acetyl-4-O-acetylneuraminic acid. Other primary acetyl esters such as 6-O-acetylated D-glucose and 2-acetamido-2-deoxy-D-mannose were not hydrolyzed. The 9-O-acetyl derivative of the naturally occurring unsaturated sialic acid 2-deoxy-2,3-didehydro-N-acetylneuraminic acid, however, is a substrate for this esterase. Whereas N-acetyl-9-O-acetylneuraminic acid as a component of sialyllactose is nearly as well hydrolyzed as the corresponding free sialic acid, O-acetylated sialoglycoconjugates with high molecular weights (mucins, serum glycoproteins, gangliosides) are not hydrolyzed by this esterase. N-Acetylated sialic acids are better substrates than the analogous N-glycoloyl derivatives. Esterification of the carboxyl function of sialic acids prevents the action of the esterase on the O-acetyl groups. The enzyme has no carboxyl esterase or amidase activity, and does not act on acetylcholine. It hydrolyzes almost exclusively acetyl esters. Inhibition studies suggest that it has a catalytically active serine residue.(ABSTRACT TRUNCATED AT 250 WORDS) 相似文献
2.
Partial purification and characterization of phosphotyrosyl-protein phosphatase(s) from human erythrocyte cytosol 总被引:4,自引:0,他引:4
G Clari A M Brunati V Moret 《Biochemical and biophysical research communications》1986,137(1):566-572
Phosphotyrosyl-protein phosphatase activity of human erythrocyte cytosol can be resolved into two fractions by DEAE-cellulose chromatography followed by P-cellulose chromatography. Both 32P-Tyr-phosphatases are able to dephosphorylate 32P-Tyr of poly (Glu-Tyr) 4:1 but not angiotensin II and synthetic peptide Asp-Ala-Glu-Tyr-Ala-Ala-Arg-Arg-Gly, previously phosphorylated on tyrosine residues by rat spleen tyrosine-protein kinase. Both 32P-Tyr-phosphatase activities distinctly differ from either 32P-Ser-casein phosphatase activity or "acid" and "alkaline" p-nitrophenylphosphatase activities with regard to catalytic and physico-chemical properties such as substrate specificity, chromatographic behaviour, response to various effectors. 相似文献
3.
The conversion of phosphoethanolamine to phosphocholine requires 3 separate N-methyltransferases. We had previously purified the enzyme catalyzing the last methylation, phosphodimethylethanolamine N-methyltransferase. We have successfully purified the enzyme catalyzing the initial methylation of phosphoethanolamine. A 434 fold purified enzyme from rat brain was obtained by the sequential use of ammonium sulfate fractionation, Q-Sepharose fast flow column chromatography and a -aminoethyl agarose column chromatography. The pH optimum was 11 or greater, the Km value for phosphoethanolamine was 167.8±41.7 M and the Vmax was 487.3±85 mmoles/mg/hr. The kinetics for S-adenosyl-methionine, the methyldonor, has characteristics of cooperative binding with a Km of 1.805±0.59 mM and a Vmax of 16.9±3.6 moles/mg/hr. The activity was stimulated 6 fold by 2.5 mM MnCl2 and inhibited by DZA and S-adenosylhomocysteine. These results reinforce the early in vivo observations which had provided suggestive evidence for the existence of a pathway for the methylation of phosphoethanolamine to phosphocholine in rat brain.Abbreviations used Adomet
S-adenosylmethionine
- AdoHcy
S-adenosyl-homocysteine
- CAPS
3-(cyclohexyl)amino-1-propanesulphonic acid
- Cho
choline
- 3-DZA
3-deazaadenosine
- Etn
ethanolamine
- N-MT
N-methyltransferase
- PEG
polyethyleneglycol
- PMSF
phenylmethanesulphonyl fluoride
- PEtn
phosphoethanolamine
- PCho
phosphocholine
- PMe2Etn
phosphodimethylethanolamine
- PtdCho
phosphatidylcholine
- PtdEtn
phosphatidylethanolamine 相似文献
4.
Long-chain acyl-CoA hydrolase (EC 3.1.2.2.) has been partially purified from the 100,000 × g supernatant fraction of rat brain tissue. The purification procedure included chromatography on gel filtration media, DEAE-cellulose, CM-cellulose, and hydroxyapatite. The partially purified enzyme had a specific activity of 7.1 mol/min-mg, and when analyzed by polyacrylamide gel electrophoresis, revealed one major and three minor bands of protein in the presence of dodecyl sulfate and two major bands of protein in the absence of dodecyl sulfate. The enzyme had a molecular weight of 65,000 and showed no evidence of aggregated or dissociated forms. The highest catalytic activity was exhibited with palmitoyl-CoA and oleoyl-CoA as substrates. Lower activity was found with decanoyl-CoA as the substrate and little or no activity was found with acetyl-CoA, malonyl-CoA, butyryl-CoA, or acetoacetyl-CoA. The enzyme was inhibited by CoA, various metal ions, including Mn2+, Mg2+ and Ca2+, and by bovine serum albumin. Heating the enzyme produced a loss of activity which corresponded to a first-order kinetic process, the rate of which was independent of the choice of substrate used to measure enzyme activity. This finding supports the idea that the purification procedure yields a single species of long-chain acyl-CoA hydrolase. 相似文献
5.
Purification of Phosphatidylinositol (PI) kinase was attempted from bovine brain. A seven step purification protocol increased the specific activity 100×but attempts at further purification were unsuccessful. Labeling of the partially purified PI kinase with the ATP analog fluorosulfonylbenzoyl adenosine reproducibly identified three bands on polyacrylamide gel electrophoresis of 76 K, 45 K, and 29 K, one of which likely represents PI kinase. Kinetic studies showed aK
m of 17 M for ATP, 0.02 mg/ml for PI and aV
m of 1830 pmol/min/mg protein for ATP and 820 pmol/min/mg protein for PI. 相似文献
6.
Purification and characterization from bovine brain cytosol of proteins that regulate the GDP/GTP exchange reaction of smg p21s, ras p21-like GTP-binding proteins 总被引:16,自引:0,他引:16
T Yamamoto K Kaibuchi T Mizuno M Hiroyoshi H Shirataki Y Takai 《The Journal of biological chemistry》1990,265(27):16626-16634
Novel regulatory proteins for smg p21A and -B, ras p21-like GTP-binding proteins (G proteins) having the same putative effector domain as ras p21s, were purified to near homogeneity from bovine brain cytosol and characterized. These regulatory proteins, designated as GDP dissociation stimulator (GDS) 1 and -2, stimulated the dissociation of both [3H]GDP and [35S] guanosine 5'-(3-O-thio)triphosphate (GTP gamma S) from smg p21s to the same extent. smg p21 GDS1 and -2 also stimulated the binding of [35S]GTP gamma S to the GDP-bound form of smg p21s but not that to the guanine nucleotide-free form. These actions of smg p21 GDS1 and -2 were specific for smg p21s and inactive for other ras p21/ras p21-like G proteins including c-Ha-ras p21, rhoB p20, and smg p25A. Neither smg p21 GDS1 nor -2 stimulated the GTPase activity of smg p21s and by itself showed [35S]GTP gamma S-binding or GTPase activity. smg p21 GDS1 and -2 showed very similar physical and kinetic properties and were indistinguishable by peptide map analysis. The Mr values of smg p21 GDS1 and -2 were estimated to be about 53,000 by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and from the S values, indicating that smg p21 GDS1 and -2 are composed of a single polypeptide without a subunit structure. smg p21 GDS1 and -2 were distinguishable from GTPase activating proteins (GAPs) for the ras and rho proteins, and smg p21B, and GDP dissociation inhibitors for smg p25A and the rho proteins previously identified in bovine brain cytosol. These results indicate that bovine brain contains regulatory proteins for smg p21s that stimulate the dissociation of GDP from and thereby the subsequent binding of GTP to smg p21s in addition to smg p21 GAP. It is likely that the conversion from the GDP-bound inactive form of smg p21s to the GTP-bound active form is regulated by smg p21 GDS and that its reverse reaction is regulated by smg p21 GAP. 相似文献
7.
A triacyglycerol lipase (EC 3.1.1.3) was purifiec about 60-fold from rat liver cytosol by delipidation with acetone and ethyl ether, hydroxyapatitie and Sephadex G-100 column chromatographies and isoelectrofocusing electrophoresis. The partially purified enzyme had a molecular weight of approximately 42 000 and an isolectric point of 7.2. The Km for trioleylglycerol was 0.33 mM and the pH optimum was around 8.0. The activity of the enzyme was not dependent on serum lipoproteins, but was stimulated about 2-fold by several proteins such as serum albumin, lipoproteins, gamma-globulin and ovalbumin. The lipase hydrolyzed trioleyglycerol to oleic acid and glycerol. NaCl had no effect on the enzymatic activity. Some physical and kinetic properties of the partially purified lipid-free lipase were different from those of crude non-delipidated lipase and also from those of a neutral triacylglycerol lipase which was recently purified partially from pig liver cytosol (Ledford, J.H. and Alaupovic, P. (1975) Biochim. Biophys. Acta 398, 132-148). 相似文献
8.
Guanine nucleotide dissociation stimulator (GDS) promotes the release of tightly bound GDP from various Ras superfamily proteins, including RhoA, Rac1, K-Ras, Rap1A, and Rap1B. It displays no significant sequence homology to other known exchange factors for small G-proteins. Studies are reported here of the mechanism of GDS-mediated nucleotide release from RhoA using a combination of equilibrium and stopped-flow kinetic measurements, employing fluorescent N-methylanthraniloyl (mant) derivatives of GDP and 2'-deoxyGDP. It is proposed that GDS operates by an associative displacement mechanism where stimulated nucleotide release from the Rho.mantGDP complex occurs via a transiently populated ternary complex (Rho.GDS.mantGDP). In kinetic experiments where excess GDS was mixed with the Rho.mantGDP complex, stimulated mantGDP dissociation rates of 1 s(-)(1) were measured during a single turnover, representing a 5000-fold enhancement over the intrinsic rate of mantGDP dissociation from Rho. The stable, nucleotide-free binary complex Rho.GDS was isolated. When the Rho.GDS complex was mixed with excess mantGDP, a biphasic increase in fluorescence occurred, the observed rate constants of which both reached saturating values at high mantGDP concentrations. This is compelling evidence that an isomerization of the Rho.GDS.mantGDP ternary complex is an important feature of the mechanism of nucleotide release. 相似文献
9.
10.
Farmery MR Tjernberg LO Pursglove SE Bergman A Winblad B Näslund J 《The Journal of biological chemistry》2003,278(27):24277-24284
One characteristic feature of Alzheimer's disease is the deposition of amyloid beta-peptide (Abeta) as amyloid plaques within specific regions of the human brain. Abeta is derived from the amyloid beta-peptide precursor protein (beta-APP) by the intramembranous cleavage activity of gamma-secretase. Studies in cells have revealed that gamma-secretase is a large multimeric membrane-bound protein complex that is functionally dependent on several proteins, including presenilin, nicastrin, Aph-1, and Pen-2. However, the precise biochemical and molecular nature of gamma-secretase is as yet to be fully elucidated, and no investigations have analyzed gamma-secretase in human brain. To address this we have developed a novel in vitro gamma-secretase activity assay using detergent-solubilized cell membranes and a beta-APP-derived fluorescent probe. We report that human brain-derived gamma-secretase activity co-purifies with a high molecular weight protein complex comprising presenilin, nicastrin, Aph-1, and Pen-2. The inhibitor profile and solubility characteristics of brain-derived gamma-secretase are similar to those described in cells, and proteolysis occurs at the Abeta40- and Abeta42-generating cleavage sites. The ability to isolate gamma-secretase from post-mortem human brain may facilitate the identification of brain-specific modulators of beta-APP processing and provide new insights into the biology of this important factor in the pathogenesis of Alzheimer's disease. 相似文献
11.
Outer dynein arm polypeptides that possess Mg+2-adenosine triphosphatase (ATPase) activity have been extracted from the flagellar axonemes of demembranated bovine sperm. Electron microscopy of intact and salt-extracted sperm demonstrates a relatively selective removal of the outer dynein arms. The salt extract contains a specific ATPase activity of 55 nmoles inorganic phosphate (Pi)/min/mg protein. Sucrose density gradient centrifugation of this extract results in a 6-fold increase in specific activity of ATPase (333 nmole/Pi/min/mg protein), which sediments as a single 13S peak. Concomitant with the increase in specific activity, there is enrichment of three high molecular weight polypeptides (Mr greater than 300,000) characteristic of dynein heavy chains. ATPase activities in the initial extract and in the 13S peak are inhibited by concentrations of vanadate and erythro-9-[3-2-(hydroxynonyl)]adenine similar to those that inhibit ATPase activity in sea urchin sperm dynein. These findings indicate that outer arm dynein ATPase can be extracted and partially purified from bovine sperm. 相似文献
12.
E C Nice L Fabri A Hammacher J Holden R J Simpson A W Burgess 《The Journal of biological chemistry》1992,267(3):1546-1553
Two GTPase-activating proteins (GAPs) have been detected in extracts from bovine brain: GAP-1, which is specific for the activation of ras GTPases, and GAP-3, which is specific for the activation of the rap1 GTPases. We present a strategy for the purification to homogeneity of a cytosolic form of GAP-3 from bovine brain. The 100,000 x g supernatant from homogenized brains was chromatographed sequentially on DEAE Fast Flow, green H-E4BD Sepharose, Bio-Gel A1.5, hydroxyapatite, and phenyl-Sepharose prior to high resolution separation on Mono Q HR 5/5, phenyl-Superose HR 5/5, Mono Q PC 1.6/5, and Superose 12 PC 3.2/30. This procedure resulted in an approximately 18,000-fold purification, yielding 50 micrograms of GAP-3 from 1.6 kg of tissue. Purified cytosolic GAP-3 migrated as a single band of apparent Mr 55,000 on sodium dodecyl sulfate-polyacrylamide gel electrophoresis. However, on gel filtration cytosolic GAP-3 chromatographed as a dimer with an apparent Mr 92,000. Purified GAP-3 does not activate ras or rho GTPases and possesses no intrinsic GTPase activity. Amino acid sequence data indicated a proline-rich N terminus. The amino acid sequences of peptides generated by Staphylococcus aureus V8 digestion of reduced and pyridine-ethylated GAP-3 showed no similarity to the predicted primary structure of GAP-1 or any other proteins in the nucleic acid or protein data bases. By comparison with the data of Rubinfeld et al. (Rubinfeld, B., Munemitsu, S., Clark, R., Conroy, L., Watt, K., Crosier, W.J., McCormick, F., and Polakis, P. (1991) Cell 65, 1033-1042), it appears that the membrane-associated (Mr 85,000-95,000) and cytosolic forms of GAP-3 are derived from equivalent, or closely related, genes. 相似文献
13.
A highly active phosphate transporter was extracted with octylglucoside from bovine heart submitochondrial particles that were first partially depleted of other membrane components. It was then partially purified by ammonium sulfate fractionation. After reconstitution of the transporter into liposomes prepared with a crude mixture of soybean phospholipids, the Pi/OH exchange, but not the Pi/Pi exchange, was stimulated three- to fourfold by valinomycin and nigericin in the presence of K+. Both Pi/OH and Pi/Pi exchange activities were sensitive to mercurials and other SH reagents. The rutamycin-sensitive ATPase complex from mitochondria was reconstituted together with the phosphate transporter and adenine nucleotide transporter into liposomes. After inhibition of externally located ATPase, the hydrolysis of ATP was sensitive to atractyloside and mersalyl. 相似文献
14.
The small GTP-binding proteins in the cytosol of insulin-secreting cells are complexed to GDP dissociation inhibitor proteins. 总被引:12,自引:0,他引:12
R Regazzi A Kikuchi Y Takai C B Wollheim 《The Journal of biological chemistry》1992,267(25):17512-17519
Ras-related small GTP-binding proteins (SMGs) exist in a cytosolic and a membrane-bound pool. The mechanism regulating the intracellular distribution of SMGs remains to be elucidated. We have, therefore, investigated the properties of SMGs expressed in cells of the insulin-secreting lines RINm5F and HIT-T15. Phase-partitioning analysis revealed that smg25A/rab3A as well as all the SMGs in the 23-27 kDa range, labeled by radioactive GTP after blotting, were hydrophobic, regardless of their subcellular distribution. In contrast, the cytosolic forms of ADP ribosylation factor, rho, and CDC42 were hydrophilic. The cytosolic pool of the 23-27-kDa group, including smg25A/rab3A, sedimented in a sucrose density gradient as complexes with an apparent M(r) of about 80,000, whereas rho and CDC42 were recovered in 45-kDa complexes. ARF, however, was uncomplexed (M(r) close to 20,000). The 80-kDa aggregates were likely to be formed by 1:1 complexes with the regulatory protein smg25/GDP dissociation inhibitor (smg25/GDI). In fact, pure smg25/GDI by sucrose gradient exhibited a molecular mass of 55 kDa, but cosedimented with the 80-kDa complexes in cytosolic extracts of insulin-secreting cells. Moreover, purified smg25/GDI was able to extract the SMGs of the 23-27-kDa group from the membranes. Similarly, in cytosolic extracts, rho/GDI cosedimented with the 45-kDa aggregates. Blocking the synthesis of isoprenoid groups with lovastatin resulted in the appearance in the cytosol of SMGs that were hydrophilic. These SMGs were found to sediment with an apparent M(r) close to 25,000 and to be unable to form complexes with smg25/GDI. Lovastatin treatment also caused the accumulation of the noncomplexed form of CDC42 but not of rho proteins. We propose that 1) except for ARF, all the SMGs detected in the cytosol of insulin-secreting cells are associated in 1:1 complexes with their regulatory proteins; 2) the different SMGs can be subdivided into functional groups according to the regulatory protein bound to them; 3) the formation of the 80-kDa complexes with smg25/GDI and of the CDC42 complexes with rho/GDI necessitate the correct carboxyl-terminal post-translational modification of the SMGs. 相似文献
15.
Rho GDP dissociation inhibitors (rhoGDIs) are postulated to regulate the activity of small G proteins of the Rho family by a shuttling process involving the extraction of Rho from donor membranes, the formation of the inhibitory cytosolic Rho/rhoGDI complexes, and delivery of Rho to target membranes. However, the role of rhoGDIs in site-specific membrane targeting or extraction of Rho is still poorly understood. Here we investigated the molecular functions of two rhoGDIs, the specific rhoGDI-3 and the less specific but well studied rhoGDI-1, in HeLa cells using structure-based mutagenesis of the rhoGDI protein. We identified two sites in rhoGDI, which form conserved interactions with their Rho target, whose mutation results in the uncoupling of inhibitory and shuttling functions of rhoGDIs: D66GDI-3 (equivalent to D45GDI-1), a conserved residue in the helix-loop-helixGDI/switch 1Rho interface, and D206GDI-3 (equivalent to D185GDI-1) in the beta-sandwichGDI/switch 2Rho interface. Mutations of both sites result in the loss of rhoGDI-3 or rhoGDI-1 inhibitory activity but not of their ability to form cytosolic complexes with RhoG or Cdc42 in vivo. Remarkably, the mutants were detected at Rho-induced membrane ruffles or protrusions where they co-localized with RhoG or Cdc42, likely identifying for the first time the site of extraction of a Rho protein by a rhoGDI in vivo. We propose that these mutations act by modifying the steady-state kinetics of the shuttling process regulated by rhoGDIs, such that transient steps at the cell membranes now become detectable. They should provide valuable tools for future investigations of the dynamics of membrane extraction or delivery of Rho proteins and their regulation by cellular partners. 相似文献
16.
We previously reported that intact epididymal spermatozoa from bulls and hamsters oxidize [1-14C]acetyl-L-carnitine to 14CO2 at about the same rate as they oxidize [1-14C]acetate. In addition, we showed that acetylcarnitine is hydrolyzed by a hydrolase present in the plasma membrane and that the carnitine moiety does not enter the cell. Here we report the partial purification of the acetylcarnitine hydrolase from bovine spermatozoa and describe some of its properties. The detergent-extracted enzyme was purified by FPLC using an anion-exchange Mono-Q column. The hydrolase activity eluted from the column with the application of 0.22 to 0.30 M NaCl and was separated from acetylcholinesterase activity, which eluted with 0.35 to 0.40 M NaCl. Specific inhibitors of acetylcholinesterase had little effect on acetylcarnitine hydrolase but p-hydroxymercuriphenylsulfonate was a potent inhibitor of the hydrolase. Kinetic studies of the hydrolase yielded a K'm of 6-10 mM for acetylcarnitine and a V'max of 0.16 nmol min-1 mg protein-1. Similar studies with the acetylcholinesterase yielded a K'm for acetylcholine of about 300 microM and a V'max of 165 nmol min-1 mg protein-1. Acetylcarnitine was a poor substrate for the acetylcholinesterase. Several acyl-L-carnitines were tested as substrates for the hydrolase and the preferred substrate was acetylcarnitine. The role of acetylcarnitine hydrolase in the metabolism of acetylcarnitine by epididymal spermatozoa is discussed. 相似文献
17.
18.
Abstract— The activity of NADPH-linked aldehyde reductase (EC 1.1.1.2) in various regions of monkey brain was determined in vitro. The highest specific activity of the enzyme was found in areas of the brain stem; including the pons, medulla and midbrain. A greater than 500-fold purification of the monkey brain enzyme was obtained by a combination of ammonium sulphate fractionation and subsequent chromatography on calcium phosphate gel cellulose and DEAE-cellulose. The aldehyde metabolites of the biogenic amines, norepinephrine, serotonin, dopamine and octopamine, were readily reduced by the NADPH-linked aldehyde reductase. The Km values for 3,4-dihydroxyphenylglycolaldehyde, 3,4-dihydroxyphenyl-acetaldehyde, and 5-hydroxyindoleacetaldehyde were 12.0 μm , 6.1 μm and 27 μm , respectively. The maximum velocity (Vmax) for 3,4-dihydroxyphenylglycolaldehyde was, respectively, five-fold or three-fold greater than that determined for 3,4-dihydroxyphenylacetaldehyde or 5-hydroxyindoleacetaldehyde. The highly purified enzyme derived from monkey brain was markedly inhibited by barbiturates, diphenylhydantoin, and chlorpromazine, but not by pyrazole. From data obtained by sucrose density gradient centrifugation and Sephadex chromatography the molecular weight of aldehyde reductase was determined to be about 70,000 daltons. 相似文献
19.
R S Gronke D J Welsch W J VanDusen V M Garsky M K Sardana A M Stern P A Friedman 《The Journal of biological chemistry》1990,265(15):8558-8565
In vitro hydroxylation of aspartic acid has recently been demonstrated in a synthetic peptide based on the structure of the first epidermal growth factor domain in human factor IX (Gronke, R. S., VanDusen, W. J., Garsky, V. M., Jacobs, J. W., Sardana, M. K., Stern, A. M., and Friedman, P. A. (1989) Proc. Natl. Acad. Sci. U.S.A. 86, 3609-3613). The putative enzyme responsible for the posttranslational modification, aspartyl beta-hydroxylase, has been shown to be a member of a class of 2-ketoglutarate-dependent dioxygenases, which include prolyl-4- and lysyl-hydroxylases. In the present study, we describe the solubilization with nonionic detergent of the enzyme from bovine liver microsomes and its purification using DEAE-cellulose followed by heparin-Sepharose. No additional detergent was required during purification. The partially purified enzyme preparation was found to contain no prolyl-4- or lysyl-hydroxylase activity. Using a synthetic peptide based on the structure of the epidermal growth factor-like region in human factor X as substrate, the apparent Km values for iron and alpha-ketoglutarate were 3 and 5 microM, respectively. The enzyme hydroxylated the factor X peptide with the same stereospecificity (erythro beta-hydroxyaspartic acid) and occurred only at the aspartate corresponding to the position seen in vivo. Furthermore, the extent to which either peptide (factor IX or X) was hydroxylated reflected the extent of hydroxylation observed for both human plasma factors IX and X. 相似文献
20.
Abstract— Sorbitol dehydrogenase (EC 1.1.1.14) was isolated and purified 700-fold from rat brain. Most substrate specificities and properties are similar to those reported for sorbitol dehydrogenase from other mammalian tissues; however, the substrate specificity of this brain enzyme does not conform to the d -cis 2,4 dihydroxy configuration. The physiological substrate for sorbitol dehydrogenase is probably sorbitol. The isolation of sorbitol dehydrogenase from rat brain tissue is confirmation that (1) all the constituents of the sorbitol (polyol) pathway are present in the brain and that (2) fructose synthesis from glucose in this tissue proceeds via the intermediate formation of sorbitol. 相似文献