首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
2.
3.
4.
5.
6.
7.
8.
9.
During the late phase of simian virus 40 infections of CV1 cells, the relative ratios of the spliced to the unspliced RNA molecules of the 19S family were measured. In the cytoplasm, unspliced 19S RNA represented between 1 and 2% of spliced 19S RNA. This ratio could be altered by the use of different methods of RNA extraction such that unspliced RNA was observed at 10 to 20% of spliced RNA. The nuclear ratios of spliced to unspliced 19S RNA were also determined. In contrast to cytoplasmic RNA, nuclear unspliced RNA was several hundred percent that of nuclear spliced 19S RNA. Cytoplasmic unspliced 19S RNA appears to be of nuclear origin, and its presence in the cytoplasmic fraction is due to nuclear leakage during RNA fractionation.  相似文献   

10.
《Seminars in Virology》1997,8(3):194-204
The RNA genomes of simple retroviruses encode three genes (gag, pol,andenv) which are required for replication. In addition, there are at least three well-definedcis-acting structures which regulate important aspects of the viral life cycle. The packaging signal at the 5′ end of the RNA tags the genomic RNA for specific encapsidation into assembling virus. Since viral Env proteins are translated from spliced mRNAs,cis-acting splicing signals ensure that the proper ratio of spliced and unspliced viral RNAs is present in the infected cell. Finally,cis-acting elements at the 3′ end of the genome promote the export of unspliced RNAs from the nucleus for translation and encapsidation.  相似文献   

11.
12.
A splice hepadnavirus RNA that is essential for virus replication.   总被引:4,自引:0,他引:4       下载免费PDF全文
According to the current model of hepadnavirus gene expression, the viral envelope proteins are produced from unspliced subgenomic RNAs, in contrast to the retroviral mechanism, where the subgenomic env RNA is generated by RNA splicing. We now describe and characterize a novel duck hepatitis B virus RNA species which is derived from the RNA pregenome by loss of a 1.15 kb intron. This RNA (termed spliced L RNA) codes for the large surface protein (L protein), as does the previously described unspliced mRNA (the preS RNA); however, it differs in 5' leader sequence and promoter control. Mutational analysis indicates that the spliced L RNA is functionally important for virus replication in infected hepatocytes and ducks, but not for virus formation from transfected DNA genomes. This suggests that the newly discovered second pathway for L protein synthesis plays a distinct role in an early step in the viral life cycle.  相似文献   

13.
14.
Localization of HIV-1 RNA in mammalian nuclei   总被引:1,自引:0,他引:1       下载免费PDF全文
  相似文献   

15.
During retroviral replication, full-length viral RNAs are encapsidated into new virus particles, while spliced RNAs are excluded. The Retroviridae are unique among viruses in that infectious viral particles contain a dimer of two identical genomic RNA strands. A variety of experimental data has suggested that dimerization and encapsidation of full-length viral RNAs are linked processes, although whether dimerization is a prerequisite for encapsidation, or conversely, dimerization follows encapsidation, has not been firmly established. If dimerization was the sole determinant for encapsidation, then spliced viral RNAs might be expected to display a reduced capacity for dimerization, resulting in their exclusion from the dimerization pool. Here, we studied the in vitro dimerization properties of unspliced and spliced HIV-2 RNA. We find that the rate and yield of dimerization of Nef, Rev and Tat spliced RNAs exceeded those of unspliced RNA. Although these data do not support a simple correlation between dimerization efficiency and the presence of introns, they establish that splicing affects the presentation of dimerization signal(s), which we corroborate with structure probing. This change in RNA conformation likely affects the RNA's suitability for packaging. Furthermore, the presence of upstream and downstream elements that affect the conformation of the packaging signal represents a potentially efficient viral strategy for correctly sorting spliced versus unspliced RNAs.  相似文献   

16.
HIV-1 particles contain RNA species other than the unspliced viral RNA genome. For instance, viral spliced RNAs and host 7SL and U6 RNAs are natural components that are non-randomly incorporated. To understand the mechanism of packaging selectivity, we analyzed the content of a large panel of HIV-1 variants mutated either in the 5'UTR structures of the viral RNA or in the Gag-nucleocapsid protein (GagNC). In parallel, we determined whether the selection of host 7SL and U6 RNAs is dependent or not on viral RNA and/or GagNC. Our results reveal that the polyA hairpin in the 5'UTR is a major packaging determinant for both spliced and unspliced viral RNAs. In contrast, 5'UTR RNA structures have little influence on the U6 and 7SL RNAs, indicating that packaging of these host RNAs is independent of viral RNA packaging. Experiments with GagNC mutants indicated that the two zinc-fingers and N-terminal basic residues restrict the incorporation of the spliced RNAs, while favoring unspliced RNA packaging. GagNC through the zinc-finger motifs also restricts the packaging of 7SL and U6 RNAs. Thus, GagNC is a major contributor to the packaging selectivity. Altogether our results provide new molecular insight on how HIV selects distinct RNA species for incorporation into particles.  相似文献   

17.
Polyoma virus late RNA processing provides a convenient model system in which to study the mechanics of splicing in vivo. In order to understand further the role of the untranslated "late leader" unit in late RNA processing we have constructed a group of polyoma viruses with deletions and substitutions in the leader exon. This has allowed us to determine that there is a minimum exon size required for both pre-mRNA splicing and stability in this system. We show here that the non-viability of a mutant (ALM) with a 9 base late leader unit is due to a general defect in late RNA splicing. In addition, ALM-infected cells show at least 40-fold depression in the accumulation of late nuclear RNA (spliced or unspliced). The ALM late promoter, however, functions nearly normally. Substituted leader variants with 51- to 96-base long exons of unrelated sequence are viable (G. Adami and G. Carmichael, J. Virol. 58, 417-425, 1986). We show here that late RNA from one of these substituted leader mutants (containing a 51-base leader exon) is spliced at wild type levels, with virtually no defect in accumulation. Thus, in the polyoma system, splice sites separated by only 9 bases can inhibit each others usage, presumably by steric interference. We suggest that this type of inhibition leads to extreme RNA instability.  相似文献   

18.
Requirement of DDX3 DEAD box RNA helicase for HIV-1 Rev-RRE export function   总被引:12,自引:0,他引:12  
Yedavalli VS  Neuveut C  Chi YH  Kleiman L  Jeang KT 《Cell》2004,119(3):381-392
  相似文献   

19.
20.
Kaye JF  Lever AM 《Journal of virology》1999,73(4):3023-3031
Retroviral RNA encapsidation is a highly selective process mediated through recognition by the viral Gag proteins of cis-acting RNA packaging signals in genomic RNA. This RNA species is also translated, producing the viral gag gene products. The relationship between these processes is poorly understood. Unlike that of human immunodeficiency virus type 1 (HIV-1), the dominant packaging signal of HIV-2 is upstream of the major splice donor and present in both unspliced and spliced viral RNAs, necessitating additional mechanisms for preferential packaging of unspliced genomic RNA. Encapsidation studies of a series of HIV-2-based vectors showed efficient packaging of viral genomes only if the unspliced, encapsidated RNA expressed full-length Gag protein, including functional nucleocapsid. We propose a novel encapsidation initiation mechanism, providing selectivity, in which unspliced HIV-2 RNA is captured in cis by the Gag protein. This has implications for the use of HIV-2 and other lentiviruses as vectors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号