首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
发热伴血小板减少综合征布尼亚病毒(SFTSV)是我国2010年新发现的新布尼亚病毒,可导致人类严重发热伴血小板减少综合征。SFTS新布尼亚病毒全基因组已解析,但病毒分子生物学结构蛋白特征及功能尚需更多研究。本文通过蔗糖密度梯度离心确定发热伴血小板减少综合征布尼亚病毒(HB29株)病毒颗粒的沉降密度及超离纯化条件,得出该病毒颗粒在蔗糖中的沉降密度为1.135g/mL。利用PCR方法扩增SFTSV病毒株HB29株病毒RNA聚合酶(RdRp)、糖蛋白前体蛋白(M)、包膜糖蛋白(Gn)、包膜糖蛋白(Gc)、核蛋白(NP)及非结构蛋白(NSs)的编码区基因片段,分别克隆入真核表达载体pcDNA5/FRT或VR1012,在293T细胞上获得上述基因表达。通过SDS-PAGE分析纯化病毒颗粒和重组蛋白,并通过免疫印迹(Western blotting)和间接免疫荧光(IFA)确定蛋白活性和分子量。本研究结果将有利于对新布尼亚病毒分子生物学特征的认识,为后期研究提供基础。  相似文献   

3.
发热伴血小板减少综合征布尼亚病毒(SFTSV)是我国新发现的一种布尼亚病毒,可引起人类严重发热伴血小板减少综合征。我们利用RNA聚合酶Ⅰ体系,分别构建SFTSV三个片段L、M、S微复制子,研究其非编码区调控功能。将报告基因绿色荧光蛋白(GFP)或荧光素酶(Luciferase)分别插入SFTSV三个片段5′和3′非编码区之间,所形成的嵌合cDNA反向插入含RNA聚合酶I的表达载体pHH21中,获得SFTSV微复制子重组质粒L-GFP-pHH21、M-GFP-pHH21、S-GFP-pHH21、L-Luc-pHH21、M-Luc-pHH21和S-Luc-pHH21,分别与成功表达SFTSV聚合酶蛋白(L蛋白)和结构蛋白(N蛋白)的质粒VR1012-L和VR-1012-NP共同转染293T细胞,24~48h后观察GFP表达情况或检测萤光素酶表达量。L、M、S片段GFP微复制子均可观察到特异性绿色荧光。荧光素酶定量结果显示其在不同节段非编码区中的表达量不同,提示SFTSV三个节段的非编码区启动微复制子转录和复制的强度不同。  相似文献   

4.
5.
Severe fever with thrombocytopenia syndrome virus (SFTSV) is a novel phlebovirus in the Bunyaviridae family. Most patients infected by SFTSV present with fever and thrombocytopenia, and up to 30% die due to multiple-organ dysfunction. The mechanisms by which SFTSV enters multiple cell types are unknown. SFTSV contains two species of envelope glycoproteins, Gn (44.2 kDa) and Gc (56 kDa), both of which are encoded by the M segment and are cleaved from a precursor polypeptide (about 116 kDa) in the endoplasmic reticulum (ER). Gn fused with an immunoglobulin Fc tag at its C terminus (Gn-Fc) bound to multiple cells susceptible to the infection of SFTSV and blocked viral infection of human umbilical vein endothelial cells (HUVECs). Immunoprecipitation assays following mass spectrometry analysis showed that Gn binds to nonmuscle myosin heavy chain IIA (NMMHC-IIA), a cellular protein with surface expression in multiple cell types. Small interfering RNA (siRNA) knockdown of NMMHC-IIA, but not the closely related NMMHC-IIB or NMMHC-IIC, reduced SFTSV infection, and NMMHC-IIA specific antibody blocked infection by SFTSV but not other control viruses. Overexpression of NMMHC-IIA in HeLa cells, which show limited susceptivity to SFTSV, markedly enhanced SFTSV infection of the cells. These results show that NMMHC-IIA is critical for the cellular entry of SFTSV. As NMMHC-IIA is essential for the normal functions of platelets and human vascular endothelial cells, it is conceivable that NMMHC-IIA directly contributes to the pathogenesis of SFTSV and may be a useful target for antiviral interventions against the viral infection.  相似文献   

6.
Severe fever with thrombocytopenia syndrome virus(SFTSV) is a highly pathogenic tick-borne bunyavirus that causes lethal infectious disease and severe fever with thrombocytopenia syndrome(SFTS) in humans. The molecular mechanisms and host cellular factors required for SFTSV infection remain uncharacterized. Using a genome-wide CRISPR-based screening strategy, we identified a host cellular protein, sorting nexin 11(SNX11) which is involved in the intracellular endosomal trafficking pathway, as an essential cell factor for SFTSV infection. An SNX11-KO HeLa cell line was established, and SFTSV replication was significantly reduced. The glycoproteins of SFTSV were detected and remained in later endosomal compartments but were not detectable in the endoplasmic reticulum(ER) or Golgi apparatus. pH values in the endosomal compartments of the SNX11-KO cells increased compared with the pH of normal HeLa cells, and lysosomal-associated membrane protein 1(LAMP1) expression was significantly elevated in the SNX11-KO cells. Overall,these results indicated that penetration of SFTSV from the endolysosomes into the cytoplasm of host cells was blocked in the cells lacking SNX11. Our study for the first time provides insight into the important role of the SNX11 as an essential host factor in the intracellular trafficking and penetrating process of SFTSV infection via potential regulation of viral protein sorting, membrane fusion, and other endocytic machinery.  相似文献   

7.
The influenza viruses contain a segmented, negative strand RNA genome. Each RNA segment is covered by multiple copies of the nucleoprotein (NP) and is associated with the polymerase complex into ribonucleoprotein (RNP) particles. Despite its importance in the virus life cycle, the interactions between the NP and the genome are not well understood. Here, we studied the assembly process of NP-RNA oligomers and analyzed how the oligomeric/monomeric status of RNA-free NP affects RNA binding and oligomerization. Recombinant wild-type NP purified in low salt concentrations and a derived mutant engineered for oligomerization deficiency (R416A) were mainly monomeric in RNA-free solutions as shown by biochemical and electron microscopy techniques. NP monomer formed with RNA a fast 1/1 complex characterized by surface plasmon resonance. In a subsequent and slow process that depended on the RNA length, oligomerization of NP was mediated by RNA binding. In contrast, preparations of wild-type NP purified in high salt concentrations as well as mutant Y148A engineered for deficiency in nucleic acid binding were partly or totally oligomeric in RNA-free solutions. These trimer/tetramer NP oligomers bind directly as oligomers to RNA with a higher affinity than that of the monomers. Both oligomerization routes we characterized could be exploited by cellular or viral factors to modulate or control viral RNA encapsidation by NP.  相似文献   

8.
The influenza virus RNA-dependent RNA polymerase is capable of initiating replication but mainly catalyzes abortive RNA synthesis in the absence of viral and host regulatory factors. Previously, we reported that IREF-1/minichromosome maintenance (MCM) complex stimulates a de novo initiated replication reaction by stabilizing an initiated replication complex through scaffolding between the viral polymerase and nascent cRNA to which MCM binds. In addition, several lines of genetic and biochemical evidence suggest that viral nucleoprotein (NP) is involved in successful replication. Here, using cell-free systems, we have shown the precise stimulatory mechanism of virus genome replication by NP. Stepwise cell-free replication reactions revealed that exogenously added NP free of RNA activates the viral polymerase during promoter escape while it is incapable of encapsidating the nascent cRNA. However, we found that a previously identified cellular protein, RAF-2p48/NPI-5/UAP56, facilitates replication reaction-coupled encapsidation as an NP molecular chaperone. These findings demonstrate that replication of the virus genome is followed by its encapsidation by NP in collaboration with its chaperone.  相似文献   

9.
Severe fever with thrombocytopenia syndrome phlebovirus(SFTSV) has a wide host range. Not only has it been found in humans, but also in many wild and domesticated animals. The infection of breeding deer on farms is a particularly worrisome public health concern due to the large amount of human contact and the diverse use of deer products, including raw blood. To investigate the prevalence of breeding domesticated deer, we examined the SFTSV infection rate on deer farms in South Korea from 2015 to 2017. Of the 215 collected blood samples, 0.9%(2/215) were found to be positive for viral RNA by PCR, and sequence analysis showed the highest homology with the KADGH human isolate. Both SFTSVspecific recombinant N and Gn protein-based ELISAs revealed that 14.0%(30/215) and 7.9%(17/215) of collected blood specimens were positive for SFTSV antibody. These results demonstrate that the breeding farm deer are exposed to SFTSV and could be a potential infection source for humans through direct contact or consumption of byproducts.  相似文献   

10.

Background

Severe fever with thrombocytopenia syndrome virus (SFTSV), the causative agent for the fatal life-threatening infectious disease, severe fever with thrombocytopenia syndrome (SFTS), was first identified in the central and eastern regions of China. Although the viral RNA was detected in free-living and parasitic ticks, the vector for SFTSV remains unsettled.

Methodology/Principal Findings

Firstly, an experimental infection study in goats was conducted in a bio-safety level-2 (BSL-2) facility to investigate virus transmission between animals. The results showed that infected animals did not shed virus to the outside through respiratory or digestive tract route, and the control animals did not get infected. Then, a natural infection study was carried out in the SFTSV endemic region. A cohort of naïve goats was used as sentinel animals in the study site. A variety of daily samples including goat sera, ticks and mosquitoes were collected for viral RNA and antibody (from serum only) detection, and virus isolation. We detected viral RNA from free-living and parasitic ticks rather than mosquitoes, and from goats after ticks’ infestation. We also observed sero-conversion in all members of the animal cohort subsequently. The S segment sequences of the two recovered viral isolates from one infected goat and its parasitic ticks showed a 100% homology at the nucleic acid level.

Conclusions/Significance

In our natural infection study, close contact between goats does not appear to transmit SFTSV, however, the naïve animals were infected after ticks’ infestation and two viral isolates derived from an infected goat and its parasitic ticks shared 100% of sequence identity. These data demonstrate that the etiologic agent for goat cohort’s natural infection comes from environmental factors. Of these, ticks, especially the predominant species Haemaphysalis longicornis, probably act as vector for this pathogen. The findings in this study may help local health authorities formulate and focus preventive measures to contain this infection.  相似文献   

11.
Hubei Province is a major epidemic area of severe fever with thrombocytopenia syndrome bunyavirus(SFTSV) in China. However, to date, a few SFTSV strains have been isolated from Hubei Province, preventing effective studies of epidemic outbreaks. Here, we report three confirmed patients(2015–2016) with typical symptoms of severe fever with thrombocytopenia syndrome disease(SFTS) who were farmers resident in different regions in Hubei Province. Three new SFTSV strains were isolated from the serum samples of each patient. Characterization of viral growth properties showed that there were no significant differences in virus production. All strains were completely sequenced, and phylogenetic analysis showed that unlike the other strains from Hubei province, which belonged to the SFTSV C3 genotype, one of the three strains belonged to the SFTSV C2 genotype. These results suggested that multiple SFTSV genotypes have been circulating in Hubei Province, providing insights into SFTSV evolution and improving our understanding of SFTSV prevalence in Hubei Province.  相似文献   

12.
Bunyavirus ribonucleoprotein (RNP) that is assembled by polymerized nucleoproteins (N) coating a viral RNA and associating with a viral polymerase can be both the RNA synthesis machinery and the structural core of virions. Bunyaviral N and RNP thus could be assailable targets for host antiviral defense; however, it remains unclear which and how host factors target N/RNP to restrict bunyaviral infection. By mass spectrometry and protein-interaction analyses, we here show that host protein MOV10 targets the N proteins encoded by a group of emerging high-pathogenic representatives of bunyaviruses including severe fever with thrombocytopenia syndrome virus (SFTSV), one of the most dangerous pathogens listed by World Health Organization, in RNA-independent manner. MOV10 that was further shown to be induced specifically by SFTSV and related bunyaviruses in turn inhibits the bunyaviral replication in infected cells in series of loss/gain-of-function assays. Moreover, animal infection experiments with MOV10 knockdown corroborated the role of MOV10 in restricting SFTSV infection and pathogenicity in vivo. Minigenome assays and additional functional and mechanistic investigations demonstrate that the anti-bunyavirus activity of MOV10 is likely achieved by direct impact on viral RNP machinery but independent of its helicase activity and the cellular interferon pathway. Indeed, by its N-terminus, MOV10 binds to a protruding N-arm domain of N consisting of only 34 amino acids but proving important for N function and blocks N polymerization, N-RNA binding, and N-polymerase interaction, disabling RNP assembly. This study not only advances the understanding of bunyaviral replication and host restriction mechanisms but also presents novel paradigms for both direct antiviral action of MOV10 and host targeting of viral RNP machinery.  相似文献   

13.
Severe fever with thrombocytopenia syndrome virus (SFTSV) is a tick-borne emerging phlebovirus with high mortality rates of 6.0 to 30%. SFTSV infection is characterized by high fever, thrombocytopenia, leukopenia, hemorrhage and multiple organ failures. Currently, specific therapies and vaccines remain elusive. Suitable small animal models are urgently needed to elucidate the pathogenesis and evaluate the potential drug and vaccine for SFTSV infection. Previous models presented only mild or no pathogenesis of SFTS, limiting their applications in SFTSV infection. Therefore, it is an urgent need to develop a small animal model for the investigation of SFTSV pathogenesis and evaluation of therapeutics. In the current report, we developed a SFTSV infection model based on the HuPBL-NCG mice that recapitulates many pathological characteristics of SFTSV infection in humans. Virus-induced histopathological changes were identified in spleen, lung, kidney, and liver. SFTSV was colocalized with macrophages in the spleen and liver, suggesting that the macrophages in the spleen and liver could be the principle target cells of SFTSV. In addition, histological analysis showed that the vascular endothelium integrity was severely disrupted upon viral infection along with depletion of platelets. In vitro cellular assays further revealed that SFTSV infection increased the vascular permeability of endothelial cells by promoting tyrosine phosphorylation and internalization of the adhesion molecule vascular endothelial (VE)–cadherin, a critical component of endothelial integrity. In addition, we found that both virus infection and pathogen-induced exuberant cytokine release dramatically contributed to the vascular endothelial injury. We elucidated the pathogenic mechanisms of hemorrhage syndrome and developed a humanized mouse model for SFTSV infection, which should be helpful for anti-SFTSV therapy and pathogenesis study.  相似文献   

14.
Severe fever with thrombocytopenia syndrome (SFTS), caused by SFTS virus (SFTSV) infection, was first reported in 2010 in China with an initial fatality of up to 30%. The laboratory confirmation of SFTSV infection in terms of detection of viral RNA or antibody levels is critical for SFTS diagnosis and therapy. In this study, a new luciferase immunoprecipitation system (LIPS) assay based on pREN2 plasmid expressing SFTSV NP gene and tagged with Renilla luciferase (Rluc), was established and used to investigate the levels of antibody responses to SFTSV. Totally 464 serum samples from febrile patients were collected in the hospital of Shaoxing City in Zhejiang Province in 2019. The results showed that 82 of the 464 patients (17.7%) had antibody response to SFTSV, which were further supported by immunofluorescence assays (IFAs). Further, qRT-PCR and microneutralization tests showed that among the 82 positive cases, 15 patients had viremia, 10 patients had neutralizing antibody, and one had both (totally 26 patient). However, none of these patients were diagnosed as SFTS in the hospital probably because of their mild symptoms or subclinical manifestations. All the results indicated that at least the 26 patients having viremia or neutralizing antibody were the missed diagnosis of SFTS cases. The findings suggested the occurrence of SFTS and the SFTS incidence were higher than the reported level in Shaoxing in 2019, and that LIPS may provide an alternative strategy to confirm SFTSV infection in the laboratory.  相似文献   

15.
Severe fever with thrombocytopenia syndrome(SFTS) is an emerging hemorrhagic fever in rural areas of China and is caused by a new bunyavirus,SFTSV,named after the disease.The transmission vectors and animal hosts of SFTSV are unclear.Ticks are the most likely transmission vectors and domestic animals,including goats,dogs,and cattle,are potential amplifying hosts of SFTSV.The clinical symptoms of SFTS are nonspecific,but major symptoms include fever,gastrointestinal symptoms,myalgia,dizziness,joint pain,chills,and regional lymphadenopathy.The most common abnormalities in laboratory test results are thrombocytopenia(95%),leukocytopenia(86%),and elevated levels of serum alanine aminotransferase,aspartate aminotransferase,creatine kinase,and lactate dehydrogenase.The fatality rate for SFTS is 12% on average,and the annual incidence of the disease is approximately five per 100000 of the rural population.  相似文献   

16.
Severe fever with thrombocytopenia syndrome (SFTS) is an emerging hemorrhagic fever in East Asia with case fatality up to 50%. SFTS is caused by SFTSV, a tick borne bunyavirus. In endemic area in China 1%–3% population was infected with SFTSV, but age is critical risk factor for hospitalization and death of SFTS patients.  相似文献   

17.

Background

Severe fever with thrombocytopenia syndrome (SFTS) is a tick-borne infectious disease with a high case fatality rate, and is caused by the SFTS virus (SFTSV). SFTS is endemic to China, South Korea, and Japan. The viral RNA level in sera of patients with SFTS is known to be strongly associated with outcomes. Virological SFTS diagnosis with high sensitivity and specificity are required in disease endemic areas.

Methodology/Principal Findings

We generated novel monoclonal antibodies (MAbs) against the SFTSV nucleocapsid (N) protein and developed a sandwich antigen (Ag)-capture enzyme-linked immunosorbent assay (ELISA) for the detection of N protein of SFTSV using MAb and polyclonal antibody as capture and detection antibodies, respectively. The Ag-capture system was capable of detecting at least 350–1220 TCID50/100 μl/well from the culture supernatants of various SFTSV strains. The efficacy of the Ag-capture ELISA in SFTS diagnosis was evaluated using serum samples collected from patients suspected of having SFTS in Japan. All 24 serum samples (100%) containing high copy numbers of viral RNA (>105 copies/ml) showed a positive reaction in the Ag-capture ELISA, whereas 12 out of 15 serum samples (80%) containing low copy numbers of viral RNA (<105 copies/ml) showed a negative reaction in the Ag-capture ELISA. Among these Ag-capture ELISA-negative 12 samples, 9 (75%) were positive for IgG antibodies against SFTSV.

Conclusions

The newly developed Ag-capture ELISA is useful for SFTS diagnosis in acute phase patients with high levels of viremia.  相似文献   

18.
Hantavirus nucleocapsid protein oligomerization   总被引:6,自引:0,他引:6       下载免费PDF全文
Hantaviruses are enveloped, negative-strand RNA viruses which can be lethal to humans, causing either a hemorrhagic fever with renal syndrome or a hantaviral pulmonary syndrome. The viral genomes consist of three RNA segments: the L segment encodes the viral polymerase, the M segment encodes the viral surface glycoproteins G1 and G2, and the S segment encodes the nucleocapsid (N) protein. The N protein is a 420- to 430-residue, 50-kDa protein which appears to direct hantavirus assembly, although mechanisms of N protein oligomerization, RNA encapsidation, budding, and release are poorly understood. We have undertaken a biochemical and genetic analysis of N protein oligomerization. Bacterially expressed N proteins were found by gradient fractionation to associate not only as large multimers or aggregates but also as dimers or trimers. Chemical cross-linking of hantavirus particles yielded N protein cross-link products with molecular masses of 140 to 150 kDa, consistent with the size of an N trimer. We also employed a genetic, yeast two-hybrid method for monitoring N protein interactions. Analyses showed that the C-terminal half of the N protein plus the N-terminal 40 residues permitted association with a full-length N protein fusion. These N-terminal 40 residues of seven different hantavirus strains were predicted to form trimeric coiled coils. Our results suggest that coiled-coil motifs contribute to N protein trimerization and that nucleocapsid protein trimers are hantavirus particle assembly intermediates.  相似文献   

19.
The nucleocapsid protein (NP) of Sendai virus encapsidates the genome RNA, forming a helical nucleocapsid which is the template for RNA synthesis by the viral RNA polymerase. The NP protein is thought to have both structural and functional roles, since it is an essential component of the NP0-P (P, phosphoprotein), NP-NP, nucleocapsid-polymerase, and RNA-NP complexes required during viral RNA replication. To identify domains in the NP protein, mutants were constructed by using clustered charge-to-alanine mutagenesis in a highly charged region from amino acids 107 to 129. Each of the mutants supported RNA encapsidation in vitro. The product nucleocapsids formed with three mutants, NP114, NP121, and NP126, however, did not serve as templates for further amplification in vivo, while NP107, NP108, and NP111 were nearly like wild-type NP in vivo. This template defect in the NP mutants from amino acids 114 to 129 was not due to a lack of NP0-P, NP-NP, or nucleocapsid-polymerase complex formation, since these interactions were normal in these mutants. We propose that amino acids 114 to 129 of the NP protein are required for the nucleocapsid to function as a template in viral genome replication.  相似文献   

20.
Severe fever with thrombocytopenia syndrome(SFTS) is an emerging hemorrhagic fever disease caused by SFTSV, a newly discovered phlebovirus that is named after the disease. Currently, no effective vaccines or drugs are available for use against SFTSV infection, as our understanding of the viral pathogenesis is limited. Bortezomib(PS-341), a dipeptideboronic acid analog, is the first clinically approved proteasome inhibitor for use in humans. In this study, the antiviral efficacy of PS-341 against SFTSV infection was tested in human embryonic kidney HEK293 T(293 T) cells. We employed four different assays to analyze the antiviral ability of PS-341 and determined that PS-341 inhibited the proliferation of SFTSV in 293 T cells under various treatment conditions. Although PS-341 did not affect the virus absorption, PS-341 treatment within a non-toxic concentration range resulted in a significant reduction of progeny viral titers in infected cells.Dual-luciferase reporter assays and Western blot analysis revealed that PS-341 could reverse the SFTSV-encoded nonstructural protein(NS) mediated degradation of retinoic acid-inducible gene-1(RIG-I), thereby antagonizing the inhibitory effect of NSs on interferons and blocking virus replication. In addition, we observed that inhibition of apoptosis promotes virus replication. These results indicate that targeting of cellular interferon pathways and apoptosis during acute infection might serve as the bases of future therapeutics for the treatment of SFTSV infections.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号