首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Aims Vast grasslands on the Tibetan Plateau are almost all under livestock grazing. It is unclear, however, what is the role that the grazing will play in carbon cycle of the grassland under future climate warming. We found in our previous study that experimental warming can shift the optimum temperature of saturated photosynthetic rate into higher temperature in alpine plants. In this study, we proposed and tested the hypothesis that livestock grazing would alter the warming effect on photosynthetic and respiration through changing physical environments of grassland plants.Methods Experimental warming was carried by using an infrared heating system to increase the air temperature by 1.2 and 1.7°C during the day and night, respectively. The warming and ambient temperature treatments were crossed over to the two grazing treatments, grazing and un-grazed treatments, respectively. To assess the effects of grazing and warming, we examined photosynthesis, dark respiration, maximum rates of the photosynthetic electron transport (J max), RuBP carboxylation (V cmax) and temperature sensitivity of respiration Q 10 in Gentiana straminea, an alpine species widely distributed on the Tibetan grassland. Leaf morphological and chemical properties were also examined to understand the physiological responses.Important findings 1) Light-saturated photosynthetic rate (A max) of G. straminea showed similar temperature optimum at around 16°C in plants from all experimental conditions. Experimental warming increased A max at all measuring temperatures from 10 to 25°C, but the positive effect of the warming occurred only in plants grown under the un-grazed conditions. Under the same measuring temperature, A max was significantly higher in plants from the grazed than the un-grazed condition. 2) There was significant crossing effect of warming and grazing on the temperature sensitivity (Q 10) of leaf dark respiration. Under the un-grazed condition, plants from the warming treatment showed lower respiration rate but similar Q 10 in comparison with plants from the ambient temperature treatment. However, under the grazed condition Q 10 was significantly lower in plants from the warming than the ambient treatment. 3) The results indicate that livestock grazing can alter the warming effects on leaf photosynthesis and temperature sensitivity of leaf dark respiration through changing physical environment of the grassland plants. The study suggests for the first time that grazing effects should be taken into account in predicting global warming effects on photosynthesis and respiration of plants in those grasslands with livestock grazing.  相似文献   

2.
全球陆地生态系统光合作用与呼吸作用的温度敏感性   总被引:3,自引:0,他引:3  
游桂莹  张志渊  张仁铎 《生态学报》2018,38(23):8392-8399
基于全球647套通量数据,定量分析了全球尺度下生态系统光合作用和呼吸作用的温度敏感性(Q10)随纬度、气候和植被的分布规律。结果表明:在全球尺度下,光合作用和呼吸过程的温度敏感性(Q10,G和Q10,R)都随纬度的升高而增加,其中Q10,G和Q10,R的均值分别为3.99±0.21和2.28±0.074。除热带多树草原、常绿落叶林外,Q10,G均大于Q10,R值。不同植被类型的温度敏感性存在显著性差异,表现为:针叶林阔叶林;落叶林常绿林,其中生态系统的季节性变异是造成差异的主要原因。当植被类型和纬度区域共同影响Q10值时,植被类型对Q10值的总变异贡献更大。气候类型对Q10,G和Q10,R都有显著影响。在气候带上,干旱带的Q10,G最小,而冷温带的Q10,G最高。不同气候类型下(除温带草原气候外)的Q10,G都大于Q10,R。在极端条件下,温度可能不在是主导因素,而水分对温度敏感性的影响不可忽略,今后的研究需要更多的关注生态系统温度敏感性对水分变化的响应。  相似文献   

3.
Based on short-term experiments, many plant growth models – including those used in global change research – assume that an increase in temperature stimulates plant respiration (R) more than photosynthesis (P), leading to an increase in the R/P ratio. Longer-term experiments, however, have demonstrated that R/P is relatively insensitive to growth temperature. We show that both types of temperature response may be reconciled within a simple substrate-based model of plant acclimation to temperature, in which respiration is effectively limited by the supply of carbohydrates fixed through photosynthesis. The short-term, positive temperature response of R/P reflects the transient dynamics of the nonstructural carbohydrate and protein pools; the insensitivity of R/P to temperature on longer time-scales reflects the steady-state behaviour of these pools. Thus the substrate approach may provide a basis for predicting plant respiration responses to temperature that is more robust than the current modelling paradigm based on the extrapolation of results from short-term experiments. The present model predicts that the acclimated R/P depends mainly on the internal allocation of carbohydrates to protein synthesis, a better understanding of which is therefore required to underpin the wider use of a constant R/P as an alternative modelling paradigm in global change research.  相似文献   

4.
Gas exchange, fluorescence, western blot and chemical composition analyses were combined to assess if three functional groups (forbs, grasses and evergreen trees/shrubs) differed in acclimation of leaf respiration (R) and photosynthesis (A) to a range of growth temperatures (7, 14, 21 and 28 degrees C). When measured at a common temperature, acclimation was greater for R than for A and differed between leaves experiencing a 10-d change in growth temperature (PE) and leaves newly developed at each temperature (ND). As a result, the R : A ratio was temperature dependent, increasing in cold-acclimated plants. The balance was largely restored in ND leaves. Acclimation responses were similar among functional groups. Across the functional groups, cold acclimation was associated with increases in nonstructural carbohydrates and nitrogen. Cold acclimation of R was associated with an increase in abundance of alternative and/or cytochrome oxidases in a species-dependent manner. Cold acclimation of A was consistent with an initial decrease and subsequent recovery of thylakoid membrane proteins and increased abundance of proteins involved in the Calvin cycle. Overall, the results point to striking similarities in the extent and the biochemical underpinning of acclimation of R and A among contrasting functional groups differing in overall rates of metabolism, chemical composition and leaf structure.  相似文献   

5.
6.
1. To investigate the influence of elevated temperatures and nutrients on photosynthesis, respiration and growth of natural phytoplankton assemblages, water was collected from a eutrophic lake in spring, summer, autumn, winter and the following spring and exposed to ambient temperature and ambient +2, +4 and +6 °C for 2 weeks with and without addition of extra inorganic nutrients. 2. Rates of photosynthesis, respiration and growth generally increased with temperature, but this effect was strongly enhanced by high nutrient availability, and therefore was most evident for nutrient amended cultures in seasons of low ambient nutrient availability. 3. Temperature stimulation of growth and metabolism was higher at low than high ambient temperature showing that long‐term temperature acclimation of the phytoplankton community before the experiments was of great importance for the measured rates. 4. Although we found distinct responses to relatively small temperature increases, the interaction between nutrient availability, time of the year and, thus, ambient temperature was responsible for most of the observed variability in phytoplankton growth, photosynthesis and respiration. 5. Although an increase in global temperature will influence production and degradation of organic material in lakes, the documented importance of ambient temperatures and nutrient conditions suggests that effects will be most pronounced during winter and early spring, while the remaining part of the growth season will be practically unaffected by increasing temperatures.  相似文献   

7.
Soil respiration is recognized to be influenced by temperature, moisture, and ecosystem production. However, little is known about how plant community structure regulates responses of soil respiration to climate change. Here, we used a 13‐year field warming experiment to explore the mechanisms underlying plant community regulation on feedbacks of soil respiration to climate change in a tallgrass prairie in Oklahoma, USA. Infrared heaters were used to elevate temperature about 2 °C since November 1999. Annual clipping was used to mimic hay harvest. Our results showed that experimental warming significantly increased soil respiration approximately from 10% in the first 7 years (2000–2006) to 30% in the next 6 years (2007–2012). The two‐stage warming stimulation of soil respiration was closely related to warming‐induced increases in ecosystem production over the years. Moreover, we found that across the 13 years, warming‐induced increases in soil respiration were positively affected by the proportion of aboveground net primary production (ANPP) contributed by C3 forbs. Functional composition of the plant community regulated warming‐induced increases in soil respiration through the quantity and quality of organic matter inputs to soil and the amount of photosynthetic carbon (C) allocated belowground. Clipping, the interaction of clipping with warming, and warming‐induced changes in soil temperature and moisture all had little effect on soil respiration over the years (all > 0.05). Our results suggest that climate warming may drive an increase in soil respiration through altering composition of plant communities in grassland ecosystems.  相似文献   

8.
Community photosynthesis and respiration in experimental streams   总被引:1,自引:1,他引:0  
Changes in relative contribution to total stream photosynthetic and respiratory rates by various community components of an open channel stream were estimated. Rates of photosynthetic production of plankton, benthos and macrophytes (with associated epiphytes) were followed through the growing season and compared with total estimates from a diurnal oxygen technique. Photosynthetic production by macrophytes was extremely high early in the growing season; but later declined and heterotrophic processes became predominant. In contrast, benthos production was initially low but became the primary source of photosynthesis later in the season. Plankton contributed little to stream photosynthesis and respiration.  相似文献   

9.
10.
11.
A mechanistic understanding of plant photosynthetic response is needed to reliably predict changes in terrestrial carbon (C) gain under conditions of chronically elevated atmospheric nitrogen (N) deposition. Here, using 2,683 observations from 240 journal articles, we conducted a global meta‐analysis to reveal effects of N addition on 14 photosynthesis‐related traits and affecting moderators. We found that across 320 terrestrial plant species, leaf N was enhanced comparably on mass basis (Nmass, +18.4%) and area basis (Narea, +14.3%), with no changes in specific leaf area or leaf mass per area. Total leaf area (TLA) was increased significantly, as indicated by the increases in total leaf biomass (+46.5%), leaf area per plant (+29.7%), and leaf area index (LAI, +24.4%). To a lesser extent than for TLA, N addition significantly enhanced leaf photosynthetic rate per area (Aarea, +12.6%), stomatal conductance (gs, +7.5%), and transpiration rate (E, +10.5%). The responses of Aarea were positively related with that of gs, with no changes in instantaneous water‐use efficiency and only slight increases in long‐term water‐use efficiency (+2.5%) inferred from 13C composition. The responses of traits depended on biological, experimental, and environmental moderators. As experimental duration and N load increased, the responses of LAI and Aarea diminished while that of E increased significantly. The observed patterns of increases in both TLA and E indicate that N deposition will increase the amount of water used by plants. Taken together, N deposition will enhance gross photosynthetic C gain of the terrestrial plants while increasing their water loss to the atmosphere, but the effects on C gain might diminish over time and that on plant water use would be amplified if N deposition persists.  相似文献   

12.
Understanding how soil respiration (Rs) and its source components respond to climate warming is crucial to improve model prediction of climate‐carbon (C) feedback. We conducted a manipulation experiment by warming and clipping in a prairie dominated by invasive winter annual Bromus japonicas in Southern Great Plains, USA. Infrared radiators were used to simulate climate warming by 3 °C and clipping was used to mimic yearly hay mowing. Heterotrophic respiration (Rh) was measured inside deep collars (70 cm deep) that excluded root growth, while total soil respiration (Rs) was measured inside surface collars (2–3 cm deep). Autotrophic respiration (Ra) was calculated by subtracting Rh from Rs. During 3 years of experiment from January 2010 to December 2012, warming had no significant effect on Rs. The neutral response of Rs to warming was due to compensatory effects of warming on Rh and Ra. Warming significantly (P < 0.05) stimulated Rh but decreased Ra. Clipping only marginally (P < 0.1) increased Ra in 2010 but had no effect on Rh. There were no significant interactive effects of warming and clipping on Rs or its components. Warming stimulated annual Rh by 22.0%, but decreased annual Ra by 29.0% across the 3 years. The decreased Ra was primarily associated with the warming‐induced decline of the winter annual productivity. Across the 3 years, warming increased Rh/Rs by 29.1% but clipping did not affect Rh/Rs. Our study highlights that climate warming may have contrasting effects on Rh and Ra in association with responses of plant productivity to warming.  相似文献   

13.
Aims Alpine ecosystems may experience larger temperature increases due to global warming as compared with lowland ecosystems. Information on physiological adjustment of alpine plants to temperature changes can provide insights into our understanding how these plants are responding to current and future warming. We tested the hypothesis that alpine plants would exhibit acclimation in photosynthesis and respiration under long-term elevated temperature, and the acclimation may relatively increase leaf carbon gain under warming conditions.Methods Open-top chambers (OTCs) were set up for a period of 11 years to artificially increase the temperature in an alpine meadow ecosystem. We measured leaf photosynthesis and dark respiration under different light, temperature and ambient CO2 concentrations for Gentiana straminea, a species widely distributed on the Tibetan Plateau. Maximum rates of the photosynthetic electron transport (J max), RuBP carboxylation (V c max) and temperature sensitivity of respiration Q 10 were obtained from the measurements. We further estimated the leaf carbon budget of G. straminea using the physiological parameters and environmental variables obtained in the study.Important findings1)?The OTCs consistently elevated the daily mean air temperature by ~1.6°C and soil temperature by ~0.5°C during the growing season. 2)?Despite the small difference in the temperature environment, there was strong tendency in the temperature acclimation of photosynthesis. The estimated temperature optimum of light-saturated photosynthetic CO2 uptake (A max) shifted ~1°C higher from the plants under the ambient regime to those under the OTCs warming regime, and the A max was significantly lower in the warming-acclimated leaves than the leaves outside the OTCs. 3)?Temperature acclimation of respiration was large and significant: the dark respiration rates of leaves developed in the warming regime were significantly lower than leaves from the ambient environments. 4)?The simulated net leaf carbon gain was significantly lower in the in situ leaves under the OTCs warming regime than under the ambient open regime. However, in comparison with the assumed non-acclimation leaves, the in situ warming-acclimated leaves exhibited significantly higher net leaf carbon gain. 5)?The results suggest that there was a strong and significant temperature acclimation in physiology of G. straminea in response to long-term warming, and the physiological acclimation can reduce the decrease of leaf carbon gain, i.e. increase relatively leaf carbon gain under the warming condition in the alpine species.  相似文献   

14.
Thermal acclimation of photosynthesis and respiration can enable plants to maintain near constant rates of net CO2 exchange, despite experiencing sustained changes in daily average temperature. In this study, we investigated whether the degree of acclimation of photosynthesis and respiration of mature leaves differs among three congeneric Plantago species from contrasting habitats [two fast‐growing lowland species (Plantago major and P. lanceolata), and one slow‐growing alpine species (P. euryphylla)]. In addition to investigating some mechanisms underpinning variability in photosynthetic acclimation, we also determined whether leaf respiration in the light acclimates to the same extent as leaf respiration in darkness, and whether acclimation reestablishes the balance between leaf respiration and photosynthesis. Three growth temperatures were provided: constant 13, 20, or 27°C. Measurements were made at five temperatures (6–34°C). Little acclimation of photosynthesis and leaf respiration to growth temperature was exhibited by P. euryphylla. Moreover, leaf masses per area (LMA) were similar in 13°C‐grown and 20°C‐grown plants of the alpine species. In contrast, growth at 13°C increased LMA in the two lowland species; this was associated with increased photosynthetic capacity and rates of leaf respiration (both in darkness and in the light). Alleviation of triose phosphate limitation and increased capacity of electron transport capacity relative to carboxylation were also observed. Such changes demonstrate that the lowland species cold‐acclimated. Light reduced the short‐term temperature dependence (i.e. Q10) of leaf respiration in all three species, irrespective of growth temperature. Collectively, our results highlight the tight coupling that exists between thermal acclimation of photosynthetic and leaf respiratory metabolism (both in darkness and in the light) in Plantago. If widespread among contrasting species, such coupling may enable modellers to assume levels of acclimation in one parameter (e.g. leaf respiration) where details are only known for the other (e.g. photosynthesis).  相似文献   

15.
The increasing air temperatures central to climate change predictions have the potential to alter forest ecosystem function and structure by exceeding temperatures optimal for carbon gain. Such changes are projected to threaten survival of sensitive species, leading to local extinctions, range migrations, and altered forest composition. This study investigated photosynthetic sensitivity to temperature and the potential for acclimation in relation to the climatic provenance of five species of deciduous trees, Liquidambar styraciflua, Quercus rubra, Quercus falcata, Betula alleghaniensis, and Populus grandidentata. Open‐top chambers supplied three levels of warming (+0, +2, and +4 °C above ambient) over 3 years, tracking natural temperature variability. Optimal temperature for CO2 assimilation was strongly correlated with daytime temperature in all treatments, but assimilation rates at those optima were comparable. Adjustment of thermal optima was confirmed in all species, whether temperatures varied with season or treatment, and regardless of climate in the species' range or provenance of the plant material. Temperature optima from 17° to 34° were observed. Across species, acclimation potentials varied from 0.55 °C to 1.07 °C per degree change in daytime temperature. Responses to the temperature manipulation were not different from the seasonal acclimation observed in mature indigenous trees, suggesting that photosynthetic responses should not be modeled using static temperature functions, but should incorporate an adjustment to account for acclimation. The high degree of homeostasis observed indicates that direct impacts of climatic warming on forest productivity, species survival, and range limits may be less than predicted by existing models.  相似文献   

16.
Soil carbon losses to the atmosphere through soil respiration are expected to rise with ongoing temperature increases, but available evidence from mesic biomes suggests that such response disappears after a few years of experimental warming. However, there is lack of empirical basis for these temporal dynamics in soil respiration responses, and for the mechanisms underlying them, in drylands, which collectively form the largest biome on Earth and store 32% of the global soil organic carbon pool. We coupled data from a 10 year warming experiment in a biocrust‐dominated dryland ecosystem with laboratory incubations to confront 0–2 years (short‐term hereafter) versus 8–10 years (longer‐term hereafter) soil respiration responses to warming. Our results showed that increased soil respiration rates with short‐term warming observed in areas with high biocrust cover returned to control levels in the longer‐term. Warming‐induced increases in soil temperature were the main drivers of the short‐term soil respiration responses, whereas longer‐term soil respiration responses to warming were primarily driven by thermal acclimation and warming‐induced reductions in biocrust cover. Our results highlight the importance of evaluating short‐ and longer‐term soil respiration responses to warming as a mean to reduce the uncertainty in predicting the soil carbon–climate feedback in drylands.  相似文献   

17.
Aims Ubiquitous thermal acclimation of leaf respiration could mitigate the respiration increase. However, whether species of different plant functional groups showing distinct or similar acclimation justifies the simple prediction of respiratory carbon (C) loss to a warming climate.  相似文献   

18.
19.
An apparatus to measure the rates of respiration and photosynthesis of aquatic plants in water at velocities of up to 200 mm s–1 in a closed water-flow system with partial recirculation, is described. The temperature, the light regime and the concentration of dissolved oxygen are controlled automatically. Typical results are given for Ranunculus penicillatus var. calcareus which were repeatable between the same season in different years and compared with published data.  相似文献   

20.
Short- and long-term effects of elevated CO2 concentration and temperature on whole plant respiratory relationships are examined for wheat grown at four constant temperatures and at two CO2 concentrations. Whole plant CO2 exchange was measured on a 24 h basis and measurement conditions varied both to observe short-term effects and to determine the growth respiration coefficient (rg), dry weight maintenance coefficient (rm), basal (i.e. dark acclimated) respiration coefficient (rg), and 24 h respiration:photosynthesis ratio (R:P). There was no response of rg to short-term variation in CO2 concentration. For plants with adequate N supply, rg was unaffected by the growth-CO2 despite a 10% reduction in the plant's N concentration (%N). However, rm was decreased 13%, and rb was decreased 20% by growth in elevated CO2 concentration relative to ambient. Nevertheless, R:P was not affected by growth in elevated CO2. Whole plant respiration responded to short-term variation of ± 5 °C around the growth temperature with low sensitivity (Q10= 1.8 at 15 °C, 1.3 at 30 °C). The shape of the response of whole plant respiration to growth temperature was different from that of the short term response, being a slanted S-shape declining between 25 and 30 °C. While rm, increased, rg decreased when growth temperature increased between 15 and 20 °C. Above 20 °C rm became temperature insensitive while rg increased with growth temperature. Despite these complex component responses, R:P increased only from 0.40 to 0.43 between 15° and 30 °C growth temperatures. Giving the plants a step increase in temperature caused a transient increase in R:P which recovered to the pre-transient value in 3 days. It is concluded that use of a constant R:P with respect to average temperature and CO2 concentration may be a more simple and accurate way to model the responses of wheat crop respiration to ‘climate change’ than the more complex and mechanistically dubious functional analysis into growth and maintenance components.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号