首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A wide range of proteins of cellular and viral origin have been shown to be modified covalently by long-chain fatty acids. Recent studies have revealed at least two distinct types of protein fatty acylation which involve different fatty acyltransferases. The abundant fatty acid, palmitate, is incorporated post-translationally through a thiol ester linkage into a variety of cell surface glycoproteins and non-glycosylated intracellular proteins. In contrast, the rare fatty acid, myristate, is incorporated co-translationally through an amide linkage into numerous intracellular proteins. Identification of proteins that contain covalent fatty acids has revealed that this modification is common to a broad array of proteins that play important roles in transmembrane regulatory pathways. For many of these proteins, the fatty acid moiety appears to play an important role in directing the polypeptide to the appropriate membrane and in mediating protein-protein interactions within the membrane. This review will summarize recent studies that define different pathways for protein fatty acylation and will consider the potential functions for this unique covalent modification of proteins.  相似文献   

2.
Fatty acylated proteins as components of intracellular signaling pathways   总被引:18,自引:0,他引:18  
G James  E N Olson 《Biochemistry》1990,29(11):2623-2634
From the studies presented above, it is obvious that fatty acylation is a common modification among proteins involved in cellular regulatory pathways, and in certain cases mutational analyses have demonstrated the importance of covalent fatty acids in the functioning of these proteins. Indeed, certain properties provided by fatty acylation make it an attractive modification for regulatory proteins that might interact with many different substrates, particularly those found at or near the plasma membrane/cytosol interface. In the case of intracellular fatty acylated proteins, the fatty acyl moiety allows tight binding to the plasma membrane without the need for cotranslational insertion through the bilayer. For example, consider the tight, salt-resistant interaction of myristoylated SRC with the membrane, whereas its nonmyristoylated counterpart is completely soluble. Likewise for the RAS proteins, which associate weakly with the membrane in the absence of fatty acylation, while palmitoylation increases their affinity for the plasma membrane and their biological activity. Fatty acylation also permits reversible membrane association in some cases, particularly for several myristoylated proteins, thus conferring plasticity on their interactions with various signaling pathway components. Finally, although this has not been demonstrated, it is conceivable that covalent fatty acid may allow for rapid mobility of proteins within the membrane. Several questions remain to be answered concerning requirements for fatty acylation by regulatory proteins. The identity of the putative SRC "receptor" will provide important clues as to the pathways in which normal SRC functions, as well as into the process of transformation by oncogenic tyrosine kinases. The possibility that other fatty acylated proteins associate with the plasma membrane in an analogous manner also needs to be investigated. An intriguing observation that can be made from the information presented here is that at least three different families of proteins involved in growth factor signaling pathways encode both acylated and nonacylated members, suggesting that selective fatty acylation may provide a means of determining the specificity of their interactions with other regulatory molecules. Further studies of fatty acylated proteins should yield important information concerning the regulation of intracellular signaling pathways utilized during growth and differentiation.  相似文献   

3.
Lipid modification of proteins and their membrane transport   总被引:1,自引:0,他引:1  
An effective method for artificial attachment of lipid anchors to water-soluble proteins has been developed. To this end, a protein molecule is modified in a system of reversed micelles by a water-insoluble reagent, e.g. fatty acid chloride. Fatty acylated proteins acquire an ability to translocate across lipid membranes and penetrate intact cells. This principle of imparting transmembrane properties to water-soluble proteins makes it possible to realize in vivo a direct transport of antibodies across the hemato-encephalic barrier into the brain and to develop a method for virus suppression by fatty acylated anti-viral antibodies capable of penetrating infected cells. The effect of a drastic increase in the biological activity of exogenous protein factors, e.g. Staphylococcus aureus enterotoxin A, as a result of their artificial fatty acylation has been discovered. The above-mentioned phenomena are discussed in relation to the in vivo data, indicating that post-translational modification of proteins by fatty acids and phospholipids is very widespread in nature and evidently plays an important role in protein transport and sorting. In this connection, lipid modification of proteins is regarded as a possible general step of protein transport in vivo.  相似文献   

4.
Previous studies demonstrated that palmitate and myristate are covalently linked to distinct sets of cellular proteins and that the linkages through which these fatty acids are attached to the polypeptide chains are different (Olson, E. N., Towler, D. A., and Glaser, L. (1985) J. Biol. Chem. 260, 3784-3790). In the present study, the kinetics and subcellular sites of acylation of proteins with palmitate and myristate were examined in the BC3H1 muscle cell line. Acylation with myristate was an extremely early modification that appeared to take place cotranslationally or shortly thereafter for a variety of soluble and membrane-bound proteins. In contrast, acylation of proteins with palmitate was a post-translational event that occurred exclusively on membrane proteins. To begin to understand the intracellular pathways that acyl proteins follow during their maturation, the degree of glycosylation, and the nature of the interaction of these proteins with membranes were examined. The majority of acyl proteins were tightly associated with membranes and could not be removed by conditions that release peripheral proteins from membranes. However, only a minor fraction of acylated proteins were N-glycosylated. These data suggest that the acyltransferases that attach palmitate and myristate to proteins are present in different subcellular locations and demonstrate that these fatty acids are attached to newly synthesized acyl proteins at different times during their maturation. The lack of carbohydrate on the majority of integral membrane acyl proteins suggests that these proteins may follow intracellular pathways that are different from those followed by cell surface glycoproteins.  相似文献   

5.
Proteolipid protein (PLP) and DM-20 were intensely labeled after immunoprecipitation of total cellular proteins and myelin proteins labeled with [35S]methionine in nerve slices. These results provided evidence that PLP and DM-20 are incorporated into the myelin membrane following their synthesis in Schwann cells. In contrast, PLP and DM-20 were not fatty acylated after incubation of the nerve slices with [3H]palmitic acid, however, PO glycoprotein and 24kDa protein were heavily fatty acylated. The lack of fatty acylation of PLP and DM-20 in the peripheral nervous system suggests that fatty acyltransferase responsible for their acylation is absent or non-functional in the peripheral nervous system.  相似文献   

6.
In addition to a prominent role in tissue energy conversion, fatty acids are involved in signal transduction and modulation of cellular protein localization and function. The latter is accomplished by acylation of specific cellular proteins. In the present study the amount of fatty acyl moieties covalently bound to cardiac proteins and the effect of myocardial ischemia and reperfusion on the degree and relative fatty acyl composition of cardiac proteins have been investigated in isolated rat hearts. In the normoxic heart about 0.32% of the cellular fatty acyl pool is covalently bound to proteins. Approximately 90% of these fatty acyl chains are thio-esterified, whereas a relatively minor part is attached to cardiac proteins through amide linkage. Thio-esterified fatty acyl chains are derived from palmitic, stearic, oleic, linoleic, arachidonic and docosahexaenoic acid. In contrast, amide linked protein acylation shows a preference for myristic acyl chains. Acute ischemia and reperfusion inflicted upon the isolated rat heart did enhance significantly the content of (unesterified) fatty acids, but did neither affect the degree of protein acylation nor the relative fatty acyl composition of acylated proteins in cardiac tissue.  相似文献   

7.
In vitro acylation of the transferrin receptor   总被引:6,自引:0,他引:6  
In vitro fatty acylation of the transferrin receptor with [3H]tetradecanoate or [3H]tetradecanoyl-CoA has been demonstrated for isolated sheep reticulocyte plasma membranes. Although less than 5% of the receptor was labeled in vitro, the acylated protein could be readily observed after sodium dodecyl sulfate-gel electrophoresis. The acylated transferrin receptor in the reticulocyte membrane was specifically precipitated with a monoclonal antibody and was absent from mature red cell membranes. Incorporation of fatty acid was dependent on ATP, and fatty acid was 5-10 times less effective as an acyl donor than the acyl-CoA derivative, pointing out the strong potential of this reagent for in vitro acylation of membrane proteins. During in vitro maturation of reticulocytes, the receptor is released in vesicles into the incubation medium. Using reticulocytes labeled with [3H]tetradecanoate, it can be shown that the 3H-labeled receptor is transferred from the cells to the vesicles without loss of acyl groups, suggesting that the vesiculation process does not involve deacylation.  相似文献   

8.

Purpose

Caveolae are cholesterol and sphingolipids rich subcellular domains on plasma membrane. Caveolae contain a variety of signaling proteins which provide platforms for signaling transduction. In addition to enriched with cholesterol and sphingolipids, caveolae also contain a variety of fatty acids. It has been well-established that acylation of protein plays a pivotal role in subcellular location including targeting to caveolae. However, the fatty acid compositions of caveolae and the type of acylation of caveolar proteins remain largely unknown. In this study, we investigated the fatty acids in caveolae and caveolin-1 bound fatty acids.

Methods

Caveolae were isolated from Chinese hamster ovary (CHO) cells. The caveolar fatty acids were extracted with Folch reagent, methyl esterificated with BF3, and analyzed by gas chromatograph-mass spectrometer (GC/MS). The caveolin-1bound fatty acids were immunoprecipitated by anti-caveolin-1 IgG and analyzed with GC/MS.

Results

In contrast to the whole CHO cell lysate which contained a variety of fatty acids, caveolae mainly contained three types of fatty acids, 0.48 µg palmitic acid, 0.61 µg stearic acid and 0.83 µg oleic acid/caveolae preparation/5×107 cells. Unexpectedly, GC/MS analysis indicated that caveolin-1 was not acylated by myristic acid; instead, it was acylated by palmitic acid and stearic acid.

Conclusion

Caveolae contained a special set of fatty acids, highly enriched with saturated fatty acids, and caveolin-1 was acylated by palmitic acid and stearic acid. The unique fatty acid compositions of caveolae and acylation of caveolin-1 may be important for caveolae formation and for maintaining the function of caveolae.  相似文献   

9.
Polyunsaturated fatty acids (PUFAs) such as eicosapentaenoic acid (20:5 (n-3)) inhibit T lymphocyte activation probably by displacing acylated signaling proteins from membrane lipid rafts. Under physiological conditions, saturated fatty acyl residues of such proteins partition into the cytoplasmic membrane lipid leaflet with high affinity for rafts that are enriched in saturated fatty acyl-containing lipids. However, the biochemical alteration causing displacement of acylated proteins from rafts in PUFA-treated T cells is still under debate but could principally be attributed to altered protein acylation or changes in raft lipid composition. We show that treatment of Jurkat T cells with polyunsaturated eicosapentaenoic acid (20:5 (n-3)) results in marked enrichment of PUFAs (20:5; 22:5) in lipids from isolated rafts. Moreover, PUFAs were significantly incorporated into phosphatidylethanolamine that predominantly resides in the cytoplasmic membrane lipid leaflet. Notably, palmitate-labeled Src family kinase Lck and the linker for activation of T cells (LAT) were both displaced from lipid rafts indicating that acylation by PUFAs is not required for protein displacement from rafts in PUFA-treated T cells. In conclusion, these data provide strong evidence that displacement of acylated proteins from rafts in PUFA-treated T cells is predominantly due to altered raft lipid composition.  相似文献   

10.
Specificity of fatty acid acylation of cellular proteins   总被引:38,自引:0,他引:38  
Labeling of the BC3H1 muscle cell line with [3H] palmitate and [3H]myristate results in the incorporation of these fatty acids into a broad spectrum of different proteins. The patterns of proteins which are labeled with palmitate and myristate are distinct, indicating a high degree of specificity of fatty acylation with respect to acyl chain length. The protein-linked [3H]palmitate is released by treatment with neutral hydroxylamine or by alkaline methanolysis consistent with a thioester linkage or a very reactive ester linkage. In contrast, only a small fraction of the [3H]myristate which is attached to proteins is released by treatment with hydroxylamine or alkaline methanolysis, suggesting that myristate is linked to proteins primarily through amide bonds. The specificity of fatty acid acylation has also been examined in 3T3 mouse fibroblasts and in PC12 cells, a rat pheochromacytoma cell line. In both cells, palmitate is primarily linked to proteins by a hydroxylamine-labile linkage while the major fraction of the myristic acid (60-70%) is linked to protein via amide linkage and the remainder via an ester linkage. Major differences were noted in the rate of fatty acid metabolism in these cells; in particular in 3T3 cells only 33% of the radioactivity incorporated from myristic acid into proteins is in the form of fatty acids. The remainder is presumably the result of conversion of label to amino acids. In BC3H1 cells, palmitate- and myristate-containing proteins also exhibit differences in subcellular localization. [3H]Palmitate-labeled proteins are found almost exclusively in membranes, whereas [3H]myristate-labeled proteins are distributed in both the soluble and membrane fractions. These results demonstrate that fatty acid acylation is a covalent modification common to a wide range of cellular proteins and is not restricted solely to membrane-associated proteins. The major acylated proteins in the various cell lines examined appear to be different, suggesting that the acylated proteins are concerned with specialized cell functions. The linkages through which fatty acids are attached to proteins also appear to be highly specific with respect to the fatty acid chain length.  相似文献   

11.
Intersubunit transfer of fatty acyl groups during fatty acid reduction   总被引:2,自引:0,他引:2  
Fatty acid reduction in Photobacterium phosphoreum is catalyzed in a coupled reaction by two enzymes: acyl-protein synthetase, which activates fatty acids (+ATP), and a reductase, which reduces activated fatty acids (+NADPH) to aldehyde. Although the synthetase and reductase can be acylated with fatty acid (+ATP) and acyl-CoA, respectively, evidence for acyl transfer between these proteins has not yet been obtained. Experimental conditions have now been developed to increase significantly (5-30-fold) the level of protein acylation so that 0.4-0.8 mol of fatty acyl groups are incorporated per mole of the synthetase or reductase subunit. The acylated reductase polypeptide migrated faster on sodium dodecyl sulfate-polyacrylamide gel electrophoresis than the unlabeled polypeptide, with a direct 1 to 1 correspondence between the moles of acyl group incorporated and the moles of polypeptide migrating at this new position. The presence of 2-mercaptoethanol or NADPH, but not NADP, substantially decreased labeling of the reductase enzyme, and kinetic studies demonstrated that the rate of covalent incorporation of the acyl group was 3-5 times slower than its subsequent reduction with NADPH to aldehyde. When mixtures of the synthetase and reductase polypeptides were incubated with [3H] tetradecanoic acid (+ATP) or [3H]tetradecanoyl-CoA, both polypeptides were acylated to high levels, with the labeling again being decreased by 2-mercaptoethanol or NADPH. These results have demonstrated that acylation of the reductase represents an intermediate and rate-limiting step in fatty acid reduction. Moreover, the activated acyl groups are transferred in a reversible reaction between the synthetase and reductase proteins in the enzyme mechanism.  相似文献   

12.
Calcium-dependent protein kinases play a pivotal role in calcium signalling in plants and some protozoa, including the malaria parasites. They are found in various subcellular locations, suggesting an involvement in multiple signal transduction pathways. Recently, Plasmodium falciparum calcium-dependent protein kinase 1 (PfCDPK1) has been found in the membrane and organelle fraction of the parasite. The kinase contains three motifs for membrane binding at its N-terminus, a consensus sequence for myristoylation, a putative palmitoylation site and a basic motif. Endogenous PfCDPK1 and the in vitro translated kinase were both shown to be myristoylated. The supposed membrane attachment function of the basic cluster was experimentally verified and shown to participate together with N-myristoylation in membrane anchoring of the kinase. Using immunogold electron microscopy, the protein was detected in the parasitophorous vacuole and the tubovesicular system of the parasite. Mutagenesis of the predicted acylated residues and the basic motif confirmed that dual acylation and the basic cluster are required for correct targeting of Aequorea victoria green fluorescent protein to the parasitophorous vacuole, suggesting that PfCDPK1 as the leishmanial hydrophilic acylated surface protein B is a representative of a novel class of proteins whose export is dependent on a 'non-classical' pathway involving N-myristoylation/palmitoylation.  相似文献   

13.
To establish a strategy to identify dually fatty acylated proteins from cDNA resources, seven N-myristoylated proteins with cysteine (Cys) residues within the 10 N-terminal residues were selected as potential candidates among 27 N-myristoylated proteins identified from a model human cDNA resource. Seven proteins C-terminally tagged with FLAG tag or EGFP were generated and their susceptibility to protein N-myristoylation and S-palmitoylation were evaluated by metabolic labeling with [3H]myristic acid or [3H]palmitic acid either in an insect cell-free protein synthesis system or in transfected mammalian cells. As a result, EEPD1, one of five proteins (RFTN1, EEPD1, GNAI1, PDE2A, RNF11) found to be dually acylated, was shown to be a novel dually fatty acylated protein. Metabolic labeling experiments using G2A and C7S mutants of EEPD1-EGFP revealed that the palmitoylation site of EEPD1 is Cys at position 7. Analysis of the intracellular localization of EEPD1 C-terminally tagged with FLAG tag or EGFP and its G2A and C7S mutants revealed that the dual acylation directs EEPD1 to localize to the plasma membrane. Thus, dually fatty acylated proteins can be identified from cDNA resources by cell-free and cellular metabolic labeling of N-myristoylated proteins with Cys residue(s) close to the N-myristoylated N-terminus.  相似文献   

14.
The successive acylation of glycerol-3-phosphate (G3P) by glycerol-3-phosphate acyltransferases and acylglycerol-3-phosphate acyltransferases produces phosphatidic acid (PA), a precursor for CDP-diacylglycerol-dependent phospholipid synthesis. PA is further dephosphorylated by LIPINs to produce diacylglycerol (DG), a substrate for the synthesis of triglyceride (TG) by DG acyltransferases and a precursor for phospholipid synthesis via the CDP-choline and CDP–ethanolamine (Kennedy) pathways. The channeling of fatty acids into TG for storage in lipid droplets and secretion in lipoproteins or phospholipids for membrane biogenesis is dependent on isoform expression, activity and localization of G3P pathway enzymes, as well as dietary and hormonal and tissue-specific factors. Here, we review the mechanisms that control partitioning of substrates into lipid products of the G3P pathway.  相似文献   

15.
C A Wilcox  E N Olson 《Biochemistry》1987,26(4):1029-1036
The BC3Hl muscle cell line was previously reported to contain a broad array of fatty acid acylated proteins [Olson, E. N., Towler, D. A., & Glaser, L. (1985) J. Biol. Chem. 260, 3784-3790]. Palmitate was shown to be attached to membrane proteins posttranslationally through thiol ester linkages, whereas myristate was attached cotranslationally, or within seconds thereafter, to soluble and membrane-bound proteins through amide linkages [Olson, E. N., & Spizz, G. (1986) J. Biol. Chem. 261, 2458-2466]. The temporal and subcellular differences between palmitate and myristate acylation suggested that these two classes of acyl proteins might follow different intracellular pathways to distinct subcellular membrane systems or organelles. In this study, we examined the subcellular localization of the major fatty acylated proteins in BC3Hl cells. Palmitate-containing proteins were localized to the plasma membrane, but only a subset of myristate-containing proteins was localized to this membrane fraction. The majority of acyl proteins were nonglycosylated and resistant to digestion with extracellular proteases, suggesting that they were not exposed to the external surface of the plasma membrane. Many proteins were, however, digested during incubation of isolated membranes with proteases, which indicates that these proteins face the cytoplasm. Two-dimensional gel electrophoresis of proteins labeled with [3H]palmitate and [3H]myristate revealed that individual proteins were modified by only one of the two fatty acids and did not undergo both N-linked myristylation and ester-linked palmitylation. Together, these results suggest that the majority of cellular acyl proteins are routed to the cytoplasmic surface of the plasma membrane, and they raise the possibility that fatty acid acylation may play a role in intracellular sorting of nontransmembranous, nonglycosylated membrane proteins.  相似文献   

16.
Apolipoprotein A-I (apo A-I), a soluble lipid transporter, and Po, the major glycoprotein of myelin, are actively synthesized during myelination. To explore the status of post-translational modifications of these proteins in the avian PNS during rapid myelination, endoneurial slices from one day old chick sciatic nerves were incubated with various radioactive precursors that could serve as indicators of such processes. The proteins were isolated from the incubation medium (secreted fraction), the 1% Triton-X-100-soluble intracellular-endoneurial (intracellular) fraction, and myelin-related and purified compact myelin fractions by immunoprecipitation with monospecific anti-apo A-I or anti-Po antisera. Our results demonstrated that secreted apo A-I is fatty acylated, but not phosphorylated or sulfated. Avian Po protein was phosphorylated by a phorbol ester sensitive protein kinase. Sulfation, as well as fatty acylation, of avian Po protein was observed in organ culture using highly sensitive methods of detection. These results indicate that fatty acylation of secreted apo A-I and phosphorylation, sulfation and fatty acylation of Po have been conserved during evolution, and that these post-translational modifications may play a common function in various species.  相似文献   

17.
Herlax V  Bakas L 《Biochemistry》2007,46(17):5177-5184
Alpha-hemolysin (HlyA) is a pore-forming toxin secreted by pathogenic strains of Escherichia coli. The toxin is synthesized as a protoxin, ProHlyA, which is matured in the cytosol to the active form by acylation at two internal lysines, K563 and K689 (HlyA). It is widely known that the presence of fatty acids is crucial for the hemolytic and cytotoxic effects of the toxin. However, no detailed physicochemical characterization of the structural changes produced by fatty acids in the soluble protein prior to membrane binding has been carried out to date. The effects of chemical denaturants, the ANS binding parameters (Kd and n) and the sensitivity to proteases were compared between the acylated and unacylated protein forms HlyA and ProHlyA. Our results are consistent with a molten globular form of the acylated protein. Moreover, because molten globule proteins are intrinsically disordered proteins, using disorder prediction analyses, we show that HlyA contains 9 regions composed of 10-30 natively disordered amino acids. We propose that this conformation induced by covalently bound fatty acids might provide HlyA with the ability to bind to a variety of molecules during its action mechanism.  相似文献   

18.
Fatty acid acylation is a functionally important modification of proteins. In the liver, however, acylated proteins remain largely unknown. This work was aimed at investigating fatty acid acylation of proteins in cultured rat hepatocytes. Incubation of these cells with [9,10-3H] myristic acid followed by two-dimensional electrophoresis separation of the delipidated cellular proteins and autoradiography evidenced the reproducible and selective incorporation of radioactivity from the precursor into 18 well-resolved proteins in the 10--120 kDa range and the 4--7 pH range. Radiolabeling of these proteins resulted from covalent linkage to the precursor [9,10-3H] myristic acid or to its elongation product, palmitic acid. The majority of the covalent linkages between the proteins and the fatty acids were broken by base hydrolysis, which indicated that the linkage was of thioester or ester-type. Only one of the studied proteins was attached to myristic acid via an amide linkage which resisted the basic treatment but was broken by acid hydrolysis. After incubation with [9,10-3H] palmitic acid, only two proteins previously detected with myristic acid were radiolabeled. Finally, the identified acylated proteins may be grouped into two classes: proteins involved in signal transduction (the alpha subunit of a heterotrimeric G protein and several small G proteins) and cytoskeletal proteins (cytokeratins, actin).  相似文献   

19.
20.
Protein fatty acyltransferase is located in the rough endoplasmic reticulum   总被引:5,自引:0,他引:5  
M Berger  M F Schmidt 《FEBS letters》1985,187(2):289-294
The fatty acid acylation of polypeptides was studied in vivo and in vitro by incorporation of radiolabeled palmitic acid into Semliki Forest viral polypeptides. Utilizing a cell-free system for acylation protein fatty acyltransferase was characterized as an integral membrane protein. No acylation activity was detected in the cytosol. During subcellular fractionation of a variety of mammalian or avian cells the enzyme was localized to the rough endoplasmic reticulum. Therefore this posttranslational hydrophobic modification starts earlier in the biosynthesis of acylated polypeptides than previously believed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号