首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In tropical forests, much of the plant diversity is due to a large number of congeneric taxa. It is unclear what ecological processes are responsible for the number and composition of co‐occurring species in these forests. Here, we present strong evidence that microhabitat heterogeneity may contribute to the coexistence of many different Inga species in just 100 ha. We examined their patterns of abundance and diversity in 75 transects related to the edaphic variables: soil water content, pH and soil texture at three different microtopographical units (ridges, slopes and valleys). We used two different approaches: Inga community level analyses and individual‐species analyses. Multivariate analyses, controlled for spatial autocorrelation, demonstrated that species show a distributional gradient mainly related to soil water content and to a lesser degree pH. Individual‐species analyses determined that obligate microhabitat restriction is uncommon: only 2 of 37 species analyzed were restricted to a single microhabitat. Habitat association analyses, however, identified a number of species characteristic of the ridge, slope and valley microhabitats. We conclude that the environmental setting plays an important role in the Inga community assembly but is not sufficient to explain the coexistence of 37 sympatric species at a single site.  相似文献   

2.
Aims In this study, we examine two common invasion biology hypotheses—biotic resistance and fluctuating resource availability—to explain the patterns of invasion of an invasive grass, Microstegium vimineum.Methods We used 13-year-old deer exclosures in Great Smoky Mountains National Park, USA, to examine how chronic disturbance by deer browsing affects available resources, plant diversity, and invasion in an understory plant community. Using two replicate 1 m 2 plots in each deer browsed and unbrowsed area, we recorded each plant species present, the abundance per species, and the fractional percent cover of vegetation by the cover classes: herbaceous, woody, and graminoid. For each sample plot, we also estimated overstory canopy cover, soil moisture, total soil carbon and nitrogen, and soil pH as a measure of abiotic differences between plots.Important findings We found that plant community composition between chronically browsed and unbrowsed plots differed markedly. Plant diversity was 40% lower in browsed than in unbrowsed plots. At our sites, diversity explained 48% and woody plant cover 35% of the variation in M. vimineum abundance. In addition, we found 3.3 times less M. vimineum in the unbrowsed plots due to higher woody plant cover and plant diversity than in the browsed plots. A parsimonious explanation of these results indicate that disturbances such as herbivory may elicit multiple conditions, namely releasing available resources such as open space, light, and decreasing plant diversity, which may facilitate the proliferation of an invasive species. Finally, by testing two different hypotheses, this study addresses more recent calls to incorporate multiple hypotheses into research attempting to explain plant invasion.  相似文献   

3.
Multiple evidence of positive relationships between nice breadth and range size (NB–RS) suggested that this can be a general ecological pattern. However, correlations between niche breadth and range size can emerge as a by-product of strong spatial structure of environmental variables. This can be problematic because niche breadth is often assessed using broad-scale macroclimatic variables, which suffer heavy spatial autocorrelation. Microhabitat measurements provide accurate information on species tolerance, and show limited autocorrelation. The aim of this study was to combine macroclimate and microhabitat data to assess NB–RS relationships in European plethodontid salamanders (Hydromantes), and to test whether microhabitat variables with weak autocorrelation can provide less biased NB–RS estimates across species. To measure macroclimatic niche, we gathered comprehensive information on the distribution of all Hydromantes species, and combined them with broad-scale climatic layers. To measure microhabitat, we recorded salamander occurrence across > 350 caves and measured microhabitat features influencing their distribution: humidity, temperature and light. We assessed NB–RS relationships through phylogenetic regression; spatial null-models were used to test whether the observed relationships are a by-product of autocorrelation. We observed positive relationships between niche breadth and range size at both the macro- and microhabitat scale. At the macroclimatic scale, strong autocorrelation heavily inflated the possibility to observe positive NB–RS. Spatial autocorrelation was weaker for microhabitat variables. At the microhabitat level, the observed NB–RS was not a by-product of spatial structure of variables. Our study shows that heavy autocorrelation of variables artificially increases the possibility to detect positive relationships between bioclimatic niche and range size, while fine-scale data of microhabitat provide more direct measure of conditions selected by ectotherms, and enable less biased measures of niche breadth. Combining analyses performed at multiple scales and datasets with different spatial structure provides more complete niche information and effectively tests the generality of niche breadth–range size relationships.  相似文献   

4.
Aims We aim to quantify the relative importance of various endogenous and exogenous processes influencing the spatial distribution of the individuals of plant species at different temporal and spatial scales in a species-rich and high-cover meadow in the eastern Tibetan Plateau.Methods We calculated Green's index of dispersion to infer the spatial distribution patterns of 73 herbaceous species at two scales (0.25 and 1.0 m 2). We constructed a series of generalized linear models to test the hypotheses that different species traits such as mean plant stem density, per capita dry biomass, maximum plant height and mean seed mass contribute to their spatial distribution. We used the first principal component of soil C, N and P to explain abundance variation across quadrats and sub-plots.Important findings The individuals of the species studied were highly spatially aggregated. At both spatial scales, biomass and stem density explained the most variation in aggregation, but there was no evidence for an effect of mean seed mass on aggregation intensity. The effects of soil carbon, nitrogen and phosphorus at different depths affected plant abundance mostly at the broader spatial scale. Our results demonstrate that self-thinning and habitat heterogeneity all contribute to determine the spatial aggregation patterns of plant individuals in alpine meadow vegetation in the eastern Tibetan Plateau.  相似文献   

5.
Heteroptera species were collected from 48 sites distributed throughout the mainland and island complexes of Greece during 1999–2004. The aims of this study were to investigate Heteroptera distribution and abundance in Greek streams, identify the environmental factors that are linked to variation in their assemblages and to partition the influence of environmental and spatial components, alone and in combination, on Heteroptera community composition. Canonical ordination techniques (CCA) were used to determine the relationship between environmental variables and species abundance, while variation partitioning was performed using partial CCA to understand the importance of different explanatory variables in Heteroptera variation. Heteroptera variation was decomposed into independent and joint effects of local (physicochemical variables, microhabitat composition, stream width and depth), regional (land use/cover) and geographic variables (longitude, latitude, altitude and distance to source). Land use/cover, aquatic and riparian vegetation, stream size and water chemistry were the most important factors structuring Heteroptera assemblages. At regional scale, bug assemblages were mainly divided into those found in forested and agricultural landscapes, following water quality and microhabitat composition at local scale. Local variables accounted for 48% of the total explained variation, regional variables for 20% whereas geographical position appeared to be the least influencing factor (8.5%). The results of partial constraint analyses suggested that local variables play a major role in Heteroptera variation followed by regional variables. Electronic supplementary material Electronic supplementary material is available for this article at and accessible for authorised users.  相似文献   

6.
磷(P)是地球生态系统中重要的生命元素。全球变化背景下, 科学地探究森林土壤磷储量现状及其影响因子, 对陆地生态系统的稳定以及磷的可持续利用具有重要意义。因此, 该研究利用青海省240个森林标准样地土壤实测数据, 并结合青海省森林资源清查资料估算出了青海省森林土壤磷储量, 揭示了其分布格局, 并讨论了土壤磷储量与环境因子的关系。结果表明: (1)青海省森林土壤磷储量为1.74 Tg, 全省1 m深土壤平均磷密度为4.65 Mg·hm -2, 土壤磷密度总体上呈地带性分布。(2)土壤磷密度在中低海拔(2 200-3 000 m)区域随海拔的升高显著减小, 在高海拔(3 300-3 900 m)区域随海拔高度的增加而显著变大。山地灰褐色森林土的磷密度最大且显著大于山地棕色暗针叶林土和山地暗褐土。(3)土壤磷含量随海拔升高显著减小, 山地棕色暗针叶林土各土层磷含量相对较大, 山地暗褐土的磷含量最小, 且土壤磷含量随着土层的加深而减小。(4)海拔、温度、土壤类型以及土壤含水量均对土壤磷含量有直接影响, 且影响较大, 其中海拔和温度是影响土壤磷含量变化的关键因子; 土壤磷密度对土壤容重、土壤磷含量、土壤含水量、海拔、土壤类型的变化响应较为明显, 而土壤容重可能是限制土壤磷密度变化的主导因素。  相似文献   

7.
Question: Factors influencing seedling establishment are known to vary between open sites and those protected by plant cover. In many desert regions, protected microhabitats below shrubs are essential for establishment of many cactus species. Very little is known about these factors for Andean cacti and how the importance of vegetation cover varies with cactus species. Are Andean cacti associated more frequently to vegetation cover than to open ground? Are they associated to certain shrub species? Is the distributional pattern in relation to cover similar for different cactus species? In what microhabitat (below or away from shrubs) are cactus seeds more abundant? These questions are addressed for the case of an Andean semi‐desert. Location: Semi‐arid tropical Andes, La Paz department, Bolivia. Methods: We examined 132 isolated shrubs = 50 cm along a line across two microhabitats: areas below and away from shrubs/trees. Shrub crown size was measured. The among‐shrub samples were taken from open spaces contiguous to each of the sampled shrubs. In both microhabitats, all cactus species were recorded. The cardinal direction of the cacti was also registered. Correlation between canopy diameter and number of beneficiaries was evaluated for Prosopis flexuosa. The cactus seed bank in each microhabitat was also studied. Results and Conclusions: The four cactus species found behaved differently in relation to shrub canopies. These distributional differences could be due to differences in growth form. Columnar cacti apparently need the shade of shrubs. Only the columnar species is able to grow near the base of the tallest nurse species. The opuntioid cacti studied seem more facultative: although apparently preferring shrub un‐der‐canopies, they are able to establish in open ground. The globose cactus is the most indifferent to the presence of plant cover. These patterns parallel others found in North America. The capacity of different cacti to appear in open spaces could be related to vegetative propagation, and not necessarily to seedling tolerance of heat.  相似文献   

8.
Understanding why species react differently to changing environments requires detailed understanding of the factors that regulate distributions within current ranges These types of investigations require spatially and temporally explicit examination of the scales at which a species responds to environmental factors To obtain this type of information, we analyzed the relationship between ice cover and abundance, distribution, and spacing of belted kingfishers Ceryle alcyon during the autumn/winters of 1993–1994 and 1994–1995 Our results indicate that the effects of ice cover on kingfisher populations are complex and scale dependent At a small spatial scale (0 5 km) the abundance of kingfishers was negatively correlated with ice cover, as we expected At a large spatial scale (15 5 km), however, there was no relationship between these variables We argue this contradiction m our results is due to differences in the patchiness of ice cover at these scales In a year with average winter temperatures (1993–1994) the spatial and temporal autocorrelation of ice cover and kingfisher distribution were similar In a warm year (1994–1995), however, we found no such similarity Neighbor distances were shorter during the cold year than during the warm year and shorter during censuses with extensive ice cover than censuses with sparse ice cover We conclude that ice cover is a key factor regulating the distribution and abundance of belted kingfishers in our study area during cold to average years, but that during warm years other factors are likely to be more important Based on these patterns we think that patterns of ice cover may be important in mediating the response of kingfishers to changes in climate  相似文献   

9.
物种-多度格局研究是揭示群落组织结构和物种区域分布规律的重要手段。该研究以青藏高原东北部的甘南高寒草甸为研究对象, 基于野外调查和室内分析, 研究了不同坡向的环境因子、植物群落分布, 并利用RAD软件程序包对其进行了拟合分析。结果显示: 在南坡-北坡上, 土壤含水量从南坡(0.18 g·g -1)到北坡(0.31 g·g -1)呈现递增的趋势, 土壤温度从南坡(22.33 ℃)到北坡(18.13 ℃)以及光照强度从南坡(744.15 lx)到北坡(681.93 lx)均呈逐渐减小的趋势。物种-多度分布曲线的斜率从南坡向北坡依次减小。随着坡向由南向北转变, 物种-多度和物种多样性都呈递增的趋势。通过6个模型对坡向梯度的物种-多度分布进行拟合发现, 甘南高寒草甸区的物种-多度分布主要是以生态位模型为主, 其次是随机分布模型。青藏高原高寒草甸微生境梯度上的物种在总体上的资源分配模式是以固定分配模式为主, 稀有种的资源分配模式是以随机性模型为主, 常见种的资源分配模式则是以确定性模型为主。  相似文献   

10.
This study investigated the spatial and temporal patterns of abundance of four substratum-associated species of Gobiidae on a heterogeneous reef flat comprised of four distinct habitat zones, and examined microhabitat use within each zone. Asterropteryx semipunctatus had the widest distribution and was the most abundant species in each habitat zone, followed by Amblygobius bynoensis , Valenciennea muralis and Amblygobius phalaena . Significant temporal and spatial differences in mean density were evident. The highest density of A. semipunctatus (312 individuals 10 m–2) was recorded in a habitat zone dominated by algal-covered rubble, whereas A. bynoensis and V. muralis were most abundant (mean summer density 5·5–5·8 individuals 10 m–2) in habitats containing both sand and hard substrata. In contrast, A. phalaena was uncommon (mean density ≤ 0·4 individuals 10 m–2) in all four habitat zones. Significant seasonal differences in abundance were due to the large influx of recruits in summer. Ontogenetic shifts in habitat use were not evident at either the macrohabitat ( i.e. among habitat zones) or microhabitat scale ( i.e. substratum use within zones). At the microhabitat scale, V. muralis consistently exhibited a strong positive association with sand and was rarely associated with hard substrata. In contrast, the two Amblygobius species were commonly associated with both sand and hard substrata, but patterns of microhabitat use differed among habitat zones. Substratum composition at the microhabitat scale may influence spatial patterns of abundance at larger spatial scales by providing essential resources and, or influencing carrying capacity and predation risk.  相似文献   

11.
Although our biological knowledge regarding cactus species is thorough in many areas, only in recent years have ecologists addressed their demographic behavior. Here we attempt a first review of the present knowledge on cactus demography, including an analysis of the published information on species with different growth forms and life-history traits. Our review shows that cactus distribution ranges are determined by environmental heterogeneity and by species-specific physiological requirements. Temperature extremes may pose latitudinal and altitudinal distribution limits. At a more local scale, soil properties dramatically affect cactus distribution. Most cacti show a clumped spatial distribution pattern, which may be the reflection of a patchy resource distribution within their heterogeneous environments. The association of cacti with nurse plants is another factor that may account for this aggregated distribution. Many cacti grow in association with these perennial nurse plants, particularly during early life-cycle phases. The shade provided by nurse plants results in reduced evapotranspiration and buffered temperatures, which enhance cactus germination and establishment. In some cases a certain degree of specificity has been detected between particular cactus species and certain nurse plants. Yet some globose cacti may establish in the absence of nurse plants. In these cases, rocks and other soil irregularities may facilitate germination and establishment. Cacti are slow-growing species. Several abiotic factors, such as water and nutrient availability, may affect their growth rate. Competition and positive associations (i.e., mycorrhizae and nurse-cacti association) may also affect growth rate. Age at first reproduction varies greatly in relation to plant longevity. In general, cactus reproductive capacity increases with plant size. Populations are often composed of an uneven number of individuals distributed in the different size categories. This type of population structure reflects massive but infrequent recruitment events, apparently associated with benign periods of abundant rainfall. A few cactus species have been analyzed through the use of population-projection matrices. A total of 17 matrices were compiled and compared. Most of them reflect populations that are close to the numerical equilibrium (λ = close to unity). Elasticity analyses revealed that the persistence of individuals in their current size category (“stasis”) is the demographic process that contributes the most to population growth rate. Also, adult categories (rather than juveniles or seedlings) show the largest contributions to λ. No differences were apparent regarding this matter between cacti with different life-forms. This review shows that our knowledge of cactus population ecology is still incipient and rather unevenly distributed: some topics are well developed; for others the available information is still very limited. Our ability to preserve the great number of cactus species that are now endangered depends on our capacity to deepen our ecological understanding of their population processes.  相似文献   

12.
In order to examine the spatial distribution of forest resources on local territories and to understand the factors controlling such distributions, we studied the spatial patterns of a group of 23 useful plant species on the territory of a Kuna community in the province of Darien, Panama. A stratified random sampling scheme was used to survey the distribution and abundance of the species across a 3500 ha area around the village. Data on the physical environment as well as the geographic coordinates of the sample plots were also obtained. A series of canonical analyses was conducted to evaluate the species–environment relationships and to identify spatial structures in the species distributions left unexplained by the environmental variables. Four distinct distribution patterns were identified among the species; these were most strongly explained by land-use, the degree of canopy closure and topography. Significant spatial structures, independent of the measured environmental variables, were related to anthropogenic pressure and an edaphic gradient, and the habitat associations of the individual species were described. The results obtained from this case study suggest that land-use dynamics may play a predominant role in structuring inhabited landscapes, and that diversity in distribution patterns and habitat associations will require a combination of spatially explicit management strategies to ensure the local resource base.  相似文献   

13.
The elucidation of phytogeographic patterns and their drivers in biodiversity hotspots is essential to the study of ecology and the conservation of these areas. In 2000, an important study by Oliveira‐Filho and Fontes led to changes in the paradigms that define our understanding of the Atlantic Forest (Brazil). Here, our aim was to revisit this study using a more comprehensive set of environmental predictors, an updated and much larger tree species dataset and checklist, and more refined data analyses. We performed exploratory and confirmatory analyses, including the modeling of the spatial components with Moran's Eigenvector Maps, using data from 483 sites in southeastern Brazil, which encompass a total of 3546 species and 33 geo‐climatic variables. We observed strong floristic similarities between rain‐ and seasonal forests and a species distribution continuum across the main gradients. The environmental and spatial variables were significantly correlated with floristic patterns, and we demonstrated that the tree flora of the seasonal forests should no longer be considered a simple subset of the rain forest flora. The findings of the original paper were not only confirmed but we also unveiled additional, important phytogeographic patterns. We also reinforced the main conclusion of the paper that the Atlantic Forest concept must encompass all of the forest types east of the dry corridor in South America, a designation of utmost importance for the conservation of this biodiversity hotspot.  相似文献   

14.
Distribution of abundance across the range in eastern North American trees   总被引:2,自引:0,他引:2  
Aim  We analysed spatial datasets of abundance across the entirety, or near entirety, of the geographical ranges of 134 tree species to test macroecological hypotheses concerning the distribution of abundance across geographical ranges.
Location  Our abundance estimates came via the USDA Forest Service Forest Inventory and Analysis Eastwide Database, which contains data for 134 eastern North American tree species.
Methods  We extracted measures of range size and the spatial location of abundance relative to position in the range for each species to test four hypotheses: (a) species occur in low abundance throughout most of their geographical range; (b) there is a positive interspecific relationship between abundance and range size; (c) species are more abundant in the centre of their range; and (d) there is a bimodal distribution of spatial autocorrelation in abundance across a species range.
Results  Our results demonstrate that (a) most species (85%) are abundant somewhere in their geographical range; (b) species achieving relatively high abundance tend to have larger range sizes; (c) the widely held assumption that species exhibit an 'abundant-centre distribution' is not well supported for the majority of species; we suggest 'abundant-core' as a more suitable term; and (d) there is no evidence of a bimodal distribution of spatial autocorrelation in abundance.  
Main Conclusions 

For many tree species, high abundance can be achieved at any position in the range, though suitable sites are found with less frequency towards range edges. Competitive relationships may be involved in the distribution of abundance across tree ranges and species with larger ranges (and possibly broader niches) may be affected more by biotic interactions than smaller ranging species.  相似文献   

15.
印度特莱东部林地-草地系统中非生物和空间变量对木本和草本物种丰度的影响 目前尚不清楚哪些环境因素决定了热带稀树草原特别是在潮湿地带的林地和草地镶嵌处的林地和草地的物种多度。基于此,本研究探究了非生物和空间变量对印度东北部的台拉河生态系统木本和草本物种分布的影响,评估了气候和非气候因素在整个景观中保持可变的树草比和空间连通性和分散性的相对重要性。在519 km2的受保护的特莱栖息地中随机建立了134个30 m × 30 m的抽样样方,并调查了每个样方的木本和草本植物的物种多度和气候,以及非气候环境因素。基于不同的地点空间连通性模型,通过构建变量检验气候和非气候环境因素对物种多度的影响。使用冗余分析和方差分解定量解析环境变量和空间结构对林地和草地物种多度的相对重要性。研究结果表明,降雨、火灾、水分胁迫、地形和土壤养分在内的环境变量对物种多度和林草比有显著的影响。空间结构显著,最佳空间模型为反距离加权模型(inverse distance-weighted model), 而且显示最大的空间扩散距离可以达到23.5 km,表明扩散限制较弱。约21%的物种多度变化能够被环境和空间因素解释。这些结果揭示了植物群落动态的决定因素,即环境因子的时空变化可能驱动物种分布和多度的随机性,并对植被镶嵌产生主导影响。  相似文献   

16.
Aim Dispersal assembly and niche assembly are two competing theories proposed to explain the maintenance of species diversity in tropical forests. Dispersal theory emphasizes the role of chance colonization events and distance‐limited seed dispersal in explaining species abundance and distribution, whereas niche theory emphasizes differences among species in requirements for potentially limiting resources. Species distribution patterns in tropical forests often correlate with geology and topography, but tests of the relative importance of dispersal and niche partitioning have been hampered by an inadequate characterization of resource availability. The aim of this study was to explore how soil chemical and physical properties, climate, and geographic distance affect understorey palm communities in lower montane forests. Location Fortuna Forest Reserve, Chiriqui Province, and Palo Seco Forest Reserve, Bocas del Toro Province, in western Panama. Methods Understorey palms and soil nutrient concentrations were surveyed within 10 sites on different soil types across a 13‐km transect. Variation in palm community composition was examined in relation to spatial and environmental variables. Results The 25 understorey palm species recorded in the study were non‐randomly distributed among forests differing in soil nutrient availability. In support of dispersal theory, floristic similarity decreased predictably with increasing geographic distance. However, environmental and soil variables were also correlated with geographic distance. Floristic similarity was also highly associated with a subset of environmental variables. Variation in palm community similarity was most strongly correlated with inorganic nitrogen availability and cation concentration. A subset of soil variables had a stronger relationship with floristic similarity when geographic distance was controlled for than did geographic distance when differences in soils were controlled for. Main conclusions Both dispersal and niche processes affect palm species distribution patterns. Although spatially limited dispersal may influence species distribution patterns, soil‐based habitat associations, particularly with respect to soil nitrogen, cation availability and aluminium concentrations, remain important factors influencing palm community composition at the mesoscale level in this tropical montane forest.  相似文献   

17.
Aims Deserts are one of the ecosystems most sensitive to global climate change. However, there are few studies examining how changing abiotic and biotic factors under climate change will affect plant species diversity in the temperate deserts of Asia. This study aimed to: (i) characterize species distributions and diversity patterns in an Asian temperate desert; and (ii) to quantify the effects of spatial and environment variables on plant species diversity.Methods We surveyed 61 sites to examine the relationship between plant species diversity and several spatial/environmental variables in the Gurbantunggut Desert. Spatial and environmental variables were used to predict plant species diversity in separate multiple regression and ordination models. Variation in species responses to spatial and environmental conditions was partitioned by combining these variables in a redundancy analysis (RDA) and by creating multivariate regression trees (MRT).Important findings We found 92 plant species across the 61 sites. Elevation and geographic location were the dominant environmental factors underlying variation in site species richness. A RDA indicated that 93% of the variance in the species–environment relationships was explained by altitude, latitude, longitude, precipitation and slope position. Precipitation and topographic heterogeneity, through their effects on water availability, were more important than soil chemistry in determining the distribution of species. MRT analyses categorized communities into four groups based on latitude, soil pH and elevation, explaining 42.3% of the standardized species variance. Soil pH strongly influenced community composition within homogeneous geographic areas. Our findings suggest that precipitation and topographic heterogeneity, rather than edaphic heterogeneity, are more closely correlated to the number of species and their distributions in the temperate desert.  相似文献   

18.
Divergent evolution between Western Rock Nuthatch Sitta neumayer and Eastern Rock Nuthatch Sitta tephronota is widely recognized as the original case study of character displacement. However, in their contact zone in the Zagros Mountains, Iran, the morphological differences important for niche segregation between the two species remain unknown. We investigated microhabitat use and morphological adaptations of the two species, predicting that morphological adaptations to different habitats in these two nuthatches have led to spatial segregation. Seventy‐seven birds were captured and measured in the contact zone and allopatric zone in Iran. Twenty‐two primary variables related to flight apparatus, functional foot apparatus and feeding apparatus were measured and 11 ratios of primary variables were calculated as secondary variables due to their importance in habitat use. We also measured environmental variables related to geological features, mineral substrates and vegetation cover at a random sample of 100 of the locations where a nuthatch was observed. Results of morphometric and habitat analyses indicated that, in addition to trophic niche segregation, the two nuthatch species also differ in their microhabitat use and show differences in morphological features accordingly. In many case studies of character displacement, much more interest has been focused on the morphological differences in feeding apparatus than on those relating to habitat use. We suggest that future studies of character displacement should pay more attention to spatial niche segregation between sympatric species rather than trophic niche segregation.  相似文献   

19.
We hypothesized that distribution and microhabitat use by imperilled chub Squalius torgalensis in the Torgal stream, Portugal, during low flows, were related to spatial patchiness in physical resources and shifts in ontogenetic preferences. We mapped fish abundance and sampled microhabitat use and availability via snorkelling. We used the coefficient of dispersion in abundance, and spatial autocorrelation analyses to characterize chub distribution, and Hurdle models to relate chub presence and abundance to habitat characteristics. We showed that chub displayed an aggregated distribution, apparently in association with patchily distributed and autocorrelated physical resources, such as debris, roots and aquatic vegetation. Microhabitat use generally was unrelated to velocity, and ontogenetic differences in microhabitat use were not substantial. Nevertheless, sometimes small chub preferred low-velocity patches with coarse substrata, debris and roots, whereas large chub preferred deeper patches with roots and aquatic vegetation. Results suggest that, in low flow conditions, chub respond to resource patchiness by congregating in favourable microhabitats, and that maintenance of mosaics of patches with variable substrata, cover and depth may be important for the persistence of fish in Mediterranean streams.  相似文献   

20.
为探明热带森林蚂蚁巢穴的分布特征及其影响因素, 采用样方法研究了西双版纳不同演替阶段热带森林定居巢穴蚂蚁的种类及其巢穴的密度、盖度和空间分布特征, 并分析了土壤理化环境与蚂蚁种类总数、巢穴密度及盖度的相关性。结果表明, 不同演替阶段热带森林蚂蚁种类总数、巢穴的密度及盖度大小顺序为: 小果野芭蕉 (Musa acuminata)群落>白背桐(Mallotus paniculatus)群落>思茅崖豆(Mellettia leptobotrya)群落, 并且热带森林的演替类型显著影响蚂蚁种类总数及巢穴密度, 而对巢穴盖度的影响未达到显著水平; 蚂蚁种类总数、巢穴密度与土壤总有机碳和水解氮显著正相关, 与土壤容重和土壤含水率显著负相关, 但所选择的土壤理化指标与巢穴盖度的相关性均未达到显著水平; 蚂蚁巢穴的空间分布呈随机分布格局。我们的数据表明, 不同演替阶段热带森林所形成的植被类型及土壤环境状况共同影响定居的蚂蚁种类总数与筑巢密度。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号