首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Nematode sperm undergo a drastic physiological change during spermiogenesis (sperm activation). Unlike mammalian flagellated sperm, nematode sperm are amoeboid cells and their motility is driven by the dynamics of a cytoskeleton composed of major sperm protein (MSP) rather than actin found in other crawling cells. This review focuses on sperm from Caenorhabditis elegans and Ascaris suum to address the roles of external and internal factors that trigger sperm activation and power sperm motility. Nematode sperm can be activated in vitro by several factors, including Pronase and ionophores, and in vivo through the TRY-5 and SPE-8 pathways. Moreover, protease and protease inhibitors are crucial regulators of sperm maturation. MSP-based sperm motility involves a coupled process of protrusion and retraction, both of which have been reconstituted in vitro. Sperm motility is mediated by phosphorylation signals, as illustrated by identification of several key components (MPOP, MFPs and MPAK) in Ascaris and the characterization of GSP-3/4 in C. elegans.  相似文献   

2.
Reproduction, fat metabolism, and longevity are intertwined regulatory axes; recent studies in C. elegans have provided evidence that these processes are directly coupled. However, the mechanisms by which they are coupled and the reproductive signals modulating fat metabolism and lifespan are poorly understood. Here, we find that an oogenesis-enriched gene, c30f12.4, is specifically expressed and located in germ cells and early embryos; when the gene is knocked out, oogenesis is disrupted and brood size is decreased. In addition to the reproductive phenotype, we find that the loss of c30f12.4alters fat metabolism, resulting in decreased fat storage and smaller lipid droplets. Meanwhile, c30f12.4mutant worms display a shortened lifespan. Our results highlight an important role for c30f12.4in regulating reproduction, fat homeostasis, and aging in C. elegans, which helps us to better understand the relationship between these processes.  相似文献   

3.
Fat storage disorders including obesity are pandemic human health problems. As a genetically amenable model organism, Caeno- rhabditis elegans has often been used to explore the molecular mechanisms of fat storage regulation. Dye staining of fixed animals and stimulated Raman scattering (SRS) microscopy methods have been used successfully to study fat storage, but a genetic screening system that takes full advantage of C. elegans transparency to perform live imaging of fluorescent protein reporters has not yet been reported. Here, we investigated the tissue-specific expression of the GFP fusion of Perilipin 1 (PLIN1), a Drosophila lipid droplet-associated protein, in C. elegans. Our results indicate that PLINI::GFP labels lipid droplets and can be used as a fat storage indicator in live worms. Through an RNAi screen, we further identified several previously uncharacterized new fat storage regulators.  相似文献   

4.
In virtually every cell, neutral lipids are stored in cytoplasmic structures called lipid droplets (LDs) and also referred to as lipid bodies or lipid particles. We developed a rapid high-throughput assay based on the recovery of quenched BODIPY-fluorescence that allows to quantify lipid droplets. The method was validated by monitoring lipid droplet turnover during growth of a yeast culture and by screening a group of strains deleted in genes known to be involved in lipid metabolism. In both tests, the fluorimetric assay showed high sensitivity and good agreement with previously reported data using microscopy. We used this method for high-throughput identification of protein phosphatases involved in lipid droplet metabolism. From 65 yeast knockout strains encoding protein phosphatases and its regulatory subunits, 13 strains revealed to have abnormal levels of lipid droplets, 10 of them having high lipid droplet content. Strains deleted for type I protein phosphatases and related regulators (ppz2, gac1, bni4), type 2A phosphatase and its related regulator (pph21 and sap185), type 2C protein phosphatases (ptc1, ptc4, ptc7) and dual phosphatases (pps1, msg5) were catalogued as high-lipid droplet content strains. Only reg1, a targeting subunit of the type 1 phosphatase Glc7p, and members of the nutrient-sensitive TOR pathway (sit4 and the regulatory subunit sap190) were catalogued as low-lipid droplet content strains, which were studied further. We show that Snf1, the homologue of the mammalian AMP-activated kinase, is constitutively phosphorylated (hyperactive) in sit4 and sap190 strains leading to a reduction of acetyl-CoA carboxylase activity. In conclusion, our fast and highly sensitive method permitted us to catalogue protein phosphatases involved in the regulation of LD metabolism and present evidence indicating that the TOR pathway and the SNF1/AMPK pathway are connected through the Sit4p-Sap190p pair in the control of lipid droplet biogenesis.  相似文献   

5.
Hepatitis C virus (HCV) core protein has been suggested to play crucial roles in the pathogeneses of liver steatosis and hepatocellular carcinomas due to HCV infection. Intracellular HCV core protein is localized mainly in lipid droplets, in which the core protein should exert its significant biological/pathological functions. In this study, we performed comparative proteomic analysis of lipid droplet proteins in core-expressing and non-expressing hepatoma cell lines. We identified 38 proteins in the lipid droplet fraction of core-expressing (Hep39) cells and 30 proteins in that of non-expressing (Hepswx) cells by 1-D-SDS-PAGE/MALDI-TOF mass spectrometry (MS) or direct nanoflow liquid chromatography-MS/MS. Interestingly, the lipid droplet fraction of Hep39 cells had an apparently lower content of adipose differentiation-related protein and a much higher content of TIP47 than that of Hepswx cells, suggesting the participation of the core protein in lipid droplet biogenesis in HCV-infected cells. Another distinct feature is that proteins involved in RNA metabolism, particularly DEAD box protein 1 and DEAD box protein 3, were detected in the lipid droplet fraction of Hep39 cells. These results suggest that lipid droplets containing HCV core protein may participate in the RNA metabolism of the host and/or HCV, affecting the pathopoiesis and/or virus replication/production in HCV-infected cells.  相似文献   

6.
An increasing body of evidence shows that the lipid droplet, a neutral lipid storage organelle, plays a role in lipid metabolism and energy homeostasis through its interaction with mitochondria. However, the cellular functions and molecular mechanisms of the interaction remain ambiguous. Here we present data from transmission electron microscopy, fluorescence imaging, and reconstitution assays, demonstrating that lipid droplets physically contact mitochondria in vivo and in vitro. Using a bimolecular fluorescence complementation assay in Saccharomyces cerevisiae, we generated an interactomic map of protein-protein contacts of lipid droplets with mitochondria and peroxisomes. The lipid droplet proteins Erg6 and Pet10 were found to be involved in 75% of the interactions detected. Interestingly, interactions between 3 pairs of lipid metabolic enzymes were detected. Collectively, these data demonstrate that lipid droplets make physical contacts with mitochondria and peroxisomes, and reveal specific molecular interactions that suggest active participation of lipid droplets in lipid metabolism in yeast.  相似文献   

7.
8.
Lipid droplets are evolutionarily conserved organelles where cellular fat storage and mobilization are exquisitely regulated. Recent studies have defined lipid droplets in C. elegans and explored how they are regulated by genetic and dietary factors. C. elegans offers unique opportunities to visualize lipid droplets at single-cell resolution in live animals. The development of novel microscopy techniques and protein markers for lipid droplets will accelerate studies on how nutritional states and subcellular organization are linked in vivo. Together with powerful tools for genetic and biochemical analysis of metabolic pathways, alteration in lipid droplet abundance, size, and distribution in C. elegans can be readily connected to whole-animal energy homeostasis, behavior, and life span. Therefore, further studies on lipid droplets in C. elegans promise to yield valuable insights that complement our knowledge gained from yeast, Drosophila, and mammalian systems on cellular and organismal fat storage.  相似文献   

9.
Development of controllable hypermutable cells can greatly benefit understanding and harnessing microbial evolution. However, there have not been any similar systems developed for Clostridium, an important bacterial genus. Here we report a novel two-step strategy for developing controllable hypermutable cells of Clostridium acetobutylicum, an important and representative industrial strain. Firstly, the mutS/L operon essential for methyldirected mismatch repair (MMR) activity was inactivated from the genome of C. acetobutylicum to generate hypermutable cells with over 250-fold increased mutation rates. Secondly, a proofreading control system carrying an inducibly expressed mutS/L operon was constructed. The hypermutable cells and the proofreading control system were integrated to form a controllable hypermutable system SMBMutC, of which the mutation rates can be regulated by the concentration of anhydrotetracycline (aTc) . Duplication of the miniPthl-tetR module of the proofreading control system further significantly expanded the regulatory space of the mutation rates, demonstrating hypermutable Clostridium cells with controllable mutation rates are generated. The developed C. acetobutylicum strain SMBMutC2 showed higher survival capacities than the control strain facing butanol-stress, indicating greatly increased evolvability and adaptability of the controllable hypermutable cells under environmental challenges.  相似文献   

10.
Wolins NE  Brasaemle DL  Bickel PE 《FEBS letters》2006,580(23):5484-5491
Humans have evolved mechanisms of efficient fat storage to survive famine, but these mechanisms contribute to obesity in our current environment of plentiful food and reduced activity. Little is known about how animals package fat within cells. Five related structural proteins serve roles in packaging fat into lipid droplets. The proteins TIP47, S3-12, and OXPAT/MLDP/PAT-1 move from the cytosol to coat nascent lipid droplets during rapid fat storage. In contrast, perilipin and adipophilin constitutively associate with lipid droplets and play roles in sustained fat storage and regulation of lipolysis. Different tissues express different complements of these lipid droplet proteins. Thus, the tissue-specific complement of these proteins determines how tissues manage lipid stores.  相似文献   

11.
A decrease in bone mineral density during menopause is accompanied by an increase in adipocytes in the bone marrow space. Ovariectomy also leads to accumulation of fat in the bone marrow. Herein we show increased lipid accumulation in bone marrow from estrogen receptor alpha (ERα) knockout (ERαKO) mice compared to wild‐type (WT) mice or estrogen receptor beta (ERβ) knockout (ERβKO) mice. Similarly, bone marrow cells from ERαKO mice differentiated to adipocytes in culture also have increased lipid accumulation compared to cells from WT mice or ERβKO mice. Analysis of individual adipocytes shows that WT mice have fewer, but larger, lipid droplets per cell than adipocytes from ERαKO or ERβKO animals. Furthermore, higher levels of adipose triglyceride lipase (ATGL) protein in WT adipocytes correlate with increased lipolysis and fewer lipid droplets per cell and treatment with 17β‐estradiol (E2) potentiates this response. In contrast, cells from ERαKO mice display higher perilipin protein levels, promoting lipogenesis. Together these results demonstrate that E2 signals via ERα to regulate lipid droplet size and total lipid accumulation in the bone marrow space in vivo. J. Cell. Biochem. 114: 1306–1314, 2013. © 2012 Wiley Periodicals, Inc.  相似文献   

12.
The proportions of body fat and fat-free mass are determining factors of adiposity-associated diseases. Work in Caenorhabditis elegans has revealed evolutionarily conserved pathways of fat metabolism. Nevertheless, analysis of body composition and fat distribution in the nematodes has only been partially unraveled because of methodological difficulties. We characterized metabolic C. elegans mutants by using novel and feasible BODIPY 493/503-based fat staining and flow cytometry approaches. Fixative as well as vital BODIPY staining procedures visualize major fat stores, preserve native lipid droplet morphology, and allow quantification of fat content per body volume of individual worms. Colocalization studies using coherent anti-Stokes Raman scattering microscopy, Raman microspectroscopy, and imaging of lysosome-related organelles as well as biochemical measurement confirm our approaches. We found that the fat-to-volume ratio of dietary restriction, TGF-β, and germline mutants are specific for each strain. In contrast, the proportion of fat-free mass is constant between the mutants, although their volumes differ by a factor of 3. Our approaches enable sensitive, accurate, and high-throughput assessment of adiposity in large C. elegans populations at a single-worm level.  相似文献   

13.
14.
The p38 mitogen-activated protein kinase (MAPK) plays an evolutionarily conserved role in the cellular response to microbial infection and environmental stress. Activation of p38 is mediated through phosphorylation by upstream MAPKK, which in turn is activated by MAPKKK. In the Caenorhabditis elegans, the p38 MAPK (also called PMK-1) signaling pathway has been shown to be required in its resistance to bacterial infection. However, how different upstream MAP2Ks and MAP3Ks specifically contribute to the activation of PMK-1 in response to bacterial infection still is not clearly understood. By using double-stranded RNA-mediated interference (RNAi) and genetic mutants of C. elegans, we demonstrate that C. elegans MOM-4, a mammalian TAK1 homolog, is required for the resistance of C. elegans to a P. aeruginosa infection. We have also found that the MKK-4 of C. elegans is required for P. aeruginosa resistance, but not through the regulation of DLK-1. In summary, our results indicate that different upstream MAPKKKs or MAPKKs regulate the activation of PMK-1 in response to P. aeruginosa.  相似文献   

15.
Lipid droplets are ubiquitous cellular compartments that store neutral lipids and specific proteins localize on their surface. These proteins work as a scaffold in maintaining the lipid droplet structure or as regulators of lipogenesis or lipolysis. Previously, the most abundant lipid droplet protein, namely stramenopile-type lipid droplet protein (StLDP), was identified in the marine diatom Phaeodactylum tricornutum; however, its function remains unclear because StLDP does not reveal homology with known lipid droplet proteins and lacks a predictable domain. In this study, P. tricornutum was transformed to express a homologous StLDP gene under an fcpA promoter in order to determine its function. StLDP expression was strongly enhanced in the mutant (H8), especially in nitrogen-sufficient conditions; however, it was attenuated in nitrogen-deficient conditions. Despite the strong expression, no significant difference was observed in the lipid composition between the wild type (WT) and H8 under nitrogen-sufficient conditions. After cultivation in nitrogen-free medium for 6 days, neutral lipid content significantly increased in H8 than in WT. After 2 days of cultivation in nitrogen-free medium, 97.0% of single cells in WT formed one or two lipid droplets, whereas in H8, this proportion decreased to 78.8%, and the proportion of cells forming three or four lipid droplets increased. Thus, the function of StLDP was speculated to sequester triacylglycerol on the initial lipid droplet formation.  相似文献   

16.
Lipid droplets in adipocytes serve as the principal long-term energy storage depot of animals. There is increasing recognition that lipid droplets are not merely a static neutral lipid storage site, but in fact dynamic and multi-functional organelles. Structurally, lipid droplet consists of a neutral lipid core surrounded by a phospholipid monolayer and proteins embedded in or bound to the phospholipid layer. Proteins on the surface of lipid droplets are crucial to droplet structure and dynamics. To understand the lipid droplet-associated proteome of primary adipocyte with a large central lipid droplet, lipid droplets of white adipose tissue from C57BL/6 mice were isolated. And the proteins were extracted and analyzed by liquid chromatography coupled with tandem mass spectrometry. A total of 193 proteins including 73 previously unreported proteins were identified. Furthermore, the isotope-coded affinity tags (ICAT) was used to compare the difference of lipid droplet-associated proteomes between the normal lean and the high-fat diet-induced obese C57BL/6 mice. Of 23 proteins quantified by ICAT analysis, 3 proteins were up-regulated and 4 proteins were down-regulated in the lipid droplets of adipose tissue from the obese mice. Importantly, two structural proteins of lipid droplets, perilipin A and vimentin, were greatly reduced in the lipid droplets of the adipose tissue from the obese mice, implicating reduced protein machinery for lipid droplet stability.  相似文献   

17.
Lipins are phosphatidate phosphatases that generate diacylglycerol (DAG). In this study, we report that yeast lipin, Pah1p, controls the formation of cytosolic lipid droplets. Disruption of PAH1 resulted in a 63% decrease in droplet number, although total neutral lipid levels did not change. This was accompanied by an accumulation of neutral lipids in the endoplasmic reticulum (ER). The droplet biogenesis defect was not a result of alterations in neutral lipid ratios. No droplets were visible in the absence of both PAH1 and steryl acyltransferases when grown in glucose medium, even though the strain produces as much triacylglycerol as wild type. The requirement of PAH1 for normal droplet formation can be bypassed by a knockout of DGK1. Nem1p, the activator of Pah1p, localizes to a single punctum per cell on the ER that is usually next to a droplet, suggesting that it is a site of droplet assembly. Overall, this study provides strong evidence that DAG generated by Pah1p is important for droplet biogenesis.  相似文献   

18.
Autophagy is a cellular catabolic process in which various cytosolic components are degraded. For example, autophagy can mediate lipolysis of neutral lipid droplets. In contrast, we here report that autophagy is required to facilitate normal levels of neutral lipids in C. elegans. Specifically, by using multiple methods to detect lipid droplets including CARS microscopy, we observed that mutants in the gene bec-1 (VPS30/ATG6/BECN1), a key regulator of autophagy, failed to store substantial neutral lipids in their intestines during development. Moreover, loss of bec-1 resulted in a decline in lipid levels in daf-2 [insulin/IGF-1 receptor (IIR) ortholog] mutants and in germline-less glp-1/Notch animals, both previously recognized to accumulate neutral lipids and have increased autophagy levels. Similarly, inhibition of additional autophagy genes, including unc-51/ULK1/ATG1 and lgg-1/ATG8/MAP1LC3A/LC3 during development, led to a reduction in lipid content. Importantly, the decrease in fat accumulation observed in animals with reduced autophagy did not appear to be due to a change in food uptake or defecation. Taken together, these observations suggest a broader role for autophagy in lipid remodeling in C. elegans.  相似文献   

19.
Caenorhabditis elegans hid-1 gene was first identified in a screen for mutants with a high-temperature-induced dauer formation (Hid) phenotype. Despite the fact that the hid-1 gene encodes a novel protein (HID-1) which is highly conserved from Caenorhabditis elegans to mammals, the domain structure, subcellular localization, and exact function of HID-1 remain unknown. Previous studies and various bioinformatic softwares predicted that HID-1 contained many transmembrane domains but no known functional domain. In this study, we revealed that mammalian HID-1 localized to the medial- and trans-Golgi apparatus as well as the cytosol, and the localization was sensitive to brefeldin A treatment. Next, we demonstrated that HID-1 was a peripheral membrane protein and dynamically shuttled between the Golgi apparatus and the cytosol. Finally, we verified that a conserved N-terminal myristoylation site was required for HID-1 binding to the Golgi apparatus. We propose that HID-1 is probably involved in the intracellular trafficking within the Golgi region.  相似文献   

20.
This study investigated the impact of lipid extraction, CaCO3 removal and of both treatments combined on fish tissue δ13C, δ15N and C:N ratio. Furthermore, the suitability of empirical δ13C lipid normalization and correction models was examined. δ15N was affected by lipid extraction (increase of up to 1·65‰) and by the combination of both treatments, while acidification alone showed no effect. The observed shift in δ15N represents a significant bias in trophic level estimates, i.e. lipid-extracted samples are not suitable for δ15N analysis. C:N and δ13C were significantly affected by lipid extraction, proportional to initial tissue lipid content. For both variables, rates of change with lipid content (ΔC:N and Δδ13C) were species specific. All tested lipid normalization and correction models produced biased estimates of fish tissue δ13C, probably due to a non-representative database and incorrect assumptions and generalizations the models were based on. Improved models need a priori more extensive and detailed studies of the relationships between lipid content, C:N and δ13C, as well as of the underlying biochemical processes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号