首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
With their capability to undergo unlimited self-renewal and to differentiate into all cell types in the body, induced pluripotent stem cells (iPSCs), reprogrammed from somatic cells of human patients with defined factors, hold promise for regenerative medicine because they can provide a renewable source of autologous cells for cell therapy without the concern for immune rejection. In addition, iPSCs provide a unique opportunity to model human diseases with complex genetic traits, and a panel of human diseases have been successfully modeled in vitro by patient-specific iPSCs. Despite these progresses, recent studies have raised the concern for genetic and epigenetic abnormalities of iPSCs that could contribute to the immunogenicity of some cells differentiated from iPSCs. The oncogenic potential of iPSCs is further underscored by the findings that the critical tumor suppressor p53, known as the guardian of the genome, suppresses induced pluripotency. Therefore, the clinic application of iPSCs will require the optimization of the reprogramming technology to minimize the genetic and epigenetic abnormalities associated with induced pluripotency.  相似文献   

2.
Generating pluripotent stem cells directly from a patient's somatic cells is one of the major methods to avoid rejection in future regenerative medicine. It is reported that human embryonic stem cells (hESCs) are able to reprogram the nuclei of fully differentiated human somatic cells, apparently conferring on them a pluripotent state. However, the ability of the cytoplasts from enucleated hESCs to reprogram somatic cells causes much controversy. Here we detect the location of pluripotency-related factors such as Oct4/Nanog/Sox2 in the hESCs at division and non-division stage and obtain the cytoplasts of hESCs by centrifugation. We demonstrate for the first time that the cytoplast from hESCs arrested at the division phase of cell the cycle contains the reprogramming factors and this kind of cytoplast can be obtained through gradient centrifugation. These give us direct proof of the possibility of reprogramming somatic cell using cytoplast of hESCs and make this a possible method for getting patient-specific pluripotent cells without extrinsic DNA introduction.  相似文献   

3.
体细胞通过重编程转变成其他类型的细胞,在再生医学方面具有重要的应用前景。细胞重编程的方法主要有体细胞核移植、细胞融合、细胞提取物诱导、限定因子诱导等,这些方法可以不同程度地改变细胞命运。最近,限定因子诱导的多能干细胞(induced pluripotent stem cell。iPS)为重编程提供了一种崭新的方法,不仅可以避免伦理争议,还提供了一种更为便利的技术,为再生医学开辟了新的天地;同时,iPS技术为研究基因表达调控、蛋白质互作、机体生长发育等提供了一个非常重要的研究手段。本文主要论述了体细胞重编程的方法及iPS细胞的进展、面临的问题和应用前景。  相似文献   

4.
Pluripotent stem cells are able to self-renew indefinitely and differentiate into all types of cells in the body. They can thus be an inexhaustible source for future cell transplantation therapy to treat degenerative diseases which currently have no cure. However, non-autologous cells will cause immune rejection. Induced pluripotent stem cell (iPSC) technology can convert somatic cells to the pluripotent state, and therefore offers a solution to this problem. Since the first generation of iPSCs, there has been an explosion of relevant research, from which we have learned much about the genetic networks and epigenetic landscape of pluripotency, as well as how to manipulate genes, epigenetics, and microRNAs to obtain iPSCs. In this review, we focus on the mechanism of cellular reprogramming and current methods to induce pluripotency. We also highlight new problems emerging from iPSCs. Better understanding of the fundamental mechanisms underlying pluripotenty and refining the methodology of iPSC generation will have a significant impact on future development of regenerative medicine.  相似文献   

5.
6.
诱导性多潜能干细胞(iPS cells)——现状及前景展望   总被引:7,自引:0,他引:7  
主要从 iPS细胞发展历程、获得 iPS细胞的几个关键步骤 (如基因导入方式、诱导 iPS细胞所需因子组合与小分子化合物运用和体细胞种类选择等)、病人或疾病特异性 iPS细胞、iPS细胞体内外诱导分化与其衍生物的临床应用和制备无遗传修饰的(genetic modification-free) iPS细胞的可行性与前景等方面对 iPS细胞最新研究进展做评述.日本和美国研究小组先后用4种基因将小鼠(2006年8月)和人(2007年11~12月)的体细胞在体外重编程为诱导性多潜能干细胞(induced pluripotent stem cells,iPS cells),此后在短短两年多时间内,iPS 细胞的研究和关注度呈爆炸式增长.体细胞重编程、去分化和多潜能干细胞来源等一系列热点问题再次成为干细胞和发育生物学等研究的热点和焦点.与胚胎干细胞(embryonic stem cells,ES cells)一样,iPS细胞在体内可分化为3个胚层来源的所有细胞,进而参与形成机体所有组织和器官.迄今,在体外已由 iPS细胞定向诱导分化出功能性的多种成熟细胞.因此,iPS细胞研究不仅具有重要理论意义,而且在再生医学、组织工程和药物发现与评价等方面极具应用价值.  相似文献   

7.
胚胎干细胞(embryonic stem cells,ESCs)具有自我更新、无限增殖和多向分化的特性,包括分化成心脏组织的多种类型细胞。经体细胞重编程产生的诱导多能干细胞(induced pluripotent stem cells,iPS)也被证明有类似胚胎干细胞的特性。但这些多能干细胞向心肌细胞自发分化的效率非常低,因此,如何有效地诱导这些多能干细胞向心肌细胞的定向分化对深入认识心肌发生发育的关键调控机制和实现其在药物发现和再生医学,如心肌梗塞、心力衰竭的细胞治疗以及心肌组织工程中的应用均具有非常重要的意义。该文重点综述了近年来胚胎干细胞及诱导多能干细胞向心肌细胞分化和调控的研究进展,并探讨了这一研究领域亟待解决的关键问题和这些多能干细胞的应用前景。  相似文献   

8.
9.
10.
11.
12.
Reprograming somatic cells using exogenetic gene expression represents a groundbreaking step in regenerative medicine. Induced pluripotent stem cells(i PSCs) are expected to yield novel therapies with the potential to solve many issues involving incurable diseases. In particular, applying i PSCs clinically holds the promise of addressing the problems of immune rejection and ethics that have hampered the clinical applications of embryonic stem cells. However, as i PSC research has progressed, new problems have emerged that need to be solved before the routine clinical application of i PSCs can become established. In this review, we discuss the current technologies and future problems of human i PSC generation methods for clinical use.  相似文献   

13.
14.
Engineering/reprogramming differentiated adult somatic cells to gain the ability to differentiate into any type of cell lineage are called as induced pluripotent stem cells (iPSCs). Offering unlimited self-renewal and differentiation potential, these iPSC are aspired to meet the growing demands in the field of regenerative medicine, tissue engineering, disease modeling, nanotechnology, and drug discovery. Biomaterial fabrication with the rapid evolution of technology increased their versatility and utility in regenerative medicine and tissue engineering, revolutionizing the stem cell biology research with the property to guide the process of proliferation, differentiation, and morphogenesis. Combining traditional culture platforms of iPSC with biomaterials aids to overcome the limitations associated with derivation, proliferation, and maturation, thereby could improve the clinical translation of iPSC. The present review discusses in brief about the reprogramming techniques for the derivation iPSC and details on several biomaterial guided differentiation of iPSC to different cell types with specific relevance to tissue engineering/regenerative medicine.  相似文献   

15.
The discovery that somatic cells can be induced into a pluripotent state by the expression of reprogramming factors has enormous potential for therapeutics and human disease modeling. With regard to aging and rejuvenation, the reprogramming process resets an aged, somatic cell to a more youthful state, elongating telomeres, rearranging the mitochondrial network, reducing oxidative stress, restoring pluripotency, and making numerous other alterations. The extent to which induced pluripotent stem cell (iPSC)s mime embryonic stem cells is controversial, however, as iPSCs have been shown to harbor an epigenetic memory characteristic of their tissue of origin which may impact their differentiation potential. Furthermore, there are contentious data regarding the extent to which telomeres are elongated, telomerase activity is reconstituted, and mitochondria are reorganized in iPSCs. Although several groups have reported that reprogramming efficiency declines with age and is inhibited by genes upregulated with age, others have successfully generated iPSCs from senescent and centenarian cells. Mixed findings have also been published regarding whether somatic cells generated from iPSCs are subject to premature senescence. Defects such as these would hinder the clinical application of iPSCs, and as such, more comprehensive testing of iPSCs and their potential aging signature should be conducted.  相似文献   

16.
17.
Recent advances in reprogramming allow us to turn somatic cells into human induced pluripotent stem cells (hiPSCs). Disease modeling using patient-specific hiPSCs allows the study of the underlying mechanism for pathogenesis, also providing a platform for the development of in vitro drug screening and gene therapy to improve treatment options. The promising potential of hiPSCs for regenerative medicine is also evident from the increasing number of publications (>7000) on iPSCs in recent years. Various cell types from distinct lineages have been successfully used for hiPSC generation, including skin fibroblasts, hematopoietic cells and epidermal keratinocytes. While skin biopsies and blood collection are routinely performed in many labs as a source of somatic cells for the generation of hiPSCs, the collection and subsequent derivation of hair keratinocytes are less commonly used. Hair-derived keratinocytes represent a non-invasive approach to obtain cell samples from patients. Here we outline a simple non-invasive method for the derivation of keratinocytes from plucked hair. We also provide instructions for maintenance of keratinocytes and subsequent reprogramming to generate integration-free hiPSC using episomal vectors.  相似文献   

18.
Expression of four major reprogramming transgenes, including Oct4, Sox2, Klf4 and c-myc, in somatic cells enables them to have pluripotency. These cells are iPSC (induced pluripotent stem cell) that currently show the greatest potential for differentiation into cells of the three germ lineages. One of the issues facing the successful reprogramming and clinical translation of iPSC technology is the high rate of apoptosis after the reprogramming process. Reprogramming is a stressful process, and the p53 apoptotic pathway plays a negative role in cell growth and self-renewal. Apoptosis via the p53 pathway serves as a major barrier in nuclear somatic cell reprogramming during iPSC generation. DHEA (dehydroepiandrosterone) is an abundant steroid that is produced at high levels in the adrenal cells, and withdrawal of DHEA increases the levels of p53 in the epithelial and stromal cells, resulting in increased levels of apoptotic cells; meanwhile, DHEA decreases cellular apoptosis. DHEA could improve the efficacy of reprogramming yield due to a decrease in apoptosis via the p53 pathway and an increase in cell viability.  相似文献   

19.
Induced pluripotent stem cells (iPSCs) refer to stem cells that are artificially produced using a new technology known as cellular reprogramming, which can use gene transduction in somatic cells. There are numerous potential applications for iPSCs in the field of stem cell biology becauase they are able to give rise to several different cell features of lineages such as three-germ layers. Primordial germ cells, generated via in vitro differentiation of iPSCs, have been demonstrated to produce functional gametes. Therefore, in this review we discussed past and recent advances in the in vitro differentiation of germ cells using pluripotent stem cells with an emphasis on iPSCs. Although this domain of research is still in its infancy, exploring development mechanisms of germ cells is promising, especially in humans, to promote future reproductive and developmental engineering technologies. While few studies have evaluated the ability and efficiency of iPSCs to differentiate toward male germ cells in vitro by different inducers, the given effect was investigated in this review.  相似文献   

20.
目前细胞和发育生物学上的研究成果为生物医学研究提供了广泛的前景.将完全分化的细胞重编程,不经过胚胎逆转为多能干细胞状态,这点燃了再生医学应用的新希望,这一成果从法律、道德、伦理等不同方面被人们所接受.通过体细胞克隆胚胎获得干细胞所面临的破坏胚胎的伦理限制,促使研究者去寻求将分化细胞重编程逆转为干细胞的新方法.主要论述了体细胞重编程的原理、过程及不经过胚胎逆转为多能干细胞的方法.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号