首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The improved efficacy of high avidity CTL for clearance of virus has been well-documented. Thus, elucidation of the mechanisms that confer the increased sensitivity to peptide ligand demonstrated by high avidity CTL is critical. Using CTL lines of high and low avidity generated from a TCR transgenic mouse, we have found that functional avidity can be controlled by the expression of CD8alphaalpha vs CD8alphabeta and the ability of CTLs to colocalize the TCR and CD8 in the membrane. Colocalization of these molecules was mediated by lipid rafts and importantly, raft disruption resulted in the conversion of high avidity CTL into a lower functional avidity phenotype. These novel findings provide insights into the control of functional avidity in response to viral infection.  相似文献   

2.
The development of TCR alphabeta(+), CD8alphabeta(+) intestinal intraepithelial lymphocytes (IEL) is dependent on MHC class I molecules expressed in the thymus, while some CD8alphaalpha(+) IEL may arise independently of MHC class I. We examined the influence of MHC I allele dosage on the development CD8(+) T cells in RAG 2(-/-) mice expressing the H-2D(b)-restricted transgenic TCR specific for the male, Smcy-derived H-Y Ag (H-Y TCR). IEL in male mice heterozygous for the restricting (H-2D(b)) and nonrestricting (H-2D(d)) MHC class I alleles (MHC F(1)) were composed of a mixture of CD8alphabeta(+) and CD8alphaalpha(+) T cells, while T cells in the spleen were mostly CD8alphabeta(+). This was unlike IEL in male mice homozygous for H-2D(b), which had predominantly CD8alphaalpha(+) IEL and few mostly CD8(-) T cells in the spleen. Our results demonstrate that deletion of CD8alphabeta(+) cells in H-Y TCR male mice is dependent on two copies of H-2D(b), whereas the generation of CD8alphaalpha(+) IEL requires only one copy. The existence of CD8alphabeta(+) and CD8alphaalpha(+) IEL in MHC F(1) mice suggests that their generation is not mutually exclusive in cells with identical TCR. Furthermore, our data imply that the level of the restricting MHC class I allele determines a threshold for conventional CD8alphabeta(+) T cell selection in the thymus of H-Y TCR-transgenic mice, whereas the development of CD8alphaalpha(+) IEL is dependent on, but less sensitive to, this MHC class I allele.  相似文献   

3.
CD8 single-positive cells, including CD8alphaalpha+ and CD8alphabeta+ subsets, constitute the majority of TCRalphabeta+ intestinal intraepithelial lymphocytes (alphabeta iIEL) in mice. CD8+ alphabeta iIEL show significantly weaker responses to TCR stimulation in the presence of exogenous IL-2 than do CD8+ T cells of the central immune system. IL-15 is a T cell growth factor likely expressed in the intestine mucosa. To understand the role of IL-15 in CD8+ alphabeta iIEL biology, we compared the effects of exogenous IL-15 and IL-2 on the survival and primary responses of the two CD8+ alphabeta iIEL subsets in vitro. In contrast to the death of approximately 60% of both CD8alphaalpha+ and CD8alphabeta+ iIEL cultured in IL-2 with or without TCR stimulation, IL-15 promoted survival of the CD8alphaalpha+ subset in the presence of TCR stimulation and promoted survival of both subsets in the absence of TCR stimulation. The higher proliferation level of TCR stimulated CD8alphaalpha+ alphabeta iIEL cultured in IL-15 compared with those cultured in IL-2 is likely due to IL-15's prosurvival effects. In addition, unlike exogenous IL-2, exogenous IL-15 did not support the effector functions of either iIEL subsets, including IFN-gamma production, IL-4-induced Th2 cytokine production, and anti-TCR mAb-redirected cytotoxicity. These findings demonstrate that IL-15 and IL-2 are functionally distinct and suggest that IL-15 plays a unique role in the maintenance of the CD8+ alphabeta iIEL pool in the absence of Ag stimulation and in the survival and expansion of CD8alphaalpha+ alphabeta iIEL upon Ag stimulation.  相似文献   

4.
CD8 glycoproteins are expressed as either alphaalpha homodimers or alphabeta heterodimers on the surface of T cells. CD8alphabeta is a more efficient coreceptor than the CD8alphaalpha for peptide Ag recognition by TCR. Each CD8 subunit is composed of four structural domains, namely, Ig-like domain, stalk region, transmembrane region, and cytoplasmic domain. In an attempt to understand why CD8alphabeta is a better coreceptor than CD8alphaalpha, we engineered, expressed, and functionally tested a chimeric CD8alpha protein whose stalk region is replaced with that of CD8beta. We found that the beta stalk region enhances the coreceptor function of chimeric CD8alphaalpha to a level similar to that of CD8alphabeta. Surprisingly, the beta stalk region also restored functional activity to an inactive CD8alpha variant, carrying an Ala mutation at Arg(8) (R8A), to a level similar to that of wild-type CD8alphabeta. Using the R8A variant of CD8alpha, a panel of anti-CD8alpha Abs, and three MHC class I (MHCI) variants differing in key residues known to be involved in CD8alpha interaction, we show that the introduction of the CD8beta stalk leads to a different topology of the CD8alpha-MHCI complex without altering the overall structure of the Ig-like domain of CD8alpha or causing the MHCI to employ different residues to interact with the CD8alpha Ig domain. Our results show that the stalk region of CD8beta is capable of fine-tuning the coreceptor function of CD8 proteins as a coreceptor, possibly due to its distinct protein structure, smaller physical size and the unique glycan adducts associated with this region.  相似文献   

5.
The mouse thymic leukemia (TL) Ag is a nonclassical MHC class I molecule that binds with higher affinity to CD8alphaalpha than CD8alphabeta. The interaction of CD8alphaalpha with TL is important for lymphocyte regulation in the intestine. Therefore, we studied the molecular basis for TL Ag binding to CD8alphaalpha. The stronger affinity of the TL Ag for CD8alphaalpha is largely mediated by three amino acids on exposed loops of the conserved alpha3 domain. Mutant classical class I molecules substituted with TL Ag amino acids at these positions mimic the ability to interact with CD8alphaalpha and modulate lymphocyte function. These data indicate that small changes in the alpha3 domain of class I molecules potentially can have profound physiologic consequences.  相似文献   

6.
In an effective immune response, CD8+ T cell recognition of virally derived Ag, bound to MHC class I, results in killing of infected cells. The CD8alphabeta heterodimer acts as a coreceptor with the TCR, to enhance sensitivity of the T cells to peptide/MHC class I, and is two orders of magnitude more efficient as a coreceptor than the CD8alphaalpha. To understand the important interaction between CD8alphabeta and MHC class I, we created a panel of CD8beta mutants and identified mutations in the CDR1, CDR2, and CDR3 loops that decreased binding to MHC class I tetramers as well as mutations that enhanced binding. We tested the coreceptor function of a subset of reducing and enhancing mutants using a T cell hybridoma and found similar reducing and enhancing effects. CD8beta-enhancing mutants could be useful for immunotherapy by transduction into T cells to enhance T cell responses against weak Ags such as those expressed by tumors. We also addressed the question of the orientation of CD8alphabeta with MHC class I using CD8alpha mutants expressed as a heterodimer with wild-type CD8alpha or CD8beta. The partial rescuing of binding with wild-type CD8beta compared with wild-type CD8alpha is consistent with models in which either the topology of CD8alphaalpha and CD8alphabeta binding to MHC class I is different or CD8alphabeta is capable of binding in both the T cell membrane proximal and distal positions.  相似文献   

7.
Essential role of CD8 palmitoylation in CD8 coreceptor function   总被引:2,自引:0,他引:2  
To investigate the molecular basis that makes heterodimeric CD8alphabeta a more efficient coreceptor than homodimeric CD8alphaalpha, we used various CD8 transfectants of T1.4 T cell hybridomas, which are specific for H-2Kd, and a photoreactive derivative of the Plasmodium berghei circumsporozoite peptide PbCS 252-260 (SYIPSAEKI). We demonstrate that CD8 is palmitoylated at the cytoplasmic tail of CD8beta and that this allows partitioning of CD8alphabeta, but not of CD8alphaalpha, in lipid rafts. Localization of CD8 in rafts is crucial for its coreceptor function. First, association of CD8 with the src kinase p56lck takes place nearly exclusively in rafts, mainly due to increased concentration of both components in this compartment. Deletion of the cytoplasmic domain of CD8beta abrogated localization of CD8 in rafts and association with p56lck. Second, CD8-mediated cross-linking of p56lck by multimeric Kd-peptide complexes or by anti-CD8 Ab results in p56lck activation in rafts, from which the abundant phosphatase CD45 is excluded. Third, CD8-associated activated p56lck phosphorylates CD3zeta in rafts and hence induces TCR signaling and T cell activation. This study shows that palmitoylation of CD8beta is required for efficient CD8 coreceptor function, mainly because it dramatically increases CD8 association with p56lck and CD8-mediated activation of p56lck in lipid rafts.  相似文献   

8.
CD8alphaalpha+CD4-TCRalphabeta+ T cells are a special lineage of T cells found predominantly within the intestine as intraepithelial lymphocytes and have been shown to be involved in the maintenance of immune homeostasis. Although these cells are independent of classical MHC class I (class Ia) molecules, their origin and function in peripheral lymphoid tissues are unknown. We have recently identified a novel subset of nonintestinal CD8alphaalpha+CD4-TCRalphabeta+ regulatory T cells (CD8alphaalpha Tregs) that recognize a TCR peptide from the conserved CDR2 region of the TCR Vbeta8.2-chain in the context of a class Ib molecule, Qa-1a, and control- activated Vbeta8.2+ T cells mediating experimental autoimmune encephalomyelitis. Using flow cytometry, spectratyping, and real-time PCR analysis of T cell clones and short-term lines, we have determined the TCR repertoire of the CD8alphaalpha regulatory T cells (Tregs) and found that they predominantly use the TCR Vbeta6 gene segment. In vivo injection of anti-TCR Vbeta6 mAb results in activation of the CD8alphaalpha Tregs, inhibition of the Th1-like pathogenic response to the immunizing Ag, and protection from experimental autoimmune encephalomyelitis. These data suggest that activation of the CD8alphaalpha Tregs present in peripheral lymphoid organs other than the gut can be exploited for the control of T cell-mediated autoimmune diseases.  相似文献   

9.
The coreceptor CD8 is expressed as a CD8alphabeta heterodimer on major histocompatibility complex class I-restricted TCRalphabeta T cells, and as a CD8alphaalpha homodimer on subsets of memory T cells, intraepithelial lymphocytes, natural killer cells, and dendritic cells. Although the role of CD8alphaalpha is not well understood, it is increasingly clear that this protein is not a functional homologue of CD8alphabeta. On major histocompatibility complex class I-restricted T cells, CD8alphabeta is a more efficient TCR coreceptor than CD8alphaalpha. This property has for the mouse protein been attributed to the recruitment of CD8alphabeta into lipid rafts, which is dependent on CD8beta palmitoylation. Here, these divergent distributions of CD8alphabeta and CD8alphaalpha are demonstrated for the human CD8 proteins as well. However, although palmitoylation of both CD8alpha and CD8beta chains was detected, this modification did not contribute to raft localization. In contrast, arginines in the cytoplasmic domain are crucial for raft localization of CD8betabeta. Most strikingly, the assembly of a non-raft localized CD8beta chain with a non-raft localized CD8alpha chain resulted in raft-localized CD8alphabeta heterodimers. Using chimeric CD8 proteins, this property of the heterodimer was found to be determined by the assembly of CD8alpha and CD8beta extracellular regions. The presence of two CD8alpha extracellular regions, on the other hand, appears to preclude raft localization. Thus, heterodimer formation and raft association are intimately linked for CD8alphabeta. These results emphasize that lipid raft localization is a key feature of human CD8alphabeta that clearly distinguishes it from CD8alphaalpha.  相似文献   

10.
Adoptive transfer of T cells expressing transgenic TCR with antitumor specificity provides a hopeful new therapy for patients with advanced cancer. To fulfill a large need for TCR with high affinity and specificity for various tumor entities, we sought to identify parameters for rapid selection of CTL clones with suitable characteristics. Twelve CTL clones displaying different Ag sensitivities for the same peptide-MHC epitope of the melanoma-associated Ag tyrosinase were analyzed in detail. Better MHC-multimer binding and slower multimer release are thought to reflect stronger TCR-peptide-MHC interactions; thus, these parameters would seem well suited to identify higher avidity CTL. However, large disparities were found comparing CTL multimer binding with peptide sensitivity. In contrast, CD8(+) CTL with superior Ag sensitivity mediated good tumor cytotoxicity and also secreted the triple combination of IFN-γ, IL-2, and TNF-α, representing a Th1 pattern often missing in lower avidity CTL. Furthermore, recipient lymphocytes were imbued with high Ag sensitivity, superior tumor recognition, as well as capacity for Th1 polycytokine secretion after transduction with the TCR of a high-avidity CTL. Thus, Th1 polycytokine secretion served as a suitable parameter to rapidly demark cytotoxic CD8(+) T cell clones for further TCR evaluation.  相似文献   

11.
Regulatory mechanisms involving CD8+ T cells (CD8 regulatory T cells (Tregs)) are important in the maintenance of immune homeostasis. However, the inability to generate functional CD8 Treg clones with defined Ag specificity has precluded a direct demonstration of CD8 Treg-mediated regulation. In the present study, we describe the isolation of functional lines and clones representing a novel population of TCRalphabeta+ Tregs that control activated Vbeta8.2+ CD4 T cells mediating experimental autoimmune encephalomyelitis. They express exclusively the CD8alphaalpha homodimer and recognize a peptide from a conserved region of the TCR Vbeta8.2 chain in the context of the Qa-1a (CD8alphaalpha Tregs). They secrete type 1 cytokines but not IL-2. CD8alphaalpha Tregs kill activated Vbeta8.2+ but not Vbeta8.2- or naive T cells. The CD8alphaalpha Tregs prevent autoimmunity upon adoptive transfer or following in vivo activation. These findings reveal an important negative feedback regulatory mechanism targeting activated T cells and have implications in the development of therapeutic strategies for autoimmune diseases and transplantation.  相似文献   

12.
CD8 engagement is believed to be a critical event in the activation of naive T cells. In this communication, we address the effects of peptide-MHC (pMHC)/TCR affinity on the necessity of CD8 engagement in T cell activation of primary naive cells. Using two peptides with different measured avidities for the same pMHC-TCR complex, we compared biochemical affinity of pMHC/TCR and the cell surface binding avidity of pMHC/TCR with and without CD8 engagement. We compared early signaling events and later functional activity of naive T cells in the same manner. Although early signaling events are altered, we find that high-affinity pMHC/TCR interactions can overcome the need for CD8 engagement for proliferation and CTL function. An integrated signal over time allows T cell activation with a high-affinity ligand in the absence of CD8 engagement.  相似文献   

13.
The lytic activity of most CD8+ MHC class I allospecific CTL generated in vitro can be inhibited by anti-CD8 antibodies. Such inhibition has led to hypotheses that CD8/class I interactions normally contribute to the triggering of CTL with low or moderate avidity Ag-specific TCR by providing those CTL with auxiliary binding avidity. However, CD8 has also been proposed to play an active signaling role in T cell activation. We have recently reported that multivalent cross-linking of CD8 on CTL precursors in MLC does appear to mediate activation signals, and induces the generation of CD8+ MHC class I allospecific CTL whose lytic activity cannot be blocked by anti-CD8 antibodies. In our present study, we have further characterized such anti-CD8 uninhibitable effector cells. These CTL are resistant to blocking of their lytic function by anti-Lyt-3 mAb as well as anti-Lyt-2 mAb, but remain sensitive to blocking by anti-LFA-1 mAb, indicating that they do use non-CD8 cell adhesion molecules during target cell recognition and lysis. As a consequence of mAb-induced multivalent CD8 cross-linking during their generation, anti-CD8 uninhibitable CTL significantly reduce their cell surface expression of CD8, which permits their identification and facilitates their purification from heterogeneous MLC populations. Such anti-CD8 uninhibitable effector cells can be maintained as stable CTL lines, in the absence of anti-CD8 mAb after the initial induction period. The in vitro generation of anti-CD8 uninhibitable CTL, which may be highly enriched for cells bearing high affinity TCR, could represent a new experimental approach to studies of TCR gene usage and repertoire, as well as a potentially important strategy for the deliberate generation of high affinity effector cells for adoptive immunotherapy.  相似文献   

14.
T cells have evolved a unique system of ligand recognition involving an antigen T cell receptor (TCR) and a coreceptor that integrate stimuli provided by the engagement of peptide-major histocompatibility complex (pMHC) antigens. Here, we use altered pMHC class I (pMHCI) molecules with impaired CD8 binding (CD8-null) to quantify the contribution of coreceptor extracellular binding to (i) the engagement of soluble tetrameric pMHCI molecules, (ii) the kinetics of TCR/pMHCI interactions on live cytotoxic T lymphocytes (CTLs), and (iii) the activation of CTLs by cell-surface antigenic determinants. Our data indicate that the CD8 coreceptor substantially enhances binding efficiency at suboptimal TCR/pMHCI affinities through effects on both association and dissociation rates. Interestingly, coreceptor requirements for efficient tetramer labeling of CTLs or for CTL activation by determinants displayed on the cell surface operated in different TCR/pMHCI affinity ranges. Wild-type and CD8-null pMHCI tetramers required monomeric affinities for cognate TCRs of KD < approximately 80 microM and approximately 35 microM, respectively, to label human CTLs at 37 degrees C. In contrast, activation by cellular pMHCI molecules was strictly dependent on CD8 binding only for TCR/pMHCI interactions with KD values >200 microM. Altogether, our data provide information on the binding interplay between CD8 and the TCR and support a model of CTL activation in which the extent of coreceptor dependence is inversely correlated to TCR/pMHCI affinity. In addition, the results reported here define the range of TCR/pMHCI affinities required for the detection of antigen-specific CTLs by flow cytometry.  相似文献   

15.
T-cell receptor (TCR) internalization occurs via TCR recognition of the peptide/MHC molecule complex on antigen presenting cell (APC). In this study, the requirements for inducing the internalization of TCR molecules on Ld major histocompatibility complex (MHC) class I-restricted T-cells were investigated with 2C cytotoxic T-lymphocyte (CTL) clones with defined peptides as the antigen. To evaluate the function of the transmembrane region of TCR alphabeta chains in TCR internalization, we generated T-cell transfectants expressing the wild type and glycosylphosphatidyl inositol (GPI)-linked form of 2C TCR. Among all peptides forming proper ligands to 2C TCR, only the Qp2Ca peptide induced TCR internalization, which was known to have the highest affinity to both Ld MHC class I molecules and TCR in association with Ld molecules. Such TCR internalization was not observed in cells expressing the GPI-linked form of 2C TCR. Furthermore, the expression of CD8 coreceptor and Thy-1 accessory molecules were both not required for Qp2Ca-induced TCR internalization, and these molecules did not accompany TCR internalization. Altogether, these results suggest that TCR internalization on CTL is not a prerequisite for CTL function.  相似文献   

16.
Thymic selection is controlled by the interaction between TCR and MHC/peptide. Strength and quality of the signal determine whether thymocytes are selected or deleted. The factors that contribute to this signal remain poorly defined. Here we show that fetal thymic organ cultures (FTOCs) derived from OT-I transgenic mice (the OT-I TCR is restricted by K(b)-SIINFEKL) on a K(b)D(b-/-) background support positive selection, but only when provided with soluble H-2K(b)-SIINFEKL complexes. Selection of CD8 T cells is independent of the valency of the ligand or its capability to coengage CD8 molecules. Both CD8alphaalpha and CD8alphabeta T cells are selected by H-2K(b)-SIINFEKL, but only CD8alphabeta cells are capable of releasing IFN-gamma in response to the same ligand. The alpha(4)beta(7) integrin is up-regulated on postselection thymocytes from FTOCs. After adoptive transfer, FTOC-derived OT-I CD8 T cells divide in response to the agonist peptide SIINFEKL. These results establish that CD8 T cells responsive to their nominal peptide-Ag can be generated in FTOC supplemented with soluble MHC class I molecules equipped with the same peptide.  相似文献   

17.
TCRalphabeta CD8alphaalpha intestinal intraepithelial lymphocytes (IEL) represent an enigmatic subset of T cells, particularly, in regard to their potential functions and the apparent persistence of cells expressing self-specific TCR. We have used mice that are transgenic for the TCRalphabeta specific for the lymphocytic choriomeningitis virus (LCMV)-derived peptide gp33, and TCRalphabeta-transgenic mice that coexpress the gp33 Ag ubiquitously, to analyze the functional properties of TCRalphabeta CD8alphaalpha IEL in the presence, or absence, of their specific MHC-restricted Ag, and to assess the impact of molecular mimicry during a potent LCMV infection on potentially self-reactive TCRalphabeta CD8alphaalpha IEL. In this study, we show that the presence of the specific self-Ag results in reduced expression of IL-2, IFN-gamma, and IL-10 by resident TCRalphabeta CD8alphaalpha IEL while expression of mRNA for TGFbeta is not affected. We further demonstrate that despite their secluded location in the epithelium, TCRalphabeta CD8alphaalpha IEL are activated after infection of the intestinal mucosa with LCMV. Importantly, LCMV-induced activation of self-specific TCRalphabeta CD8alphaalpha IEL does not reverse their tolerance as no cytotoxic activity or up-regulated expression of proinflammatory cytokines is detected and no overt signs of autoimmunity are seen. Taken together, these results are in support of an immunoregulatory role for self-specific TCRalphabeta CD8alphaalpha in the intestinal mucosa and clearly speak against an involvement of this cell subset in inflammatory reactions and tissue destruction.  相似文献   

18.
CD8 plays an important role in facilitating TCR-MHC interaction, promoting Ag recognition, and initiating T cell activation. MHC-CD8 binding kinetics have been measured in three dimensions by surface plasmon resonance technique using purified molecules. However, CD8 is a membrane-anchored, signaling kinase-linked, and TCR-associated molecule whose function depends on the cell membrane environment. Purified molecules lack their linkage to the membrane, which precludes interactions with other structures of the cell as well as signaling. Furthermore, three-dimensional binding in the fluid phase is biologically and physically distinct from two-dimensional binding across apposing cell membranes. As a first step toward characterizing the molecular interactions between T cells and APCs, we used a micropipette adhesion frequency assay to measure the adhesion kinetics of single mouse T cells interacting with single human RBCs coated with MHC. Using anti-TCR mAb we isolated and characterized the specific two-dimensional MHC-CD8 binding from the trimolecular TCR-MHC-CD8 interaction. The TCR-independent MHC-CD8 interaction has a very low affinity that depends on the MHC alleles, but not on the peptide complexed to the MHC and whether CD8 is an alphaalpha homodimer or an alphabeta heterodimer. Surprisingly, MHC-CD8 binding affinity varies with T cells from different TCR transgenic mice and these affinity differences were abolished by treatment with cholesterol oxidase to disrupt membrane rafts. These data highlight the relevance and importance of two-dimensional analysis of T cells and APCs and indicate that membrane rafts play an important role in modulating the affinity of cell-cell interactions.  相似文献   

19.
Soluble mouse CD8alphaalpha and CD8alphabeta dimers corresponding to the paired ectodomains (CD8(f)) or their respective component Ig-like domains (CD8) were expressed in Chinese hamster ovary cells or the glycosylation variant Lec3.2.8.1 cells as secreted proteins using a leucine zipper strategy. The affinity of CD8alphaalpha(f) for H-2K(b) as measured by BIAcore revealed a approximately 65 microM K(d), similar to that of CD8alphabeta(f). Consistent with this result, CD8alphaalpha(f) as well as CD8alphabeta(f) blocked the effector function of N15 T cell receptor transgenic cytolytic T cells in a comparable, dose-dependent fashion. Furthermore, both Lec3.2.8.1-produced and Chinese hamster ovary-produced CD8 homodimers and heterodimers were active in the inhibition assay. These results suggest that the Ig-like domains of CD8 molecules are themselves sufficient to block the requisite transmembrane CD8-pMHC interaction between cytolytic T lymphocytes and target cells. Moreover, given the similarities in co-receptor affinities for pMHC, the findings suggest that the greater efficiency of CD8alphabeta versus CD8alphaalpha co-receptor function on T cells is linked to differences within their membrane-bound stalk regions and/or intracellular segments. As recently shown for sCD8alphaalpha, the yield, purity and homogeneity of the deglycosylated protein resulting from this expression system is sufficient for crystallization and x-ray diffraction at atomic resolution.  相似文献   

20.
The cell surface molecules CD4 and CD8 greatly enhance the sensitivity of T-cell antigen recognition, acting as "co-receptors" by binding to the same major histocompatibility complex (MHC) molecules as the T-cell receptor (TCR). Here we use surface plasmon resonance to study the binding of CD8alphaalpha to class I MHC molecules. CD8alphaalpha bound the classical MHC molecules HLA-A*0201, -A*1101, -B*3501, and -C*0702 with dissociation constants (K(d)) of 90-220 microm, a range of affinities distinctly lower than that of TCR/peptide-MHC interaction. We suggest such affinities apply to most CD8alphaalpha/classical class I MHC interactions and may be optimal for T-cell recognition. In contrast, CD8alphaalpha bound both HLA-A*6801 and B*4801 with a significantly lower affinity (>/=1 mm), consistent with the finding that interactions with these alleles are unable to mediate cell-cell adhesion. Interestingly, CD8alphaalpha bound normally to the nonclassical MHC molecule HLA-G (K(d) approximately 150 microm), but only weakly to the natural killer cell receptor ligand HLA-E (K(d) >/= 1 mm). Site-directed mutagenesis experiments revealed that variation in CD8alphaalpha binding affinity can be explained by amino acid differences within the alpha3 domain. Taken together with crystallographic studies, these results indicate that subtle conformational changes in the solvent exposed alpha3 domain loop (residues 223-229) can account for the differential ability of both classical and nonclassical class I MHC molecules to bind CD8.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号