首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We present procedures for nucleoside and oligonucleotide synthesis, binding affinity (Tm) and structural analysis (CD spectra) of 2'-deoxy-2',2'-difluoro-alpha-D-ribofuranosyl and 2'-deoxy-2',2'-difluoro-beta-D-ribofuranosyl oligothymidylates. Possible reasons for the thermal instability of duplexes formed between these compounds and RNA or DNA targets are discussed.  相似文献   

2.
2'-Amino-2'-deoxyadenosine and 2'-chloro-2'-deoxycoformycin (2'-CldCF) are two nucleoside antibiotics produced by Actinomadura. The biosynthesis of these two nucleoside antibiotics has been studied by the addition of [U-14C]adenosine with or without unlabeled adenine to cultures of Actinomadura. By this experimental approach, it is possible to demonstrate that adenosine is the direct precursor for the biosynthesis of 2'-amino-2'-deoxyadenosine and 2'-CldCF. These conclusions are based on the observation that the percentage distribution of 14C in the aglyconic and pentofuranosyl moieties of 2'-amino-2'-deoxyadenosine and 2'-CldCF were similar to the distribution of 14C in the adenine and ribosyl moieties of the [U-14C]adenosine (i.e., 48:52) added to cultures of Actinomadura. Experimentally, the percentage distribution of 14C in the (i) adenine:2-amino-2-deoxy-beta-D-ribofuranose of 2'-amino-2'-deoxyadenosine is 51:49; (ii) 8-(R)-3,6,7,8-tetrahydroimidazo[4,5-d]-[1,3-diazepin-8-o1]:2 -chloro-2- beta-D-ribofuranose of 2'-CldCF is 45:55; and (iii) adenine:ribose of the adenosine isolated from the RNA of Actinomadura is 42:58. Further proof that adenosine is the direct precursor for the biosynthesis 2'-amino-2'-deoxyadenosine and 2'-CldCF was demonstrated by the addition of 75 mumol of unlabeled adenine together with [U-14C]adenosine to nucleoside-producing cultures of Actinomadura. The percentage distribution of 14C in the aglycon and the sugar moieties of 2'-amino-2'-deoxyadenosine and 2'-CldCF were 46:54 and 47:53, respectively; the percentage distribution of 14C in the adenine and ribose moieties of the adenosine isolated from the RNA of Actinomadura was 51:49. These data show that the hydroxyl on C-2' of the ribosyl moiety of adenosine undergoes a replacement by a 2'-amino or a 2'-chloro group to form 2'-amino-2'-deoxyadenosine or 2'-CldCF with retention of stereconfiguration at C-2'. Finally, Actinomadura can utilize inorganic chloride from the medium as demonstrated by the isolation of [36Cl]2'-CldCF following the addition of [36Cl]chloride to the culture medium. Mechanisms for the regioselective modification of the C-2' hydroxyl group and stereospecific insertion of the amino and chloro groups are discussed.  相似文献   

3.
Benzyl 2-[(benzyloxycarbonyl)methylamino]-2-deoxy-α-D-mannopyranoside (10) and its furanose isomer (9), the derived N-methyloxazolidinones 11 and 6, benzyl 2-[(benzyloxycarbonyl)methylamino]-2-deoxy-β-D-glucofuranoside (15) and methyl 2-deoxy-2-methylacetamido-β-D-galactofuranoside (20), were prepared from appropriate diethyl dithioacetals. They were considered the most suitable starting materials for synthesis of O-methyl-2-deoxy-2-methylamino-hexoses because of their ease of preparation and the presence of suitable blocking groups. Oxazolidinones were prepared from N-benzyloxycarbonyl derivatives of 2-amino-2-deoxy-D-mannose by using methanolic sodium methoxide. Their use in preparation of 2-deoxy-2-methyl-amino derivatives is discussed. The Kuhn reagent was used in these syntheses for N-methylating amides. However, certain amides containing comparatively bulky substituents in the vicinity of the NH group are resistant to methylation.  相似文献   

4.
Ca2+ regulation of thyroid NADPH-dependent H2O2 generation   总被引:1,自引:0,他引:1  
A thyroid particulate fraction contains an NADPH-dependent H2O2-generating enzyme which requires Ca2+ for activity. A Chaps solubilized extract of the thyroid particulate fraction partially purified by DEAE chromatography did not show a dependence on Ca2+ for activity. Preincubation of the particulate fraction with Ca2+ yielded a preparation insensitive to Ca2+. The non-particulate fraction obtained after incubation of the particles in the presence of Ca2+ was able to inhibit, in the presence of EGTA, the Ca2+-desensitized particulate fraction and the enzyme isolated on DEAE. It is concluded that the reversible Ca2+ activation of the NADPH-dependent H2O2 generation was modulated in porcine thyroid tissue by (a) calcium-releasable inhibitor protein(s).  相似文献   

5.
Selective pivaloylation of 2-acetamido-2-deoxy-D-glucose, its methyl alpha- and beta-glycosides, and the methyl alpha-glycoside of N-acetyl-D-muramic acid under various conditions has been studied. The structures of the products were established by 1H-n.m.r. spectroscopy and acetylation. The orders of acylation, HO-6 greater than HO-3 greater than HO-1 greater than HO-4 for 2-acetamido-2-deoxy-D-glucose and HO-6 greater than HO-3 greater than HO-4 for its methyl glycosides, were established. Methyl 2-acetamido-2-deoxy-3,6-di-O-pivaloyl-alpha- and -beta-D-glucopyranosides and 2-acetamido-2-deoxy-1,3,4,6-tetra-O-pivaloyl-D-glucopyranose were hydrolysed by rabbit serum esterases.  相似文献   

6.
BCL2-CISD2     
《Autophagy》2013,9(5):856-857
CISD2, an ER BCL2-associated autophagy regulator also known as NAF-1, is responsible for the human degenerative disorder Wolfram Syndrome 2. In order to interrogate the physiological role of CISD2 we generated and characterized the Cisd2 gene deletion in mice. Cisd2 null mice manifest significant degeneration in skeletal muscle tissues, which is accompanied with augmented autophagy, dysregulated Ca2+ homeostasis and elongated mitochondria. Our findings describe a novel role for BCL2-CISD2 in the homeostatic maintenance of skeletal muscle. It remains to be elucidated how and if the antagonism of the BECN1 autophagy-initiating complex and modulation of ER Ca2+ homeostasis by BCL2-CISD2 are interconnected.  相似文献   

7.
A new method for the synthesis of 2'-O-methyl-2-thiouridine (s2Um) found in thermophilic bacterial tRNA was developed. Structural properties of s2Um and s2Um(p)U were studied by using 1H NMR spectroscopy. A modified nonaribonucleotide (RNA*: 5'-CGUUs2UmUUGC-3') was synthesized to study the base-recognition ability of s2Um in formation of RNA-RNA and RNA DNA duplexes. The UV melting experiments revealed that RNA*-RNA and RNA*-DNA duplexes having an s2U-A base pair are more stable than those having a U-A base pair. On the contrary, the thermal stability of RNA*-RNA and RNA*-DNA duplexes having an s2U-G wobble base pair was much lower than that of the unmodified duplexes having a natural U-G base pair. It is concluded that s2Um has higher selectivity toward A over G than unmodified U.  相似文献   

8.
Y Zhou  P O Ts'o 《Nucleic acids research》1996,24(14):2652-2659
A synthetic method was developed for the synthesis of oligodeoxyribonucleotides and oligodeoxyribonucleoside methylphosphonates comprised exclusively of the fluorescent 2-pyrimidinone base for the first time. The method utilized the solid-phase 2-cyanoethylphosphoramidite and methylphosphonamidite chemistry for internucleotide couplings and a baselabile oxalyl linkage to anchor the oligomers onto the CPG support. Cleavage of the oligomers from the support was effected by a short treatment of the support with 5% ammonium hydroxide in methanol at room temperature, without any degradation of the base-sensitive 2-pyrimidinone residues or the base-sensitive methylphosphonate backbone.  相似文献   

9.
Of the three major classes of ligand-gated ion channels, nicotinic receptors and ionotropic glutamate receptors are known to be organized as pentamers and tetramers, respectively. The architecture of the third class, P2X receptors, is under debate, although evidence for a trimeric assembly is accumulating. Here we provide biochemical evidence that in addition to the rapidly desensitising P2X1 and P2X3 receptors, the slowly desensitising subtypes P2X2, P2X4, and P2X5 are trimers of identical subunits. Similar (heteromeric) P2X subunits also formed trimers, as shown for co-expressed P2X1 and P2X2 subunits, which assembled efficiently to a P2X1+2 receptor that was exported to the plasma membrane. In contrast, P2X6 subunits, which are incapable of forming functional homomeric channels in Xenopus oocytes, were retained in the ER as apparent tetramers and high molecular mass aggregates. Altogether, we conclude from these data that a trimeric architecture is the structural hallmark of functional homomeric and heteromeric P2X receptors.  相似文献   

10.
Matrix metalloproteinase-2 (MMP-2) functions in diverse biological processes through the degradation of extracellular and non-extracellular matrix molecules. Because of its potential for tissue damage, there are several ways to regulate MMP-2 activity, including gene expression, compartmentalization, zymogen activation, and enzyme inactivation by extracellular inhibitors. Enzyme regulation through zymogen activation is important for the regulation of MMP-2 activity. In our previous studies, we showed that thrombin directly cleaved the propeptide of MMP-2 at specific sites for enzyme activation. We also demonstrated that heparan sulfate was required for thrombin-mediated activation of pro-MMP-2 by binding to thrombin, presumably through conformational changes at the active site of the enzyme. This suggests a regulatory mechanism for thrombin-mediated activation of pro-MMP-2. In this study, we found that MMP-2 formed a reduction-sensitive homodimer in a controlled manner and that Ca(2+) ion was essential for homodimerization of MMP-2. Homodimerization was not associated with protein kinase C-mediated phosphorylation of MMP-2. MMP-2 formed a homodimer through an intermolecular disulfide bond between Cys(102) and the neighboring Cys(102). Homodimerization of MMP-2 enhanced thrombin-mediated activation of pro-MMP-2. Moreover, the MMP-2 homodimer could cleave a small peptide substrate without removal of the propeptide. Taken together, our experimental data suggest a novel regulatory mechanism for pro-MMP-2 activation that is modulated through homodimerization of MMP-2.  相似文献   

11.
An efficient method for the stereoselective synthesis of 2-amino-2-deoxy-d-arabinose and 2-deoxy-d-ribose is described.

The key step in this method was accomplished by the nucleophilic addition of methyl isocyanoacetate to 2,3-O-isopropylidene-d-glyceraldehyde with high erythro-selectivity (nearly 100%).

Subsequent intermolecular cyclization predominantly gave the desired oxazoline derivative (trans-form), in which two new chiral centers were formed. The oxazoline derivative was efficiently converted to both 2-amino-2-deoxy-d-arabinose and 2-deoxy-d-ribose.  相似文献   

12.
Structural comparisons of mouse histones 2A.X and 2A.Z with 2A.1 and 2A.2   总被引:4,自引:0,他引:4  
The tryptic peptide patterns of the recently described H2A species H2A.X and H2A.Z from mouse were compared with the tryptic peptide patterns of the major mouse H2A's, H2A.1 and H2A.2. The identities of the H2A.1 peptides were determined by comparing their in vivo labeling with various 14C-labeled amino acids with the expected labeling determined from the known sequence. All the H2A.1 tryptic peptides larger than dipeptides were accounted for. The procedure was repeated for H2A.2, H2A.X and H2A.Z. H2A.X was found to have large regions of sequence identical to that of H2A.1 with the variability occurring mainly near the N and C termini. Mouse H2A.X had some sequence characteristics found in the sequenced H2A's of trout and sea urchin. In contrast, H2A.Z was found to have only two peptides in common with H2A.1; in addition, the labeling patterns of the non-identical peptides were too different to suggest analogous peptides. We conclude from these studies that H2A.Z differs considerably from H2A.1 in major portions of its sequence.  相似文献   

13.
The triplex forming ability of oligonucleotides containing 2'-O-methyl-2-thiouridine (s2Um) and 2-thiothymidine (s2T) was studied. The UV melting experiments revealed that triplex forming oligonucleotides (TFOs) containing both s2Um or s2T stabilized significantly parallel triplexes. The main reason for stabilization of triplexes was due to the stacking effect of the 2-thiocarbonyl group. Moreover, it turned out that these modified TFOs had a high selectivity in recognition of a matched Hoogsteen base from a mismatched one.  相似文献   

14.
2-Enoyl-CoA hydratase 2 is the middle part of the mammalian peroxisomal multifunctional enzyme type 2 (MFE-2), which is known to be important in the beta-oxidation of very-long-chain and alpha-methyl-branched fatty acids as well as in the synthesis of bile acids. Here, we present the crystal structure of the hydratase 2 from the human MFE-2 to 3A resolution. The three-dimensional structure resembles the recently solved crystal structure of hydratase 2 from the yeast, Candida tropicalis, MFE-2 having a two-domain subunit structure with a C-domain complete hot-dog fold housing the active site, and an N-domain incomplete hot-dog fold housing the cavity for the aliphatic acyl part of the substrate molecule. The ability of human hydratase 2 to utilize such bulky compounds which are not physiological substrates for the fungal ortholog, e.g. CoA esters of C26 fatty acids, pristanic acid and di/trihydroxycholestanoic acids, is explained by a large hydrophobic cavity formed upon the movements of the extremely mobile loops I-III in the N-domain. In the unliganded form of human hydratase 2, however, the loop I blocks the entrance of fatty enoyl-CoAs with chain-length >C8. Therefore, we expect that upon binding of substrates bulkier than C8, the loop I gives way, contemporaneously causing a secondary effect in the CoA-binding pocket and/or active site required for efficient hydration reaction. This structural feature would explain the inactivity of human hydratase 2 towards short-chain substrates. The solved structure is also used as a tool for analyzing the various inactivating mutations, identified among others in MFE-2-deficient patients. Since hydratase 2 is the last functional unit of mammalian MFE-2 whose structure has been solved, the organization of the functional units in the biologically active full-length enzyme is also discussed.  相似文献   

15.
16.
NF-E2-related factor 2 (NRF2; also called NFE2L2) and related NRF family members regulate antioxidant defenses by activating gene expression via antioxidant response elements (AREs), but their roles in embryonic development are not well understood. We report here that zebrafish (Danio rerio), an important developmental model species, possesses six nrf genes, including duplicated nrf1 and nrf2 genes. We cloned a novel zebrafish nrf2 paralog, nrf2b. The predicted Nrf2b protein sequence shares several domains with the original Nrf2 (now Nrf2a) but lacks the Neh4 transactivation domain. Zebrafish-human comparisons demonstrate conserved synteny involving nrf2 and hox genes, indicating that nrf2a and nrf2b are co-orthologs of human NRF2. nrf2a and nrf2b displayed distinct patterns of expression during embryonic development; nrf2b was more highly expressed at all stages. Embryos in which Nrf2a expression had been knocked down with morpholino oligonucleotides were more sensitive to tert-butylhydroperoxide but not tert-butylhydroquinone, whereas knockdown of Nrf2b did not affect sensitivity of embryos to either chemical. Gene expression profiling by microarray identified a specific role for Nrf2b as a negative regulator of several genes, including p53, cyclin G1, and heme oxygenase 1, in embryos. Nrf2a and Nrf2b exhibited different mechanisms of cross-talk with the Ahr2 signaling pathway. Together, these results demonstrate distinct roles for nrf2a and nrf2b, consistent with subfunction partitioning, and identify a novel negative regulatory role for Nrf2b during development. The identification of zebrafish nrf2 co-orthologs will facilitate new understanding of the multiple roles of NRF2 in protecting vertebrate embryos from oxidative damage.  相似文献   

17.
Li X  May JM 《Mitochondrion》2002,1(5):447-453
Mitochondria generate potentially damaging amounts of superoxide and H2O2 during oxidative metabolism. Although many assays are available to measure mitochondrial H2O2 generation, most detect H2O2 that has escaped the organelle. To measure H2O2 within mitochondria that contain catalase, we have developed an assay based on the ability of H2O2 to inhibit catalase in the presence of 3-amino-1,2,4-triazole. The assay is simple to perform, does not require expensive instrumentation, and is specific for H2O2. Results from this assay show that H2O2 generation in rat heart mitochondria reflects the activity of the electron transport chain. Further, liver mitochondria prepared from selenium-deficient rats have increased succinate-stimulated rates of H2O2 generation. This indicates that mitochondrial selenoenzymes are important for H2O2 removal. It also demonstrates the utility of this assay in measuring H2O2 release from mitochondria that do not contain catalase. The assay should be useful for study of both superoxide-dependent H2O2 generation in situ, and the role of endogenous mitochondrial catalase in H2O2 removal.  相似文献   

18.
19.
LSH, a homologue of the ISWI/SNF2 family of chromatin remodelers, is required in vivo for deposition of the histone variants macroH2A1 and macroH2A2 at specific genomic locations. However, it remains unknown whether LSH is directly involved in this process or promotes other factors. Here we show that recombinant LSH interacts in vitro with macroH2A1–H2B and macroH2A2–H2B dimers, but not with H2A.Z–H2B dimers. Moreover, LSH catalyzes the transfer of macroH2A into mono-nucleosomes reconstituted with canonical core histones in an ATP dependent manner. LSH requires the ATP binding site and the replacement process is unidirectional leading to heterotypic and homotypic nucleosomes. Both variants macroH2A1 and macroH2A2 are equally well incorporated into the nucleosome. The histone exchange reaction is specific for histone variant macroH2A, since LSH is not capable to incorporate H2A.Z. These findings define a previously unknown role for LSH in chromatin remodeling and identify a novel molecular mechanism for deposition of the histone variant macroH2A.  相似文献   

20.
Differential scanning calorimetry, laser Raman spectroscopy, optical densitometry, and pH potentiometry have been used to investigate DNA melting profiles in the presence of the chloride salts of Ba2+, Sr2+, Mg2+, Ca2+, Mn2+, Co2+, Ni2+, and Cd2+. Metal-DNA interactions have been observed for the molar ratio [M2+]/[PO2-] = 0.6 in aqueous solutions containing 5% by weight of 160 bp mononucleosomal calf thymus DNA. All of the alkaline earth metals, plus Mn2+, elevate the melting temperature of DNA (Tm > 75.5 degrees C), whereas the transition metals Co2+, Ni2+, and Cd2+ lower Tm. Calorimetric (delta Hcal) and van't Hoff (delta HVH) enthalpies of melting range from 6.2-8.7 kcal/mol bp and 75.6-188.6 kcal/mol cooperative unit, respectively, and entropies from 17.5 to 24.7 cal/K mol bp. The average number of base pairs in a cooperative melting unit (<nmelt>) varied from 11.3 to 28.1. No dichotomy was observed between alkaline earth and transition DNA-metal complexes for any of the thermodynamic parameters other than their effects on Tm. These results complement Raman difference spectra, which reveal decreases in backbone order, base unstacking, distortion of glycosyl torsion angles, and rupture of hydrogen bonds, which occur after thermal denaturation. Raman difference spectroscopy shows that transition metals interact with the N7 atom of guanine in duplex DNA. A broader range of interaction sites with single-stranded DNA includes ionic phosphates, the N1 and N7 atoms of purines, and the N3 atom of pyrimidines. For alkaline earth metals, very little interaction was observed with duplex DNA, whereas spectra of single-stranded complexes are very similar to those of melted DNA without metal. However, difference spectra reveal some metal-specific perturbations at 1092 cm-1 (nPO2-), 1258 cm-1 (dC, dA), and 1668 cm-1 (nC==O, dNH2 dT, dG, dC). Increased spectral intensity could also be observed near 1335 cm-1 (dA, dG) for CaDNA. Optical densitometry, employed to detect DNA aggregation, reveals increased turbidity during the melting transition for all divalent DNA-metal complexes, except SrDNA and BaDNA. Turbidity was not observed for DNA in the absence of metal. A correlation was made between DNA melting, aggregation, and the ratio of Raman intensities I1335/I1374. At room temperature, DNA-metal interactions result in a pH drop of 1.2-2.2 units for alkaline earths and more than 2.5 units for transition metals. Sr2+, Ba2+, and Mg2+ cause protonated sites on the DNA to become thermally labile. These results lead to a model that describes DNA aggregation and denaturation during heating in the presence of divalent metal cations; 1) The cations initially interact with the DNA at phosphate and/or base sites, resulting in proton displacement. 2) A combination of metal-base interactions and heating disrupts the base pairing within the DNA duplex. This allows divalent metals and protons to bind to additional sites on the DNA bases during the aggregation/melting process. 3) Strands whose bases have swung open upon disruption are linked to neighboring strands by metal ion bridges. 4) Near the midpoint of the melting transition, thermal energy breaks up the aggregate. We have no evidence to indicate whether metal ion cross-bridges or direct base-base interactions rupture first. 5) Finally, all cross-links break, resulting in single-stranded DNA complexed with metal ions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号