首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
J S Greengard  J H Griffin 《Biochemistry》1984,23(26):6863-6869
Binding of human high molecular weight kininogen to washed human platelets was studied by measuring platelet-associated radiolabeled ligand in pellets of centrifuged platelets. High molecular weight kininogen was bound to stimulated platelets in the presence of ZnCl2 in a specific and saturable manner. Calcium ions potentiated ligand binding but did not substitute for zinc ions. Optimal binding of high molecular weight kininogen occurred near the plasma concentrations of both zinc and calcium ions. Scatchard analysis yielded 24 200 binding sites for high molecular weight kininogen with an apparent dissociation constant of 20 nM. These studies show that stimulated human platelets can bind many high molecular weight kininogen molecules with high affinity and suggest that the platelet surface may potentially serve as an important site for localizing the initial reactions of the plasma kinin-forming and intrinsic coagulation pathways.  相似文献   

2.
We have reported that prothrombin (1 microm) is able to replace high molecular weight kininogen (45 nm) as a cofactor for the specific binding of factor XI to the platelet (Baglia, F. A., and Walsh, P. N. (1998) Biochemistry 37, 2271-2281). We have also determined that prothrombin fragment 2 binds to the Apple 1 domain of factor XI at or near the site where high molecular weight kininogen binds. A region of 31 amino acids derived from high molecular weight kininogen (HK31-mer) can also bind to factor XI (Tait, J. F., and Fujikawa, K. (1987) J. Biol. Chem. 262, 11651-11656). We therefore investigated the role of prothrombin fragment 2 and HK31-mer as cofactors in the binding of factor XI to activated platelets. Our experiments demonstrated that prothrombin fragment 2 (1 microm) or the HK31-mer (8 microm) are able to replace high molecular weight kininogen (45 nm) or prothrombin (1 microm) as cofactors for the binding of factor XI to the platelet. To localize the platelet binding site on factor XI, we used mutant full-length recombinant factor XI molecules in which the platelet binding site in the Apple 3 domain was altered by alanine scanning mutagenesis. The recombinant factor XI with alanine substitutions at positions Ser(248), Arg(250), Lys(255), Leu(257), Phe(260), or Gln(263) were defective in their ability to bind to activated platelets. Thus, the interaction of factor XI with platelets is mediated by the amino acid residues Ser(248), Arg(250), Lys(255), Leu(257), Phe(260), and Gln(263) within the Apple 3 domain.  相似文献   

3.
Factor XI binds to high affinity sites on the surface of stimulated platelets where it is efficiently activated by thrombin. Here, we provide evidence that the factor XI binding site on platelets is in the glycoprotein (GP) Ibalpha subunit of the GP Ib-IX-V complex as follows. 1) Bernard-Soulier platelets, lacking the complex, are deficient in factor XI binding; 2) two GP Ibalpha ligands, SZ-2 (a monoclonal antibody) and bovine von Willebrand factor, inhibit factor XI binding to platelets; 3) by surface plasmon resonance, factor XI bound specifically to glycocalicin (the extracellular domain of GP Ibalpha) in Zn(2+)-dependent fashion (K(d)( app) approximately 52 nm). We then investigated whether glycocalicin could promote factor XI activation by thrombin, another GP Ibalpha ligand. In the presence of high molecular weight kininogen (45 nm), Zn(2+) and Ca(2+) ions, thrombin activated factor XI in the presence of glycocalicin at rates comparable with those seen in the presence of dextran sulfate (1 microg/ml). With higher high molecular weight kininogen concentrations (360 nm), the rate of thrombin-catalyzed factor XI activation in the presence of glycocalicin was comparable with that on activated platelets. Thus, factor XI binds to the GP Ib-IX-V complex, promoting its activation by thrombin.  相似文献   

4.
To address the question of whether initiation of the consolidation phase of coagulation occurs on platelets or on endothelium, we have examined the interaction of coagulation factor XI with human umbilical vein endothelial cells (HUVEC) and with platelets. In microtiter wells factor XI binds to more sites in the absence of HUVEC (1.8 x 10(10) sites/well, K(D) = 2.6 nm) than in their presence (1.3 x 10(10) sites/well, K(D) = 12 nm) when high molecular weight kininogen (HK) and zinc are present. Binding was volume-dependent and abrogated by HUVEC or Chinese hamster ovary cells and was a function of nonspecific binding of HK to the artificial plastic surface. Factor XI did not bind to HUVEC or to HEK293 cell monolayers anchored to microcarrier beads. Activation of HUVEC resulted in von Willebrand's factor secretion, but factor XI binding was not observed. Only activated platelets supported factor XI binding in the presence of HK and zinc (K(D) = 8 nm, B(max) = 1319 sites/cell). Activation of factor XI was observed in plasma in the presence of platelets activated by the thrombin receptor activation peptide but not with activated HUVEC. These results support the concept that activated platelets, but not endothelial cells, expose a procoagulant surface for binding and activating factor XI, thereby initiating the consolidation phase of coagulation.  相似文献   

5.
The kininogens, high molecular weight kininogen (HK) and low molecular weight kininogen (LK), are multifunctional, single-gene products that contain bradykinin and identical amino-terminal heavy chains. Studies were performed to determine if LK would bind directly to platelets. 125I-LK specifically bound to gel-filtered platelets in the presence of 50 microM Zn2+. HK effectively competed with 125I-LK for the same binding site (Ki = 27 +/- 9 nM, n = 5). Similarly, the Ki for LK inhibition of 125I-LK binding was 12 +/- 1 nM (n = 3). Albumin, fibrinogen, factor XIII, and kallikrein did not inhibit 125I-LK binding to unstimulated platelets. 125I-LK (66 kDa) was not cleaved upon binding to platelets. The binding of 125I-LK to unstimulated platelets was found to be fully reversible by the addition of a 50 molar excess of unlabeled LK at both 10 and 20 min. LK binding to platelets was saturable with an apparent Kd of 27 +/- 2 nM (mean +/- S.E., n = 9) and 647 +/- 147 binding sites/platelet. Both LK and HK at plasma concentrations inhibited thrombin-induced platelet aggregation. LK and HK at about 5% of plasma concentration also inhibited thrombin-induced secretion of both stirred and unstirred platelets. Both kininogens were found to be noncompetitive inhibitors of proteolytically active thrombin binding to platelets. The kininogens did not inhibit D-phenylalanyl-prolyl-arginine chloromethyl ketone-treated thrombin from binding to platelets. These studies indicated that both kininogens have a region on their heavy chain which allows them to bind to platelets. Further, kininogen binding by its heavy chain modulates thrombin activation of platelets since it prevents proteolytically active thrombin from binding to its receptor.  相似文献   

6.
Factor XI (FXI) is a homodimeric plasma zymogen that is cleaved at two internal Arg(369)-Ile(370) bonds by thrombin, factor XIIa, or factor XIa. FXI circulates as a complex with the glycoprotein high molecular weight kininogen (HK). FXI binds to specific sites (K(d) = approximately 10 nM, B(max) = approximately 1,500/platelet) on the surface of stimulated platelets, where it is efficiently activated by thrombin. The FXI Apple 3 (A3) domain mediates binding to platelets in the presence of HK and zinc ions (Zn(2+)) or prothrombin and calcium ions. The platelet glycoprotein (GP) Ib-IX-V complex is the receptor for FXI. Using surface plasmon resonance, we determined that FXI binds specifically to glycocalicin, the extracellular domain of GPIbalpha, in a Zn(2+)-dependent fashion (K(d) = approximately 52 nM). We now show that recombinant FXI A3 domain inhibits FXI inbinding to glycocalicin in the presence of Zn(2+), whereas the recombinant FXI A1, A2, or A4 domains have no effect. Experiments with full-length recombinant FXI mutants show that, in the presence of Zn(2+), glycocalicin binds FXI at a heparin-binding site in A3 (Lys(252) and Lys(253)) and not by amino acids previously shown to be required for platelet binding (Ser(248), Arg(250), Lys(255), Phe(260), and Gln(263)). However, binding in the presence of HK and Zn(2+) requires Ser(248), Arg(250), Lys(255), Phe(260), and GLn(263) and not Lys(252) and Lys(253). Thus, binding of FXI to GPIbalpha is mediated by amino acids in the A3 domain in the presence or absence of HK. This interaction is important for the initiation of the consolidation phase of blood coagulation and the generation of thrombin at sites of platelet thrombus formation.  相似文献   

7.
Comparative interactions of factor IX and factor IXa with human platelets   总被引:10,自引:0,他引:10  
Both factor IX and factor IXa were bound to gel filtered platelets in the presence of CaCl2 (2-20 mM) and human alpha-thrombin (0.06-0.2 units/ml) with maximal binding occurring in 10-20 min at 37 degrees C, and rapid reversibility was observed when unlabeled ligands were added in 100-fold molar excess. Competition studies with various coagulation proteins revealed that neither factor XI nor high molecular weight kininogen, at 300-fold molar excess, could compete with 125I-labeled factor IXa for binding sites on thrombin-activated platelets, whereas prothrombin and factor X, in 450-fold molar excess, could displace approximately 15 and 35%, respectively, of bound factor IXa in the absence of added factor VIII. Analysis of saturation binding data in the presence of CaCl2 and thrombin without factors VIII and X indicated the presence of 306 (+/- 57) binding sites per platelet for factor IX (Kd(app) = 2.68 +/- 0.25 nM) and 515 (+/- 39) sites per platelet for factor IXa (Kd = 2.57 +/- 0.14 nM). In the presence of thrombin-activated factor VIII (1-5 units/ml) and factor X (0.15-1.5 microM), the number of sites for factor IX was 316 (+/- 50) with Kd = 2.44 (+/- 0.30) nM and for factor IXa 551 (+/- 48) sites per platelet (Kd = 0.56 +/- 0.05 nM). Studies of competition for bound factor IXa by excess unlabeled factor IX or factor IXa, and direct 125I-labeled factor IXa binding studies in the presence of large molar excesses of factor IX, confirmed the conclusion from these studies that factor IX and factor IXa share approximately 300 low-affinity binding sites per thrombin-activated platelet in the presence of Ca2+ and in the absence of factor VIII and factor X, with an additional 200-250 sites for factor IXa with Kd(app) similar to that for factor IX. The presence of factor VIII and factor X increases by 5-fold the affinity of receptors on thrombin-activated platelets for factor IXa that participate in factor X activation.  相似文献   

8.
Miller TN  Sinha D  Baird TR  Walsh PN 《Biochemistry》2007,46(50):14450-14460
The zymogen, factor XI, and the enzyme, factor XIa, interact specifically with functional receptors on the surface of activated platelets. These studies were initiated to identify the molecular subdomain within factor XIa that binds to activated platelets. Both factor XIa (Ki approximately 1.4 nM) and a chimeric factor XIa containing the Apple 3 domain of prekallikrein (Ki approximately 2.7 nM) competed with [125I]factor XIa for binding sites on activated platelets, suggesting that the factor XIa binding site for platelets is not located in the Apple 3 domain which mediates factor XI binding to platelets. The recombinant catalytic domain (Ile370-Val607) inhibited the binding of [125I]factor XIa to the platelets (Ki approximately 3.5 nM), whereas the recombinant factor XI heavy chain did not, demonstrating that the platelet binding site is located in the light chain of factor XIa. A conformationally constrained cyclic peptide (Cys527-Cys542) containing a high-affinity (KD approximately 86 nM) heparin-binding site within the catalytic domain of factor XIa also displaced [125I]factor XIa from the surface of activated platelets (Ki approximately 5.8 nM), whereas a scrambled peptide of identical composition was without effect, suggesting that the binding site in factor XIa that interacts with the platelet surface resides in the catalytic domain near the heparin binding site of factor XIa. These data support the conclusion that a conformational transition accompanies conversion of factor XI to factor XIa that conceals the Apple 3 domain factor XI (zymogen) platelet binding site and exposes the factor XIa (enzyme) platelet binding site within the catalytic domain possibly comprising residues Cys527-Cys542.  相似文献   

9.
We recently identified residues 185-224 of the light chain of human high molecular weight kininogen (HMWK) as the binding site for plasma prekallikrein (Tait, J.F., and Fujikawa, K. (1986) J. Biol. Chem. 261, 15396-15401). In the present study, we have further defined the primary structure requirements for binding of HMWK to factor XI and prekallikrein. In a competitive fluorescence polarization binding assay, a 31-residue synthetic peptide (residues 194-224 of the HMWK light chain) bound to prekallikrein with a Kd of 20 +/- 6 nM, indistinguishable from the previously determined value of 18 +/- 5 nM for the light chain. We also prepared three shorter synthetic peptides corresponding to different portions of the 31-residue peptide (residues 205-224, 212-224, and 194-211), but these peptides bound to prekallikrein more than 100-fold more weakly. Factor XI also bound to the same region of the HMWK light chain, but at least 58 residues (185-242) were required for optimal binding (Kd = 69 +/- 4 nM for the light chain; Kd = 130 +/- 50 nM for residues 185-242). The four synthetic peptides inhibited kaolin-activated clotting of blood plasma with potencies paralleling their affinities for prekallikrein and factor XI. Peptide 194-224 can also be used for rapid affinity purification of prekallikrein and factor XI from plasma.  相似文献   

10.
Binding of high-Mr kininogen and factor XII/factor XIIa to phospholipids coated on to polystyrene microtiter plates was investigated by ELISA. Both high-Mr kininogen and factor XII/factor XIIa bound specifically to the phospholipid surface. Binding was observed to negatively charged phospholipids only. The binding of high-Mr kininogen was not affected by the presence of zinc ions. At a surface concentration of 20% phosphatidylinositol phosphate in phosphatidylcholine a dissociation constant (kD) of 10 nM for the binding of high-Mr kininogen was calculated. The amount of bound purified alpha-factor XIIa could be increased 4-5-fold in the presence of zinc ions. The lowest zinc ion concentration giving maximal binding was 0.1 mM. The binding of alpha-factor XIIa was inhibited by high-Mr kininogen. Independent of the presence of zinc ions or high-Mr kininogen, a kD of 7.9 nM was calculated for alpha-factor XIIa binding. The binding of prekallikrein was dependent upon the presence and the concentration of high-Mr kininogen. In plasma containing aprotinin, the binding of high-Mr kininogen was apparently inhibited in the presence of zinc ions, which was a prerequisite for the binding of factor XII. This apparently inhibitory effect of zinc ions on the binding of high-Mr kininogen was probably due to the increased binding of factor XII, which displaced high-Mr kininogen.  相似文献   

11.
Endothelial cells expose specific receptors for blood clotting factors and, upon perturbation, can initiate and propagate the reactions of the extrinsic pathway of blood coagulation leading to fibrin formation on the cell surface. The existence of an intrinsic mechanism of Factor IX activation on cultured human umbilical vein cells (HUVECs) was investigated by studies of the interaction between HUVECs and two proteins of the contact activation system, the cofactor high molecular weight kininogen (H-kininogen) and the zymogen Factor XI. In the presence of zinc ions (10-300 microM), 125I-labeled H-kininogen bound to HUVECs in a time-dependent, reversible, and saturable manner, with calcium ions exerting an inhibitory effect on the zinc-dependent binding. Analysis of the binding data by the LIGAND computer program indicated that HUVECs, in the presence of 2 mM CaCl2 and 100 microM ZnCl2 at 37 degrees C, bound 1.14 x 10(7) H-kininogen molecules per cell with an apparent dissociation constant of 55 nM. HUVEC-bound H-kininogen functions as the cell surface receptor for both 125I-labeled Factor XI and 125I-labeled Factor XIa, since HUVECs cultured in contact factor-depleted serum do not detectably bind either the zymogen or the enzyme in the absence of H-kininogen and zinc ions. In the presence of saturating concentrations of H-kininogen, 2 mM CaCl2 and 100 microM ZnCl2, the binding of 125I-labeled Factor XI and Factor XIa to HUVECs was time-dependent, reversible, and saturable, with apparent dissociation constants of 4.5 and 1.5 nM, respectively. HUVEC-bound complexes of H-kininogen and Factor XI generated Factor XIa activity only after the addition of purified Factor XIIa, and cell-bound Factor XIa in turn activated Factor IX, as documented by a 3H-labeled activation peptide release assay for 3H-Factor IX activation. The results indicate that cultured HUVECs provide a surface for the assembly and expression of an intrinsic Factor IX activator complex that may participate in the initiation of blood coagulation at sites of vascular injury.  相似文献   

12.
Factor XI binds to activated platelets where it is efficiently activated by thrombin. The factor XI receptor is the platelet membrane glycoprotein (GP) Ib-IX-V complex (Baglia, F. A., Badellino, K. O., Li, C. Q., Lopez, J. A., and Walsh, P. N. (2002) J. Biol. Chem. 277, 1662-1668), a significant fraction of which exists within lipid rafts on stimulated platelets (Shrimpton, C. N., Borthakur, G., Larrucea, S., Cruz, M. A., Dong, J. F., and Lopez, J. A. (2002) J. Exp. Med. 196, 1057-1066). Lipid rafts are membrane microdomains enriched in cholesterol and sphingolipids implicated in localizing membrane ligands and in cellular signaling. We now show that factor XI was localized to lipid rafts in activated platelets ( approximately 8% of total bound) but not in resting platelets. Optimal binding of factor XI to membrane rafts required prothrombin (and Ca2+) or high molecular weight kininogen (and Zn2+), which are required for factor XI binding to platelets. An antibody to GPIb (SZ-2) that disrupts factor XI binding to the GPIb-IX-V complex also disrupted factor XI-raft association. The isolated recombinant Apple 3 domain of factor XI, which mediates factor XI binding to platelets, also completely displaces factor XI from membrane rafts. To investigate the physiological relevance of the factor XI-raft association, the structural integrity of lipid rafts was disrupted by cholesterol depletion utilizing methyl-beta-cyclodextrin. Cholesterol depletion completely prevented FXI binding to lipid rafts, and initial rates of factor XI activation by thrombin on activated platelets were inhibited >85%. We conclude that factor XI is localized to GPIb in membrane rafts and that this association is important for promoting the activation of factor XI by thrombin on the platelet surface.  相似文献   

13.
The light chain of kallikrein-cleaved human high molecular weight kininogen is solely responsible for its cofactor activity in blood clotting. Sequencing of the NH2-terminal region of the light chain reported herein identified the third kallikrein cleavage site of high molecular weight kininogen as Arg-437. The co-factor activity of high molecular weight kininogen consists of the capacity to bind to negatively charged surfaces and to factor XI or prekallikrein. Chemical modification of the histidines by either photooxidation or ethoxyformic anhydride affected the equivalent of 14-16 of 23 histidines available and resulted in over 90% loss in procoagulant activity. The modified protein had drastically reduced surface- and zinc-binding capacity, but it bound successfully to either factor XI or prekallikrein. In contrast, modification of two carboxyl groups, which led to approximately 80-90% loss of procoagulant activity, seriously compromised protein binding but left surface binding unaffected. All 3 tryptophans were modified at pH 4.0 with N-bromosuccinimide with a 70% reduction in procoagulant activity, but only 1 tryptophan was available for reaction at pH 7.35, resulting in a 50% loss in activity. Tryptophan modification at acidic pH affected protein binding but did not modify surface or zinc binding. Modification of both available tyrosine and 9 of 18 available lysine residues did not have a significant effect on the procoagulant activity of the light chain. These studies indicate that histidines participate in surface binding and that free carboxyl groups and tryptophan side chains are involved in binding of high molecular weight kininogen to other clotting factors.  相似文献   

14.
We have previously demonstrated that a monoclonal antibody (5F7) directed against the heavy chain region of factor XI inhibits the binding of factor XI to high molecular weight kininogen (high Mr kininogen) and the surface-mediated proteolytic activation of factor XI by factor XIIa in the presence of high Mr kininogen. In order to identify the structural domain of factor XI that binds high Mr kininogen, CNBr-digested factor XI was passed over a 5F7 antibody affinity column. One of two CNBr peptides that bound to this 5F7 affinity column inhibited binding of 125I-factor XI to high Mr kininogen, as did intact factor XI. Polyacrylamide gel electrophoresis in sodium dodecyl sulfate of an inhibitory peptide purified by high performance liquid chromatography revealed an Mr of 10,000-15,000. Gas-phase sequencing of this peptide revealed the following amino-terminal sequence: X-X-Val-Thr-Gln-Leu-Leu-Lys-Asp-Thr. These data together with the amino acid composition of the isolated peptide indicate that both the epitope recognized by antibody 5F7 and at least a portion of the high Mr kininogen binding site are contained within the amino-terminal portion of factor XI comprising residues Glu-1 through Met-102. Further cleavage of this peptide with o-iodosobenzoic acid at a tryptophanyl peptide bond revealed that an Mr 5,000 peptide (with the amino-terminal sequence Trp-Phe-Thr-Cys-Val-Leu) bound to a high Mr kininogen affinity column and inhibited binding of 125I-factor XI to high Mr kininogen. Finally, a synthetic peptide comprising residues Phe-56 through Ser-86 inhibited 125I-factor XI binding to high Mr kininogen. These experiments strongly suggest that the high Mr kininogen binding site is contained within the domain in the heavy chain region of factor XI comprising residues Phe-56 through Ser-86.  相似文献   

15.
Previous studies on the interaction of high molecular weight kininogen (HK) with endothelial cells have reported a large number of binding sites (106-107 sites/cell) with differing relative affinities (KD = 7-130 nm) and have implicated various receptors or receptor complexes. In this study, we examined the binding of HK to human umbilical vein endothelial cells (HUVEC) with a novel assay system utilizing HUVEC immobilized on microcarrier beads, which eliminates the detection of the high affinity binding sites found nonspecifically in conventional microtiter well assays. We report that HK binds to 8.5 x 104 high affinity (KD = 21 nm) sites per HUVEC, i.e. 10-100-fold fewer than previously reported. Although HK binding is unaffected by the presence of a physiological concentration of prekallikrein, factor XI abrogates HK binding to HUVEC in a concentration-dependent manner. Disruption of the naturally occurring complex between factor XI and HK by the addition of a 31-amino acid peptide mimicking the factor XI-binding site on HK restored HK binding to HUVEC. Furthermore, HK inhibited thrombin-stimulated von Willebrand factor release by HUVEC but not thrombin receptor activation peptide (SFLLRN-amide)-stimulated von Willebrand factor release. Factor XI restored the ability of thrombin to stimulate von Willebrand factor release in the presence of low HK concentrations. These results suggest that free HK, or HK in complex with prekallikrein but not in complex with factor XI, interacts with the endothelium and can maintain endothelial cell quiescence by preventing endothelial stimulation by thrombin.  相似文献   

16.
We have previously shown that the zymogen factor XI (FXI) binds to activated platelets but not to human umbilical vein endothelial cells (HUVEC), a conclusion that is in conflict with previous reports stating that FXI binds to 2.7-13 x 10(6) high affinity sites per HUVEC (Berrettini, M., Schleef, R. R., Heeb, M. J., Hopmeier, P., and Griffin, J. H. (1992) J. Biol. Chem. 267, 19833-19839; Shariat-Madar, Z., Mahdi, F., and Schmaier, A. H. (2001) Thromb. Haemostasis 85, 544-551). It has also been reported that activated FXI (FXIa) binds to 1.5 x 10(6) sites per HUVEC and promotes the activation of factor IX by cell bound FXIa (Berrettini, M., Schleef, R. R., Heeb, M. J., Hopmeier, P., and Griffin, J. H. (1992) J. Biol. Chem. 267, 19833-19839). Therefore, the binding of FXIa to activated platelets was compared with FXIa binding to HUVEC and HEK293 cells immobilized on microcarrier beads. Specific and saturable zinc-dependent FXIa binding was demonstrated to 250 +/- 48 sites per activated platelet (K(D) = 1.7 +/- 0.78 nm) and 6.5 +/- 0.4 x 10(4) sites per HUVEC (K(D) = 2.4 +/- 0.5 nm), whereas no binding to HEK293 cells was detected. A titration with high molecular weight kininogen had no effect on FXIa binding to platelets, but revealed a concentration-dependent decrease in the amount of FXIa bound to HUVEC. The rate of factor IXa generation catalyzed by FXIa was unaffected by the presence of surfaces; however only the activated platelet surface protected FXIa from inhibition by protease nexin 2. The results presented here confirm the conclusion that activated platelets are procoagulant while unstimulated endothelial cells are not.  相似文献   

17.
We studied the ability of fragments of the light chain of human high molecular weight kininogen to bind to plasma prekallikrein. In a competitive fluorescence polarization assay, kallikrein-cleaved light chain (light chain-2; residues 49-255), a cyanogen bromide fragment (residues 185-242), and a tryptic peptide (T-7; residues 185-224) had binding affinities of approximately 20 nM, equivalent to the value for the intact light chain (residues 1-255) of high-molecular-weight kininogen. In contrast, fragments consisting of residues 49-184 and 243-255 showed no binding activity (Kd much greater than 1,000 nM). Direct titrations of fluorescein-labeled derivatives of light chain-2 and peptide T-7 with prekallikrein confirmed that T-7 retained full binding activity for prekallikrein (Kd = 12 +/- 2 nM for labeled light chain-2; Kd = 7 +/- 1 nM for labeled T-7). These results localize the binding site of high molecular weight kininogen for prekallikrein within a region of 40 amino acids (residues 185-224) that resides in the near carboxyl terminus of the light chain of kininogen.  相似文献   

18.
Investigations determined the relative preference of prekallikrein (PK) or factor XI/XIa (FXI/FXIa) binding to endothelial cells (HUVECs). In microtiter plates, biotinylated high molecular weight kininogen (biotin-HK) or biotin-FXI binding to HUVEC monolayers or their matrix proteins, but not fibronectin-coated plastic microtiter plate wells, was specifically blocked by antibodies to each of the receptors of HK, uPAR, gC1qR, or cytokeratin 1. Fluorescein isothiocyanate (FITC)-PK specifically bound to HUVEC suspensions without added Zn2+, whereas FITC-FXI or -FXIa binding to HUVEC suspensions required 10 microM added Zn2+ to support specific binding. Plasma concentrations of FXI did not block FITC-PK binding to HUVECs in the absence or presence of 10 microM Zn2+. In the absence of HK, the level of FITC-FXI or -FXIa binding was half that seen in its presence. At physiologic concentrations, PK (450 nM) abolished FITC-FXI or -FXIa binding to HUVEC suspensions in the absence or presence of HK in the presence of 10 microM Zn2+. Released Zn2+ from 2-8 x 10(8) collagen-activated platelets/ml supported biotin-FXI binding to HUVEC monolayers, but platelet activation was not necessary to support biotin-PK binding to HUVECs. At physiologic concentrations, PK also abolished FXI binding to HUVECs in the presence of activated platelets, but FXI did not influence PK binding. PK in the presence or absence of HK preferentially bound to HUVECs over FXI or FXIa. Elevated Zn2+ concentrations are required for FXI but not PK binding, but the presence of physiologic concentrations of PK and HK also prevented FXI binding. PK preferential binding to endothelial cells contributes to their anticoagulant nature.  相似文献   

19.
To elucidate the role of charged groups in expression of factor XI coagulant activity, the charged groups of purified human blood coagulation factor XI/XIa containing 125I-XI/XIa were derivatized: free amino groups by succinylation, guanido groups of arginine by reaction with phenylglyoxal hydrate, and free carboxyl groups by reaction with ethylenediamine. The modified proteins were tested for: 1) ability to adsorb to glass, 2) ability to be cleaved by trypsin or factor XII-high molecular weight kininogen, 3) coagulant activity. The amino group-modified factor XI had a significantly decreased ability to bind to glass; modification of arginine or carboxyl groups did not affect adsorption. Trypsin cleaved factor XI with modified free amino, guanido, or carboxyl groups. Factor XII-high molecular weight kininogen could cleave only the arginine-modified factor XI. Amino group-modified factor XI and carboxyl group-modified factor XI lost all their factor XI assay activity, whereas arginine-modified factor XI retained 50% of the original activity. Amino group-modified factor XI could not be activated by trypsin, but arginine-modified and carboxyl group-modified factor XI could be activated by trypsin to 50% of the original activity. Succinylation of the amino groups of factor XIa destroyed all its factor XIa activity. Arginine-modified and carboxyl group-modified factor XIa retained 50% of their factor XIa activity. We conclude that epsilon-amino groups are essential for adsorption; activation by factor XII-high molecular weight kininogen requires free amino and carboxyl but not guanido groups; free amino, carboxyl, and guanido groups in factor XIa all appear to be critical for interaction of factor XIa with factor IX.  相似文献   

20.
Activation of the plasma kallikrein-kinin forming cascade takes place upon incubation with human umbilical vein endothelial cells. The mechanism by which initiation occurs is uncertain. Zinc-dependent binding of plasma proteins to gC1qR, cytokeratin 1, and perhaps u-PAR is requisite for activation to take place. We demonstrate here that during a 2 hour incubation time plasma deficient in either factor XII or high molecular weight kininogen (HK) fails to activate, as compared to normal plasma, but with more prolonged incubation, factor XII-deficient plasma gradually activates while HK-deficient plasma does not. Our data support both factor XII-dependent (rapid) and factor XII-independent (slow) mechanisms; the latter may require a cell-derived protease to activate prekallikrein and the presence of zinc ions and HK.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号