首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Antioxidant activity of gangliosides GM1 and GT1b in the Fenton type of reaction was investigated by EPR spectroscopy using DMPO as a spin trap. Hydroxyl radical spin adduct signal intensity was significantly reduced in the presence of gangliosides at their micellar concentrations. Mean micellar hydrodynamic diameter was not changed, whereas significant changes in negative Zeta potential values were observed as evidenced by Zetasizer Nano ZS. This study showed that the primary mode of ganglioside action was not due to direct scavenging of OH·, but rather to the inhibition of hydroxyl radical formation. This phenomenon is related to the ability of ganglioside micelles to bind oppositely charged ferrous ions, thus reducing their concentration and consequently inhibiting OH· formation.  相似文献   

2.
Two-affinity purified tetanotoxin forms, TeToA and TeToB, with different affinities for gangliosides were characterized by analytical ultracentrifuge, circular dichroism (CD), and amino acid composition. Both toxin forms share a common sedimentation coefficient of about 6-7 S and similar alpha-helicity values, but they vary in amino acid composition. Incubation of TeToB with micellar polysialogangliosides results in formation of high (21-24 S) and medium (13-15 S) size toxin-micellar ganglioside aggregates as revealed by analytical ultracentrifuge technique. At TeToB/[N-acetylneuraminyl]-galactosyl-N-acetylgalactosaminyl- [N-acetylneuraminyl-N-acetylneuraminyl]-galactosylglucosylceramide (GT1b) molar ratios of greater than 26, high molecular weight aggregates (Mr greater than or equal to 700,000) which contain between 3 and 5 toxin monomers are formed, whereas at molar ratios less than 15, about 1-2 monomers are present. TeToA does not form aggregates in the presence of gangliosides. A marked increase in the alpha-helix from about 20 to 39% is apparent in the CD spectrum of TeToB after interaction with ganglioside mixture (G1b). Cerebrosides, sulfatides, sphingomyelin, and phosphatidylserine also increase the alpha-helix, presumably because of an overall effect of lipids on the protein. TeToA and fragment B but not C also undergo similar changes in the presence of G1b, suggesting that the effect of ganglioside is not specific. The polarity of the CD spectra of a number of gangliosides is shifted from a negative to a positive value after interaction with tetanotoxin. The data are consistent with the interpretation of a discrete hydrophobic domain on the toxin heavy chain which interacts with micellar gangliosides to form macromolecular complexes.  相似文献   

3.
Gangliosides are known to act as potent suppressors of lectin-stimulated lymphocyte activation when added to the culture medium. Since this effect may be mediated via ganglioside association with (or insertion into) the plasma membrane, we have used 3H- and spin-labelled derivatives of mixed gangliosides to probe the nature of this interaction. Gangliosides bind rapidly to the lymphocyte membrane and show no preference for association with either inside-out or right-side-out membrane vesicles. Around 20% of the bound gangliosides can be removed by repetitive washing, and a further 22-28% by treatment with pronase for 1 h, suggesting that this fraction is tightly bound to membrane proteins at the cell surface. The ESR spectrum of membrane-bound gangliosides did not resemble the spin-exchanged spectrum of micellar spin-labelled gangliosides in aqueous solution, but was similar to that seen for 5 mol% ganglioside spin label in liposomes of egg phosphatidylcholine. This suggests that the bulk of the membrane-bound gangliosides are inserted and molecular dispersed in the lymphocyte membrane. Binding of wheat-germ agglutinin to lymphocyte-associated gangliosides results in specific immobilization of the carbohydrate headgroup, while concanavalin A and other lectins have little or no effect on oligosaccharide mobility. Membrane-inserted gangliosides show a response to lectin binding which is qualitatively different from that seen for gangliosides in bilayers of phosphatidylcholine.  相似文献   

4.
alpha-L-Fucosidase, prepared in highly purified form (Mr 70 000-74 000) from Octopus hepatopancreas, was able to hydrolyse a fucose-containing ganglioside, namely Fuc-GM1 (II3NeuAc,IV2Fuc-GgOse4-Cer). The enzyme showed an irregular kinetic behaviour (v/[S] and v/[E] relationships following sigmoidal curves) when working on micellar Fuc-GM1 (Mr of the micelle 500 000), but obeyed regular hyperbolic kinetics when acting on low-Mr substances. It was observed that, on incubation with micellar Fuc-GM1 under the conditions used for the enzyme assay, Octopus alpha-L-fucosidase produced a ganglioside-enzyme complex that was catalytically inactive. This complex had an Mr exceeding 500 000 and a ganglioside/protein ratio of 4:1 (w/w), which is consistent with a stoichiometric combination of one ganglioside micelle with two enzyme molecules. Inactivation of alpha-L-fucosidase by formation of the corresponding complexes was also obtained with micellar gangliosides GM1 (II3NeuAc-GgOse4-Cer), GD1a (II3NeuAc,IV3NeuAc-GgOse4-Cer) and GT1b [II3(NeuAc)2,IV3-NeuAc-GgOse4-Cer], which are not substrates for the enzyme, indicating that the ganglioside micelles per se act as enzyme inhibitors. However, alpha-L-fucosidase easily forms a Fuc-GM1-alpha-L-fucosidase complex, displaying regular Michaelis-Menten kinetics. Therefore the anomalous behaviour exhibited by alpha-L-fucosidase on micellar Fuc-GM1 is likely due to formation of the complex, which separates the fucosyl linkage from the active site of the complexed enzyme, but makes it available to the enzyme in the free form.  相似文献   

5.
The calorimetric properties and morphological structures of dispersed mixtures of 1, 2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC) and highly purified human brain gangliosides, GM2, GM1, GD1a, GD1b, and GT1b, were studied using a high-sensitivity differential scanning calorimeter and an electron-microscope, as a function of the ganglioside molar fraction. No thermal phase transitions of pure gangliosides in aqueous dispersions could be detected. In the mixtures of DPPC and gangliosides, the gel to liquid crystalline phase transition occurred at a higher temperature than in pure DPPC dispersions and progressed over a wide temperature range. As increasing amounts of the pure ganglioside species were added to DPPC, the temperature for the main transition gradually increased. The phase transition progressed differently among different gangliosides/DPPC mixtures. The enthalpy values were found to decrease linearly as the number of sialic acid residues increased. Electron-microscopically the ganglioside/DPPC mixtures formed multilamellar structures at lower concentrations of the gangliosides, and the structures changed to cylindrical and spherical micelles as the ganglioside concentration was increased. The polysialoganglioside/DPPC mixtures showed the micellar form even at lower ganglioside concentrations, contrary to the case of the monosialoganglioside/DPPC mixtures. The morphological changes of gangliosides/DPPC mixtures corresponded with changes in the calorimetric properties. These results show that individual gangliosides have different physicochemical effects on model membranes, possibly because of the interaction of their negatively charged head groups.  相似文献   

6.
Exogenous glycosphingolipids, especially gangliosides, are used to study transport and metabolism of their endogenous counterparts as well as their role in cell adhesion, cell recognition and signal transduction. Unlike monodispersed solutes, in aqueous media ganglioside molecules aggregate into micelles (or bilayer structures) with a very low critical micellar concentration. Upon addition to cells in culture, exogenous gangliosides bind to the cell surface in three operationally defined modes: loosely associated micelles removable by serum; tightly attached micelles removable by proteases such as trypsin; and ganglioside molecules inserted into the outer leaflet of the plasma membrane. As shown by a biotin-labeled derivative of the ganglioside GM1 these inserted molecules are endocytosed and transported to intralysosomal membranes for catabolism. The benefit from using (partially) nondegradable as well as semi-truncated glycosphingolipids in transport studies is discussed.  相似文献   

7.
We have studied the effects of oxygen radical scavengers on the inactivation of ss ΦX174 DNA by the semi-quinone free radical of the antitumor agent etoposide (VP 16-213), which was generated from the ortho-quinone of etoposide at pH ≥ 7.4. A semi-quinone free radical of etoposide is thought to play a role in the inactivation of ss ΦDX174 DNA by its precursors 3',4'-ortho-quinone and 3',4'-ortho-dihydroxy-derivative. The possible role of oxygen radicals formed secondary to semi-quinone formation in the inactivation of DNA by the semi-quinone free radical was investigated using the hydroxyl radical scavengers t-butanol and DMSO. the spin trap DMPO, the enzymes catalase and superoxide dismutase, the iron chelator EDTA and potassium superoxide. Hydroxyl radicals seem not important in the process of inactivation of DNA by the semi-quinone free radical, since t-butanol, DMSO, catalase and EDTA had no inhibitory effect on DNA inactivation. The spin trapping agent DMPO strongly inhibited DNA inactivation and semi-quinone formation from the ortho-quinone of etoposide at pH ≥ 7.4 with the concomitant formation of a DMPO-OH adduct. This adduct probably did not arise from OH· trapping but from trapping of O2-. DMSO increased both the semi-quinone formation from and the DNA inactivation by the ortho-quinone of etoposide at pH ≥ 7.4. Potassium superoxide also stimulated ΦDX174 DNA inactivation by the ortho-quinone at pH ≤ 7. From the present study, it is also concluded that superoxide anion radicals probably play an important role in the formation of the semi-quinone free radical from the orthoquinone of etoposide, thus indirectly influencing DNA inactivation.  相似文献   

8.
Static and dynamic laser light scattering measurements on micellar aqueous solutions of gangliosides GM2, GM1, GD1a are reported. The aggregation number, the hydrodynamic radius and the micellar shape depend on the type of ganglioside and the unsaturation degree of the hydrocarbon chains. At a temperature of 25 degrees C the molecular weights of GM2, GM1 and GD1a are 740,000, 470,000 and 418,000 DA respectively. A significant decrease of micellar size with temperature has been found for saturated GM1 in the region 25 degrees-40 degrees C. The strong sensitivity of the micellar parameters to the ganglioside structure is explained by making reference to some simple model which takes into account geometrical packing considerations. By measuring the scattered light intensity at low ionic strength of the solution (0.1-30 mE) it was possible to evaluate the ganglioside micellar charge, 100 electronic units for GM2, 48 for GM1 and 60 for GD1a.  相似文献   

9.
Ganglioside GM1 and mixed brain gangliosides were mixed with 1-stearoyl-2-oleoyl lecithin (SOPC) and examined by differential scanning calorimetry as a function of ganglioside content and temperature. Low mole fractions of ganglioside GM1 and of mixed brain gangliosides are shown to be miscible with SOPC in the gel phase up to X = 0.3, with the possible exception of a small region of immiscibility for the mixed brain gangliosides system centered around X = 0.05. Above X = 0.3, the low-temperature phases demix into a (gel) phase of composition X = 0.3 and a (micellar) phase of composition X = 1.0. Above the endothermic phase transition temperature, no phase boundaries are discerned. It is pointed out that phase structures need to be determined in each domain delineated in the phase diagrams, and that cylindrical phases may exist at higher temperatures and intermediate compositions. The effects of addition of wheat germ agglutinin, which binds to ganglioside GM1, on a ganglioside GM1-SOPC mixture (X = 0.5), are described and interpreted in terms of partial demixing of ganglioside and lecithin. Behavior of the ganglioside-SOPC system is discussed with respect to the kinetics of cholera toxin action in lymphocytes, as well as to other physiological roles of gangliosides in membranes.  相似文献   

10.
The hydrolysis of di- and trisialo gangliosides by bacterial neuraminidases was investigated. Slow rates of hydrolysis were obtained with micellar dispersions of the pure gangliosides; the rates increased considerably with mixtures of ganglioside and phospholipids, such as phosphatidylcholine or sphingomyelin. The greatest rates of hydrolysis were obtained with mixtures containing 5-10 mol% ganglioside and 90-95% phospholipid. With the aid of the nonpenetrating reagent trinitrobenzenesulfonic acid, it was ascertained that this mixture consisted of sealed, unilamellar vesicles in which the ganglioside was distributed symmetrically between the two layers of the liposome. When the relative proportion of the ganglioside was increased, the dispersions contained liposomes admixed with micelles of ganglioside and phospholipid. The rates of hydrolysis of the ganglioside could be correlated with the percentage of sealed vesicles in each mixture. Experiments in which another ganglioside (GM1) or cholesterol was incorporated into the mixed dispersions further supported this conclusion. It is suggested that the rate of hydrolysis is affected predominantly by interactions between the carbohydrate chains of ganglioside molecules. The data emphasize that ganglioside metabolism can be best studied when the latter are part of biological or model membranes.  相似文献   

11.
《Biophysical journal》2021,120(24):5530-5543
Gangliosides form an important class of receptor lipids containing a large oligosaccharide headgroup whose ability to self-organize within lipid membranes results in the formation of nanoscopic platforms. Despite their biological importance, the molecular basis for the nanoscopic segregation of gangliosides is not clear. In this work, we investigated the role of the ganglioside headgroup on the nanoscale organization of gangliosides. We studied the effect of the reduction in the number of sugar units of the ganglioside oligosaccharide chain on the ability of gangliosides GM1, GM2, and GM3 to spontaneously self-organize into lipid nanodomains. To reach nanoscopic resolution and to identify molecular forces that drive ganglioside segregation, we combined an experimental technique, Förster resonance energy transfer analyzed by Monte-Carlo simulations offering high lateral and trans-bilayer resolution with molecular dynamics simulations. We show that the ganglioside headgroup plays a key role in ganglioside self-assembly despite the negative charge of the sialic acid group. The nanodomains range from 7 to 120 nm in radius and are mostly composed of the surrounding bulk lipids, with gangliosides being a minor component of the nanodomains. The interactions between gangliosides are dominated by the hydrogen bonding network between the headgroups, which facilitates ganglioside clustering. The N-acetylgalactosamine sugar moiety of GM2, however, seems to impair the stability of these clusters by disrupting hydrogen bonding of neighboring sugars, which is in agreement with a broad size distribution of GM2 nanodomains. The simulations suggest that the formation of nanodomains is likely accompanied by several conformational changes in the gangliosides, which, however, have little impact on the solvent exposure of these receptor groups. Overall, this work identifies the key physicochemical factors that drive nanoscopic segregation of gangliosides.  相似文献   

12.
We studied effect of gangliosides on viability of brain neurons and neuronal PC12 cell line exposed to toxic concentrations of compounds activating free radical reactions. It is found that preincubation of cerebellar granule cells and PC12 cells with micromolar concentrations of ganglioside GM1 increases statistically significantly viability of these cells submitted to inductors of oxidative stress, such as hydrogen peroxide and the Fe2+-ascorbate system However, the effect of ganglioside GM1 in the PC12 cells failed to be revealed 1–2 days after treatment of the cells with trypsin, which indicates an importance of interaction of gangliosides with surface proteins for realization of their protective action. GM1, GD1a, and other gangliosides were shown to produce the neuroprotective effect on cerebellar granule cells in the presence of toxic glutamate concentrations. Not only micro-, but also nanomolar concentrations of these gangliosides increased statistically significantly the neuronal viability, although at micromolar concentrations this effect as a rule was more pronounced. The obtained data allow suggesting that the neuroprotective action of gangliosides is determined to a considerable degree by their ability to inhibit free-radical reactions in nerve cells.  相似文献   

13.
The presence of ganglioside GD1b, in lactone form GD1b-L, was ascertained in rat brain. The possible formation of GD1b-L from GD1b in brain was explored by the intracisternal injection of GD1b, 3H-labelled at the level of the terminal galactose. This was followed by recognition of the radioactive gangliosides formed at different times (1, 3, and 7 days) after injection. Whereas at 0 time after injection the only radioactive ganglioside was GD1b, after 1, 3, and 7 days other radioactive gangliosides were also found, thus indicating GD1b penetration into the brain tissue, followed by metabolic processing. Besides GD1b, the following radioactive gangliosides were recognized: GM1 and GM2, derived from GD1b degradation; GT1b, formed by the direct sialylation of GD1b; and GD1b-L, produced by metabolic lactonization. The radioactivity carried by GD1b-L was maximal 3 days after injection; its time course was different from that of the other gangliosides, suggesting that the process of lactonization is separate from that of both degradation and glycosylation. Under the same experimental conditions, some radioactive gangliosides also appeared in the liver, although in much smaller amounts than in brain. Radioactive GD1b-L could not be detected in liver, thus indicating that metabolic lactonization is a tissue- or organ-specific process.  相似文献   

14.
1. A crude ganglioside mixture and pure GM1 and GD1a from bovine brain grey matter were prepared on a large scale. 2. The C7- and G8-analogues of NeuNAc were prepared from Collocalia mucoid and their structures established by gas-liquid chromatography and mass spectrometry. 3. Using model compounds in addition to various gangliosides, the conditions for the periodate oxidation and subsequent borohydride reduction of gangliosides were investigated with regard to the yield of C7- and C8-analogues of NeuNAc and the integrity of other monosaccharides in the oligosaccharide chain. These conditions were optimised to yield maximum C8-NeuNAc production and low C7-NeuNAc formation. Thus products were obtained which closely resemble the native gangliosides. 4. Using boro [3H] hydride, ganglioside derivatives with high specific radioactivity were prepared for the first time, containing either NeuNAc and labelled C8-NeuNAc or mainly labelled C7-NeuNAc depending on the prevailing conditions.  相似文献   

15.
The total content and pattern of gangliosides were determined in the unfractionated sera of 11 healthy human adults and in isolated lipoproteins. The total content of lipid-bound sialic acid was 10.5 +/- 3.2 nmol/ml serum. The ganglioside profile consisted of more than ten different components. The major ganglioside was GM3, followed by GD3, GD1a, GM2, GT1b, MG-3 (sialosyllactoneotetraosylceramide), GD1b and GQ1b. Traces of four additional gangliosides could not be quantified reliably. Ganglioside patterns did not vary in sera taken from healthy adults of different age and sex. Approximately 98% of human serum gangliosides were transported by serum lipoproteins, predominantly by LDL (66%), followed by HDL (25%) and VLDL (7%). The quantitative distribution of individual gangliosides in VLDL and LDL was almost the same as that in the unfractionated serum; some differences existed with the ganglioside profile in HDL.  相似文献   

16.
A strongly fluorescent 5-dimethylamino-1-naphthalene sulfonate (dansyl) derivative of bovine thyrotropin has been prepared. The dye-conjugated hormone is bioactive and shares, essentially unchanged, the membrane binding and adenylate cyclase stimulatory activities of the native hormone. Binding of 125I-labeled dansyl-thyrotropin to thyroid plasma membranes is sensitive to inhibition by gangliosides and, as is the case for the binding of 125I-thyrotropin, galactosyl-N-acetylgalactosaminyl[N-acetylneuraminyl-N-acetylneuraminyl]-galactosylglucosylceramide (GDIb) is the most potent binding inhibitor. Gangliosides interact with dansyl-thyrotropin, causing a large increase of the quantum yield and a 5- to 10-nm blue shift of the emission maximum of the hormone-bound naphthalene chromophore; gangliosides cause no change in the fluorescent properties of the free dye. The fluorescence enhancement caused by gangliosides can be specifically reversed by unlabeled thyrotropin. The effect of gangliosides on dansyl-thyrotropin fluorescence is strongly salt-dependent; salts cannot, however, reverse the formation of the dansyl-thyrotropin.ganglioside complex once it has formed. The salt data suggest that the association of the ganglioside with dansyl-thyrotropin is dominated by electrostatic interactions, but that salt-independent, short range interactions, most likely hydrophobic, dominate the dissociation of the dansyl-thyrotropin-ganglioside adduct. Sucrose gradient centrifugation, ultracentrifugation, and fluorescence polarization data indicate that the gangliosides are micellar in nature under the conditions of these experiments. Acid titration of dansyl-thyrotropin causes a marked quenching of dansyl fluorescence which in part reflects dissociation of the hormone into its constituent alpha and beta subunits. In the presence of GDIb, but not N-acetylneuraminylgalactosyl-N-acetylgalactosaminyl-[N-acetylneuraminyl]-galactosylglucosylceramide (GDIa), pH-dependent quenching and subunit dissociation are essentially eliminated. Circular dichroism results and fluorescence polarization studies support the interpretation that the ganglioside interaction causes a conformational change in the thyrotropin molecule. The acid titration data together with differences in the ability of gangliosides to influence the tyrosine fluorescence of the thyrotropin molecule indicate that different gangliosides induce different conformational perturbations in the thyrotropin molecule.  相似文献   

17.
Gangliosides in rat kidney were analyzed for their composition, regional distribution, and developmental changes. Renal tissue from 7-week-old rats showed a GM3-dominant pattern with GD3 and several minor ganglioside components including GM4, GM2, GD1a, and an unknown ganglioside (ganglioside X). The tissue also contained c-series gangliosides that included GT3 as the main component with GT2 in a lesser amount. Ganglioside analysis of cortical and medullary regions of renal tissue suggested the restricted localization of some gangliosides. While GM4 and GD3 were enriched in the cortical region, GM2 was distributed mainly in the medullary area. Renal gangliosides showed unique developmental profiles during a period from Embryonic Day 20 (E20) to 7 weeks postnatal. The content of renal gangliosides increased from E20, reached the highest around Postnatal Day 1, and thereafter, decreased rapidly to the adult level. The ratio of N-glycolylneuraminic acid to total sialic acids in gangliosides tended to change in inverse proportion to the amount of total sialic acids. The composition of major gangliosides in renal tissues shifted from GD3-dominant to GM3-dominant patterns with advancing ages. While GM1 was expressed only at early stages of the development, GM4, GM2, and ganglioside X appeared after Postnatal Day 3. The expression of c-series gangliosides was less affected through the period examined. These results suggest that gangliosides may be implicated with development and function of rat kidney.  相似文献   

18.
Botulinum neurotoxins (BoNTs) cleave SNARE proteins in motor neurons that inhibits synaptic vesicle (SV) exocytosis, resulting in flaccid paralysis. There are seven BoNT serotypes (A–G). In current models, BoNTs initially bind gangliosides on resting neurons and upon SV exocytosis associate with the luminal domains of SV-associated proteins as a second receptor. The entry of BoNT/C is less clear. Characterizing the heavy chain receptor binding domain (HCR), BoNT/C was shown to utilize gangliosides as dual host receptors. Crystallographic and biochemical studies showed that the two ganglioside binding sites, termed GBP2 and Sia-1, were independent and utilized unique mechanisms to bind complex gangliosides. The GBP2 binding site recognized gangliosides that contained a sia5 sialic acid, whereas the Sia-1 binding site recognized gangliosides that contained a sia7 sialic acid and sugars within the backbone of the ganglioside. Utilizing gangliosides that uniquely recognized the GBP2 and Sia-1 binding sites, HCR/C entry into Neuro-2A cells required both functional ganglioside binding sites. HCR/C entered cells differently than the HCR of tetanus toxin, which also utilizes dual gangliosides as host receptors. A point-mutated HCR/C that lacked GBP2 binding potential retained the ability to bind and enter Neuro-2A cells. This showed that ganglioside binding at the Sia-1 site was accessible on the plasma membrane, suggesting that SV exocytosis may not be required to expose BoNT/C receptors. These studies highlight the utility of BoNT HCRs as probes to study the role of gangliosides in neurotransmission.  相似文献   

19.
By use of the excimer technique, the formation in aqueous solution of pyrene-labeled ganglioside micelles and their lateral diffusion and distribution in phosphatidylcholine membranes were investigated. For these studies 12-(1-pyrenyl)dodecanoic acid was covalently attached to the ceramide part of lysogangliosides GM1, GM2, GM3, GD1a, and GD1b. The 12-(1-pyrenyl)dodecanoic acid substitute of phosphatidylcholine was used for comparison. All pyrene-labeled gangliosides were present in aqueous solution in a predominantly micellar form down to 2 X 10(-8) M, which is the technical limit of this method. The tendency to aggregate is highest for PyGD1a and PyGD1b. In fluid dipalmitoylphosphatidylcholine bilayers the excimer-to-monomer fluorescence intensity ratio of pyrene-labeled gangliosides PyGM1, PyGM2, PyGM3, PyGD1a, and PyGD1b increases linearly with ganglioside concentration. The calculated diffusion coefficients for gangliosides are comparable to 1.6 X 10(-7) cm2/s, which is the diffusion coefficient of pyrene-labeled phosphatidylcholine [Galla, H.-J., & Hartmann, W. (1980) Chem. Phys. Lipids 27, 199-219]. In comparison to phosphatidylcholine, the diffusion of monosialogangliosides is slightly increased, with that diffusion of disialogangliosides being slightly decreased. Ca2+ ions up to 200 mM do not affect ganglioside diffusion significantly. The shape of the lipid phase transition curves obtained by the excimer technique yields information on the lateral distribution of the tested probe molecules. Pyrene-labeled phosphatidylcholine was taken as reference for a system with complete miscibility but nonideal mixing. 1-Acyl-2-[10-(1-pyrenyl)decanoyl]-sn-glycero-3-phosphocholine (PyPC) is known to be randomly distributed in the gel and in the fluid-crystalline lipid phase of dipalmitoylphosphatidylcholine bilayer membranes. It distributes preferentially into the fluid phase in the phase-transition region. In comparison, PyPC in dimyristoylphosphatidylcholine membranes is an example of a system with nearly ideal mixing [Hresko, R. C., Sugar, J. P., Barenholz, Y., & Thompson, T. E. (1986) Biochemistry 25, 3813-3828]. Phase-transition curves of pyrene-labeled gangliosides exemplify a nearly ideal mixing system with PyGD1a or PyGD1b producing best effects. The monosialogangliosides, however, exhibit less ideality of mixing, the deviation from an ideal mixing behavior increasing with decreasing number of both neutral sugar residues and sialic acid groups. Addition of Ca2+ triggers a tightening of the phosphatidylcholine bilayer and thus induces a change in the lateral distribution of the gangliosides at the phase transition.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

20.
It was previously shown that sphingomyelin and gangliosides can be biosynthesized starting from sphingosine or sphingosine-containing fragments which originated in the course of GM1 ganglioside catabolism. In the present paper we investigated which fragments were specifically re-used for sphingomyelin and ganglioside biosynthesis in rat liver. At 30 h after intravenous injection of GM1 labelled at the level of the fatty acid ([stearoyl-14C]GM1) or of the sphingosine ([Sph-3H]) moiety, it was observed that radioactive sphingomyelin was formed almost exclusively after the sphingosine-labelled-GM1 administration. This permitted the recognition of sphingosine as the metabolite re-used for sphingomyelin biosynthesis. Conversely, gangliosides more complex than GM1 were similarly radiolabelled after the two treatments, thus ruling out sphingosine re-utilization for ganglioside biosynthesis. For the identification of the lipid fragment re-used for ganglioside biosynthesis, we administered to rats neutral glycosphingolipids (galactosylceramide, glucosylceramide and lactosylceramide) each radiolabelled in the sphingosine moiety or in the terminal sugar residue. Thereafter we compared the formation of radiolabelled gangliosides in the liver with respect to the species administered and the label location. After galactosylceramide was injected, no radiolabelled gangliosides were formed. After the administration of differently labelled glucosylceramide, radiolabelled gangliosides were formed, regardless of the position of the label. After lactosylceramide administration, the ganglioside fraction became more radioactive when the long-chain-base-labelled precursors were used. These results suggest that glucosylceramide, derived from glycosphingolipid and ganglioside catabolism, is recycled for ganglioside biosynthesis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号