首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
The induction of 7-ethoxyresorufin-o-deethylase (EROD) activity was examined in three rainbow trout pituitary cell lines: RTP-91E, RTP-91F and RTP-2. RTP-91E and RTP-91F were developed from the pituitary of a male and have epithelial-like and fibroblast-like morphologies, respectively. RTP-2, which was described previously, was developed from the pituitary of a female and has an epithelial-like shape. In all cell lines EROD activity was induced by 2,3,7,8- tetrachlorodibenzo-p-dioxin (TCDD). Immunoblotting with the polyclonal antibody, anti-trout CYP1A1(277-294)/KLH, confirmed induction of a 58-kDa polypeptide. Potential inhibitors of the aryl hydrocarbon receptor, geldanamycin and alpha-naphthoflavone, inhibited EROD induction by TCDD. Other compounds inducing EROD activity were 1,2,3,7,8-pentachlorodibenzo-p-dioxin (PCDD), 2,3,7,8-tetrachlorodibenzofuran (TCDF), 3,3',4,4',5-pentachlorobiphenyl (PCB 126), and 3-methylcholanthrene (3MC). When judged by the concentration eliciting 50% of the maximal response (EC50), induction was similar in RTP-2 and RTP-91E, and less effective in RTP-91F. Regardless of the cell line, the rank order from most to least potent inducer on the basis of EC50 value was TCDD> or =PCDD>TCDF>PCB 126>3MC. When induction potencies were expressed relative to TCDD, the values obtained with the pituitary cell lines were similar to previously published values derived with a rainbow trout liver cell line.  相似文献   

3.
TCDD was found to cause a marked inhibition of 125I-epidermal growth factor (EGF) binding to its receptor on the cell surface of XB mouse keratinizing epithelial cells (XB cells) cultured in vitro. The EC50 concentration was estimated to be on the order of 3 x 10(-11) M 24 hours after TCDD administration. As early as 12 hours after the addition of 10(-9) M of TCDD, XB cells showed signs of a decline in 125I-EGF binding levels. The level of such EGF receptor downregulation reached a maximum at 24 hours, continued until day 2, but completely recovered by day 3. This was accompanied by a rise in protein kinase activities, particularly those of the protein tyrosine kinases during the initial period of 6-24 hours. To test the hypothesis that the EGF receptors of the cells, by showing TCDD-induced symptoms of downregulation, actually are being activated and triggering EGF-like signals, we examined the effects of both TCDD and exogenously added EGF on cell morphology, colony formation degree of keratinization, the pattern of activation of protein kinases and de novo protein synthesis, and EGF receptor phosphorylation. Based on the similarity of cell responses to these between TCDD- and EGF-treated cells, we concluded that TCDD, directly or indirectly, causes activation of the EGF receptor. In contrast, 12-O-tetradencanoylphorbol-13-acetate (TPA), which is known to downregulate EGF receptors by blocking their protein tyrosine kinase, produced dissimilar end results. The balance of evidence support the notion that the action of TCDD in this cell line is tightly coupled to the activation of the EGF receptor and that one of the key consequences of such a biochemical change is that it signals these cells to commit to terminal differentiation.  相似文献   

4.
The Ah (aromatic hydrocarbon) receptor mediates induction of aryl hydrocarbon hydroxylase (AHH; an enzyme activity associated with cytochrome P450IA1) by polycyclic aromatic hydrocarbon carcinogens such as 3-methylcholanthrene (MC) and benzo[a]pyrene (BP) and the halogenated toxin 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD). Until recently the AhR seemed to be present only at very low levels in human cells and tissue. With a modified assay (the presence of sodium molybdate and a reduction in the amount of charcoal used to adsorb "excess" ligand) we found that cytosol from LS180 cells contains a high concentration of AhR (400-500 fmol/mg cytosolic protein) when detected by [3H]TCDD or [3H]MC. Cytosolic receptor also was detected with [3H]BP but at a level that was 35% of that detected with [3H]TCDD or [3H]MC. These levels are similar to those found in mouse Hepa-1 hepatoma cells in which AhR has been extensively characterized. The apparent binding affinity (Kd) of the cytosolic receptor for [3H]TCDD and for [3H]MC was about 5 nM. As with Hepa-1, the human LS180 cytosolic AhR sedimented at about 9 S on sucrose gradients when detected with [3H]TCDD, [3H]BP or [3H]MC. The nuclear-associated ligand.receptor complex recovered from cells incubated in culture with [3H]TCDD sedimented at about 6.2 S. The 9.8 S cytosolic form corresponds to a multimeric protein of a relative molecular mass (Mr) of about 285,000 whereas the 6.2 S nuclear receptor corresponds to a multimeric protein of Mr 175,000. The smallest specific ligand-binding subunit (detected by sodium dodecyl sulfate-polyacrylamide electrophoresis under denaturing conditions of receptor photoaffinity labeled with [3H]TCDD) was about Mr 110,000. AHH activity was induced in cells exposed in culture to TCDD or benz[a]anthracene (BA). The EC50 was 4 x 10(-10) M for TCDD and 1.5 x 10(-5) M for BA. For both inducers the EC50 in LS180 cells was shifted about one log unit to the right as compared to the EC50 for AHH induction in mouse Hepa-1 cells. The lower sensitivity of the LS180 cells to induction of AHH activity by TCDD or BA is consistent with the lower affinity of TCDD and MC for binding to human AhR. The ligand-binding properties, physicochemical properties, and mode of action of the AhR in this human cell line are therefore very similar to those of the extensively characterized AhR in rodent cells and tissues.  相似文献   

5.
6.
2,3,7,8-Tetrachlorodibenzo-p-dioxin (TCDD) induces CYP1A1 gene expression as determined by increased CYP1A1 mRNA levels and ethoxyresorufin O-deethylase (EROD) activity in mouse Hepa 1c1c7, rat hepatoma H-4II E and human Hep G2 cancer cell lines. In contrast, treatment of these cell lines with either alpha-naphthoflavone (alpha NF) or 6-methyl-1,3,8-trichlorodibenzofuran (MCDF) at concentrations as high as 10(-6) M resulted in only minimal induction of CYP1A1 mRNA levels or EROD activity. Cotreatment of the cells with 10(-9) M TCDD plus different concentrations (10(-8)-10(-6) M) of MCDF or alpha NF resulted in a concentration-dependent decrease in TCDD-induced CYP1A1 mRNA levels and EROD activity in the three cell lines. Moreover, using 10(-9) M [3H]TCDD, it was shown that the alpha NF- and MCDF-mediated antagonism of TCDD-induced CYP1A1 gene expression was paralleled by a decrease in levels of the nuclear [3H]TCDD-Ah receptor complex as determined by velocity sedimentation analysis of the nuclear extracts. The binding of nuclear extracts from the treated cells to a synthetic consensus dioxin responsive element (DRE) (a 26-mer) was determined by gel retardation studies using 32P-DRE. In cells treated with 10(-9) M TCDD or TCDD plus 10(-8)-10(-6) M alpha NF, the concentration-dependent decrease in TCDD-induced CYP1A1 gene expression by alpha NF was also paralleled by decreased levels of a retarded band associated with the nuclear Ah receptor-DRE complex. In contrast, the results of the gel shift assay of nuclear extracts treated with 10(-9) M TCDD or TCDD plus 10(-8)-10(-6) M MCDF indicated that there were relatively high levels of nuclear MCDF-Ah receptor complex in the cells co-treated with TCDD plus the antagonist but this was not accompanied by induced CYP1A1 gene expression. The results suggest that alpha NF and possibly MCDF compete with TCDD for cytosolic Ah receptor binding sites; however, MCDF may also inhibit the induction response by competing for and/or partially inactivating genomic binding sites.  相似文献   

7.
8.
A rapid and sensitive filtration assay for quantitating the specific binding of 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) to whole cells in culture is described. Cell monolayers are incubated with [3H]TCDD in the presence or absence of excess unlabeled ligand, detached from the culture dish with trypsin, filtered, and washed with cold (-78 degrees C) acetone to separate free and nonspecifically bound TCDD from specifically bound TCDD. TCDD receptor binding parameters were characterized in the murine hepatoma cell line Hepa1c1c7. The lower limit of detection of TCDD specific binding was in a sample equivalent to 10 micrograms of total cell protein. The equilibrium dissociation constant and stereospecificity for binding to the TCDD receptor were the same as those previously reported with other TCDD receptor assays on broken cell preparations. Analysis of binding in the murine hepatoma TCDD receptor variants TAO-c1BPrc1 and BPrc1 indicated that this assay will detect receptor number or affinity variants, but will not detect nuclear transfer deficient variants. The major advantage of the whole cell binding assay is that it provides the means to rapidly and reproducibly quantitate TCDD specific binding in small samples of whole cells in culture. In addition, this method eliminates loss or degradation of the receptor protein during the fractionation of cells required in previously reported methods. This method should prove useful in screening clonal cell populations for TCDD receptor number and affinity variants, and in screening for TCDD receptor binding activity in complementation studies of receptor deficient cells.  相似文献   

9.
The highly toxic, polychlorinated aromatic compound 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) occurs as a contaminant throughout the environment. Epidemiology studies of populations accidentally exposed to TCDD have failed to identify TCDD as a human teratogen, but these studies are limited by the small numbers of exposed pregnancies and imprecise estimates of exposure. TCDD is highly teratogenic in mice, inducing cleft palate and hydronephrosis. TCDD exposure in vivo of embryonic mice alters the differentiation and expression of growth factors in the medial epithelial palatal cells. These alterations also occur in rat and mouse palates exposed to TCDD in organ culture. In the present study, human embryonic palatal shelves were cultured in the rodent organ culture system. In order to achieve in vitro the developmental stage at which fusion would normally occur, GD 52 shelves were cultured for 4 days, GD 53 shelves were cultured for 3 days, and GD 54 shelves were cultured for 3 days. Three of four palatal shelves exposed to 5 x 10(-11) M TCDD were identical to their homologous controls (right shelf cultured with control medium; left shelf cultured with TCDD-containing medium). TCDD at 1 x 10(-7) M produced cytotoxicity detected by transmission electron microscopy (TEM). Exposure to 1 x 10(-8) M TCDD resulted in continued incorporation of thymidine ([3H]-TdR detected autoradiographically) by palatal medial cells, failure of the medial peridermal cells to degenerate as observed by scanning electron microscopy (SEM), and differentiation into a stratified, squamous epithelium. These alterations are identical to those induced by TCDD in vitro in rat and mouse palatal cells. The main difference between these species is the level of TCDD required to elicit the responses. Cultured mouse palates respond to 5 x 10(-11) M TCDD with altered medial cell differentiation, and 1 x 10(-10) M TCDD is cytotoxic. The rat shelves respond with altered differentiation at 1 x 10(-8) M and cytotoxicity at 1 x 10(-7) M. All the human shelves respond at 1 x 10(-8) M TCDD with altered differentiation, 1 out of 4 responded at 5 x 10(-11) M, and cytotoxicity occurred at 1 x 10(-7) M. The present data suggest human embryonic palates are less sensitive than those of the C57BL/6N mouse, and that exposure to high levels of TCDD would be required to elicit altered differentiation in the palatal shelf.  相似文献   

10.
Thyroidectomy of rats confers some protection, by an unknown mechanism, from the weight loss, immunotoxicity, and mortality induced by 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD). Since at least some of the many effects of TCDD appear to be mediated by the Ah receptor, perhaps the thyroid plays a role in regulation of this receptor, thereby modifying the toxicity of TCDD. We tested this hypothesis by comparing TCDD-binding characteristics of the receptor and hepatic enzyme inducibility by TCDD (a receptor-mediated response) in thyroidectomized (ThX) and euthyroid rats. There were no significant differences in levels of TCDD binding in vitro in hepatic cytosol, in receptor affinity, nor in the molecular size of the TCDD-bound receptor in untreated ThX rats compared to controls fed ad libitum or pair-fed. Total hepatic cytochrome P-450 (P-450) levels and NADPH-menadione oxidoreductase (NMOR) activity were unaffected by thyroid status, whereas 7-ethoxycoumarin O-deethylase (ECOD) activity was approx. 50% lower in ThX animals than in ad libitum or pair-fed controls. At 3 and 10 days after TCDD administration (10 micrograms/kg, i.p.), P-450 concentrations and NMOR and ECOD activities were induced by approximately the same proportions in ThX and pair-fed intact rats; however, the absolute levels of the induced activities were lower in ThX than in pair-fed controls. It was concluded that hypothyroidism does not regulate Ah receptor concentration or function in the liver. Therefore, the modulation of TCDD toxicity by hypothyroidism appears not to involve changes in the hepatic Ah receptor.  相似文献   

11.
In this study, we have compared the time and dose response curves for TCDD using the pGudLuc1.1-chemically activated luciferase expression (CALUX) cell bioassay and two new recombinant cell lines that contain a stably transfected mutated form of firefly luciferase reporter gene (pGudLuc6.1) or enhanced green fluorescent protein (EGFP) reporter gene (pGreen1.1). The time course of induction with pGudLuc1.1-containing H1L1.1c2 cells is transient, with maximal activity observed at 4 hours after treatment with 1 nM TCDD. In contrast, expression of luciferase from the pGudLuc6.1-containing H1L6.1c2 cells and the pGreen1.1-containing H1G1.1c3 cells progressively increases with time, with luciferase activity increasing at a significant faster rate than that of EGFP. Dose response analysis with each cell line at optimal analysis times reveal similar relative dose response curves and EC50s for H1L6.1c2 and H1G1.1c3 cells, while the EC50 for TCDD in the H1L1.1c2 cells was about 7-fold lower. In addition, these bioassay systems respond to halogenated and/or polycyclic aromatic hydrocarbons in a dose-specific manner. Given the above differences between cell lines and reporters, the choice of which cell line to use will certainly be dependent on the specific questions and issues being examined.  相似文献   

12.
Indigo and indirubin have been reported to be present at low levels in human urine. The possibility that indigoids are physiological ligands of the aryl hydrocarbon receptor (AhR) has been suggested by initial studies in yeast, where indirubin was found to be 50 times more potent than 2,3,7,8-tetrachlorodibenzo[p]dioxin (TCDD), and indigo was found to be equipotent. To demonstrate that these indigoids are bona fide agonists in mammalian systems, we employed a number of in vitro and in vivo measures of AhR agonist potency. In a hepatoma cell reporter system, indigo yielded an EC50 of approximately 5x10(-6)M (indirubin 3' -oxime EC50 approximately 5x10(-7)M, indirubin EC50 approximately 1x10(-7)M). A comparison of these EC50 values with that of 2,3,7,8-tetrachlorodibenzofuran (TCDBF) ( approximately 3x10(-9)M) indicated that these compounds are less potent than classic halogenated-dibenzofurans or -dibenzo-p-dioxins. Competitive binding assays for AhR occupancy showed similar IC50 values for indirubin and TCDBF ( approximately 2x10(-9) and 5x10(-9)M), with the IC50 values of indigo and indirubin 3' -oxime being approximately 10-fold higher. When rats were treated with these indigoids in the range of 1.5-50mg/kg, induction of hepatic cytochrome P450 1A1 was detected. Differences in the rank-order of potency observed in vivo and in vitro could, in part, be explained by metabolism. Although their biological potencies are not as high as has been previously suggested, collectively the results show that these indole-derived pigments are agonists of AhR in vivo. The in vivo results suggest that solubility, distribution, and metabolism influence the response to the compounds.  相似文献   

13.
The potent toxin 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) is teratogenic in mice, producing hydronephrosis and cleft palate. Because of the long half-life of TCDD, the urinary tract is exposed throughout development after a single dose on gestation day (GD) 10 or earlier. TCDD-induced hydronephrosis is a consequence of occlusion of the ureter by epithelial cells. Since embryonic growth factors and the epidermal growth factor (EGF) receptor are probably involved in regulation of embryonic cell proliferation, this study examines the effects of TCDD on expression of EGF receptors and proliferation of ureteric epithelial cells in vivo and in culture. After exposure to TCDD by gavage (12, 24, or 30 micrograms/kg on GD 10; 6 or 24 micrograms/kg on GD 12) the mean cell depth of the ureteric and bladder epithelia was increased. EGF receptors were detected immunohistochemically in sectioned urinary tracts. The expression of receptors decreased with advancing development in control ureteric epithelia. However, after TCDD exposure the level of EGF receptors failed to decline. The incorporation of 3H-TdR was observed in sections by autoradiography, and after exposure to TCDD more epithelial cells showed incorporation than was apparent in controls. Transmission electron microscopy (TEM) of embryonic ureters from fetuses exposed to TCDD in vivo showed no cytotoxicity in basal cells and the cells remained undifferentiated, as in controls. Ureters taken from GD 12 embryos and cultured with 1 x 10(-10)M TCDD showed ureteric epithelial hyperplasia without cytotoxicity, but at 1 x 10(-8)M TCDD evidence of cytotoxicity was observed by TEM. The levels of TCDD found in fetuses after in vivo exposure (204-307 pg/fetus, with 1-2 pg in the urinary tract) compare well with the in vitro level (32 pg/ml), which was most effective in producing hyperplasia of the epithelial cells. The present study correlates a TCDD-induced increase in cell depth with altered regulation of EGF receptors and excessive proliferation, both in vivo and in cultured embryonic ureters.  相似文献   

14.
The induction of cytochrome P4501A (CYP1A1) enzyme activity is one of the best-studied direct effects of 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) and related compounds and has been shown to be a sensitive biomarker of exposure to polycyclic aromatic hydrocarbons (PAH) in different experimental animal species as well as in humans. TCDD has also been shown to modulate cytokine gene expression in human keratinocytes, including IL-1, TGF- and TFG-2. In the present studies, the aim was to determine whether different cellular targets of human origin differed in susceptibility to TCDD as measured by CYP1A1 activity and mRNA expression, and whether cytokine gene induction/suppression correlated with TCDD susceptibility. Human airway epithelial cells, alveolar macrophages (AM), peripheral blood monocytes and lymphocytes (PBL) were exposed to 10-10–10-7 mol/L TCDD. CYP1A1 enzyme activity was determined by ethoxyresorufin-O-deethylase (EROD) activity, mRNA expression of CYP1A1 was measured by semiquantitative PCR assay. The secretion and/or gene expression of specific cytokines, including IL-6, IL-8, and IL-1 were also examined. Overall, there was a clear correlation between TCDD-induced enzyme activity and CYP1A1 mRNA levels, which were dose-dependently increased in the bronchoepithelial cells and PBL. The human airway epithelial cells (BEAS-S6 cell line and primary cells) appeared to be the most inducible cellular target, with up to 50-fold increases at 10-8 mol/L TCDD with an EC50 of 3×10-11 mol/L TCDD. The pokeweed mitogen-activated peripheral blood lymphocytes revealed approximately 5-fold less capacity in CYP1A1 activity, with high interindividual variabilities (EC50 3×10-9 mol/L TCDD). In contrast, CYP1A1 enzyme activity in both AM and purified peripheral blood monocytes, which were costimulated with LPS and/or GM-CSF, could not be detected. CYP1A1 mRNA levels, however, were detectable and only marginally enhanced in response to TCDD. The ability of all these cells to express and produce the proinflammatory cytokines IL-6 and IL-8 was neither enhanced nor impaired by TCDD. These results indicate that cell types found in human lung and peripheral blood vary in susceptibility to TCDD, with the lung epithelium being highly susceptible and the alveolar macrophage being nonsusceptible. However, expression and production of specific cytokines such as IL-6 and IL-8, which may potentiate inflammatory processes and/or work as mitogens, does not appear to be influenced by TCDD.  相似文献   

15.
The Ah receptor, a soluble cytoplasmic receptor that regulates induction of cytochrome P450IA1 and mediates toxic effects of 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD), was detected and characterized in the continuous human liver cell line Hep G2. The mean concentration of specific binding sites for TCDD was 112 +/- 26 (SEM) fmol/mg cytosol protein as determined in eight separate cytosol preparations in the presence of sodium molybdate. This is equivalent to 14,000 binding sites per cell, approximately 40% of the sites per cell found in the mouse hepatoma line Hepa-1. The cytosolic Ah receptor from Hep G2 cells sedimented at 9 S and was specific for those halogenated and nonhalogenated aromatic compounds known to be agonists for the Ah receptor in rodent tissues and cells. Specific binding in the 9 S region was detected with both [3H]TCDD and 3-[3H]methylcholanthrene. 3-[3H]Methylcholanthrene did not bind to any component besides that at approximately 9 S. Phenobarbital, dexamethasone, and estradiol did not compete with [3H]TCDD for binding to the Hep G2 Ah receptor. Specific binding of [3H]triamcinolone acetonide to glucocorticoid receptor could also be demonstrated in Hep G2 cytosol. The apparent equilibrium dissociation constant (Kd) for binding of [3H]TCDD to Hep G2 Ah receptor was 9 nM by Woolf plot analysis, about an order of magnitude weaker than the affinity of [3H]TCDD for the mouse Hepa-1 Ah receptor or for the C57BL/6 murine hepatic Ah receptor. [3H]TCDD.Ah receptor complex, which was extracted from nuclei of Hep G2 cells incubated with [3H]TCDD at 37 degrees C in culture, sedimented at approximately 6 S under conditions of high ionic strength. Aryl hydrocarbon hydroxylase (AHH) activity was significantly induced after 24 h of incubation with polycyclic aromatic hydrocarbons: the EC50 for AHH induction was 5.3 microM for benz(a)anthracene and 1.3 microM for 3-methylcholanthrene. Modification of the preparative technique for cell cytosol, especially inclusion of 20 mM sodium molybdate in homogenizing and other buffers, was necessary to detect cytosolic Hep G2 Ah receptor. Hep G2 cells appear to conserve drug-metabolizing activity associated with cytochrome P450IA1 as well as the receptor mechanism which regulates its induction.  相似文献   

16.
We compared the ability of two clonally derived murine preadipocyte cell lines, 3T3-L1(L1) and 3T3-F442A (F442A), to differentiate after treatment by 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD), and found that the former cell line was clearly suppressed by TCDD but the latter was not. It was initially postulated that the easiest way to explain the lack of response to TCDD in F442A cells could be an alteration in aryl hydrocarbon receptor (AhR) functionality. This hypothesis was tested first, but no differences were found in the levels or functions of AhR. To find an alternate explanation for such a differential effect of TCDD, we tested the action of several diagnostic agents on the process of adipocyte differentiation of these two cells. No differences were found between these two lines of cells in the susceptibility to the antiadipogenic action of 12-0-tetradecanoylphorbol-13-acetate (TPA), or to TNFalpha, indicating that the basic biochemical components engaged in the antiadipogenic actions of these agents in these two cell lines are similar. In contrast, F442A cells were found to be more resistant to the antiadipogenic action of EGF or TGFbeta than L1 cells which were tested side by side. Based on the knowledge that TNFalpha preferentially affects C/EBPalpha and that TGFbeta specifically controls C/EBPbeta and delta in their antiadipogenic action, we hypothesized that the major cause for the differential response of these two similar cell lines could be the insensitivity of C/EBPbeta and/or delta of F442A cells to the action of TCDD. We could obtain supporting data for this hypothesis, showing that in F442A cells, the level of C/EBPbeta is already high even before the addition of adipocyte differentiation factors and that TCDD did not cause any significant changes in the titer of C/EBPbeta.  相似文献   

17.
Differences in expression of the CYP1A1 gene have previously been observed in human breast carcinoma cell lines exposed to 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD). Using an expression vector containing the functional 5'-regulatory region of human CYP1A1 (up to -1140) fused to the reporter gene CAT (for chloramphenicol acetyltransferase), the breast carcinoma cell lines, MCF-7, T47-D and ZR-75-1, classified as highly responsive to TCDD, were highly responsive to TCDD in the chloramphenicol acetyltransferase assay as well. Gel mobility shift assays have shown that these cell lines express a nuclear protein that binds the aryl hydrocarbon (Ah) receptor responsive element. The low or non-responsive cell lines, AL-1, BT-20 and CAMA-1, were low or non-responsive to TCDD in the chloramphenicol acetyltransferase assay, suggesting that the low-responsive phenotype is caused by altered trans-acting factors. However, the mechanism appears to differ among the cell lines. Whereas no induction was observed in AL-1, a fivefold induction in activity was observed in BT-20 and CAMA-1. The TCDD concentration giving half-maximum induction differed greatly between CAMA-1 and BT-20. The gel mobility shift assay showed the presence of a protein that bound specifically to the Ah responsive element in the non-responsive cell line AL-1, as well as the low-responsive cell lines, BT-20 and CAMA-1. The high basal activity but low induction observed in CAMA-1 may be due to an Ah receptor constitutively bound to the Ah responsive element.  相似文献   

18.
2,3,7,8-Tetrachlorodibenzo-p-dioxin (TCDD) was administered to 2-4-week-old mice (5, 25, and 50 micrograms/kg body wt.) and to in vitro cultures (10(-9) M) of fetal thymi. By monitoring thymocyte populations with respect to the differentiation antigens CD4 and CD8, it was found that the cell number in all thymocyte populations except for CD8+ decreased significantly compared with controls. In vivo the most marked decrease occurred among double negative (DN) and double positive (DP) cells, whereas in vitro, the DP cells were most severely affected. The cell number had already decreased to some extent by day 1 after a dose of 50 micrograms/kg body wt. of TCDD, although a severe reduction did not become apparent until day 4. There was a clear dose/response relationship between 5 and 50 micrograms/kg body wt. Autoradiography and liquid scintillation counting studies showed that incorporation of [3H]thymidine in the thymus had already decreased 24 h after TCDD treatment, with the decrease being even more pronounced at 48 h. By 96 h, the rate of cell proliferation had returned to approximately normal values. The results show that TCDD has a long-lasting effect on thymocyte abundance together with a transient effect on cell proliferation. This indicates that in addition to the initial effects of TCDD on cell proliferation, it may also more permanently disturb the normal process of elimination by means of selection.  相似文献   

19.
ACTH regulation of cholesterol movement in isolated adrenal cells   总被引:3,自引:0,他引:3  
Confluent bovine adrenal cell primary cultures respond to stimulation by adrenocorticotropin (ACTH) to produce steroids (initially predominantly cortisol and corticosterone) at about one-tenth of the output of similarly stimulated rat adrenal cells. The early events of steroidogenesis, following ACTH stimulation, have been investigated in primary cultures of bovine adrenal cortical cells. Steroidogenesis was elevated 4-6-fold within 5 min of exposure to 10(-7) M ACTH and increased linearly for 12 h and declined thereafter. Cholesterol side-chain cleavage (SCC) activity was increased 2.5-fold in mitochondria isolated from cells exposed for 2 h to ACTH and 0.5 mM aminoglutethimide (AMG), even though cytochrome P-450scc only increases after 12 h. Mitochondrial-free cholesterol levels increased during the same time period (16.5-25 micrograms/mg of protein), but then both cholesterol levels and SCC activity declined in parallel. More prolonged exposure to ACTH prior to addition of AMG caused the elevation in mitochondrial cholesterol to more than double, possibly due to enhanced binding capacity. Early ACTH-induced effects on cellular steroidogenesis result from these changes in mitochondrial-free cholesterol. The maximum rate of cholesterol transport to mitochondria in AMG-blocked cells was consistent with the maximum rate of cellular steroidogenesis. Cycloheximide (0.2 mM) rapidly blocked (less than 10 min) cellular steroidogenesis, cholesterol SCC activity, and access of cholesterol to cytochrome P-450scc without affecting mitochondrial-free cholesterol. Exposure of confluent cultures to the potent environmental toxicant, 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) (10(-8) M), for 24 h prior to ACTH addition decreased the rates of ACTH- and cAMP-stimulated steroidogenesis but did not affect the basal rate. In both cases, the effectiveness of TCDD increased with time of exposure to the stimulant. Although cholesterol accumulated in the presence of ACTH and AMG (13-28 micrograms/mg), pretreatment of cells with TCDD caused a decrease in mitochondrial cholesterol (13-8 micrograms/mg). The effect of TCDD was produced relatively rapidly (t1/2 approximately 4 h). Since even in the absence of TCDD, the mitochondria of ACTH-stimulated cells also eventually lose cholesterol (after 2 h) TCDD pretreatment may increase the presence of a protein(s) that cause this mitochondrial-cholesterol depletion following stimulation by ACTH or cAMP.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

20.
A dose-dependent increase in tyrosine phosphorylation of five hepatic intracellular proteins with approximate molecular weights of 17, 21, 27, 29, and 34 kDa was seen 24 h after administration of 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) to C57BL/6J female mice. The ED50 values for tyrosylphosphorylation of these five proteins, respectively, were 0.26, 0.21, 0.26, 0.31, and 0.38 micrograms TCDD/Kg. TCDD induction of 7-ethoxyresorufin O-deethylase activity (EROD) was characterized by an ED50 of 2.5 micrograms/Kg. An eighteen h exposure of a human lymphoblastoma cell line (X3) to TCDD increased tyrosylphosphorylation status of ten proteins with approximate molecular weights of 16, 17, 24, 26, 27, 32, 33, 34, 35, and 36 kDa in a dose-dependent manner. The EC50 values for these TCDD-dependent tyrosylphosphorylation ranged from 0.01 to 0.07 nM TCDD. EROD induction by TCDD in X3 cells exhibited an EC50 of 0.14 nM. These data indicate that TCDD alters intracellular protein tyrosine phosphorylation and these changes are more sensitive biological indicators of TCDD exposure than induction of EROD.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号