首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Maki SL  Brenner ML 《Plant physiology》1991,97(4):1359-1366
Gibberellins (GAs) are either required for, or at least promote, the growth of the pea (Pisum sativum L.) fruit. Whether the pericarp of the pea fruit produces GAs in situ and/or whether GAs are transported into the pericarp from the developing seeds or maternal plant is currently unknown. The objective of this research was to investigate whether the pericarp tissue contains enzymes capable of metabolizing GAs from [14C]GA12-7-aldehyde ([14C]GA12ald) to biologically active GAs. The metabolism of GAs early in the biosynthetic pathway, [14C]GA12 and [14C]GA12ald, was investigated in pericarp tissue isolated from 4-day-old pea fruits. [14C]GA12ald was metabolized primarily to [14C]GA12ald-conjugate, [14C]GA12, [14C]GA53, and polar conjugate-like products by isolated pericarp. In contrast, [14C]GA12 was converted primarily to [14C]GA53 and polar conjugate-like products. Upon further investigations with intact 4-day-old fruits on the plant, [14C]GA12 was found to be converted to a product which copurified with endogenous GA20. Lastly, [2H]GA20 and [2H]GA1 were recovered 48 hours after application of [2H]- and [14C]GA53 to pericarp tissue of intact 3-day-old pea fruits. These results demonstrate that pericarp tissue metabolizes GAs and suggests a function for pericarp GA metabolism during fruit growth.  相似文献   

2.
To interpret the metabolism of radiolabeled gibberellins A12-aldehyde and A12 in shoots of pea (Pisum sativum L.), the identity of the radiolabeled peaks has to be determined and the endogenous presence of the gibberellins demonstrated. High specific activity [14C]GA12 and [14C]GA12-aldehyde were synthesized using a pumpkin endosperm enzyme preparation, and purified by high performance liquid chromatography (HPLC). [14C]GA12 was supplied to upper shoots of pea, line G2, to produce radiolabeled metabolites on the 13-OH pathway. Endogenous compounds copurifying with the [14C]GAs on HPLC were analyzed by gas chromatography-mass spectrometry. The endogenous presence of GA53, GA44, GA19 and GA20 was demonstrated and their HPLC peak identity ascertained. The 14C was progressively diluted in GAs further down the pathway, proportional to the levels found in the tissue and inversely proportional to the speed of metabolism, ranging from 63% in GA53 to 4% in GA20. Calculated levels of GA20, GA19, GA44, and GA53 were 42, 8, 10, and 0.5 nanograms/gram, respectively.  相似文献   

3.
Metabolism of [14C]gibberellin (GA) A12 (GA12) and [14C]gibberellin A12-aldehyde (GA12-aldehyde) was examined in cotyledons and seed coats from developing seeds of pea (Pisum sativum L.). Both were metabolized to only 13-hydroxylated GAs in cotyledons but to 13-hydroxylated and non-13-hydroxylated GAs in seed coats. The metabolism of [14C]GA12 was slower in seed coats than in cotyledons. [14C]GA12-aldehyde was also metabolized to conjugates in seed coats. Seed coat [14C]-metabolites produced from [14C]GA12-aldehyde were isolated by high-performance liquid chromatography (HPLC). Conjugates were base hydrolyzed and the free GAs reisolated by HPLC and identified by gas chromatography-mass spectrometry. [14C]GA53-aldehyde, [14C]GA12-aldehyde conjugate, and [14C]GA53-aldehyde conjugate were major metabolites produced from [14C]GA12-aldehyde by seed coats aged 20-22 days or older. The dilution of 14C in these compounds by 12C, as compared to the supplied [14C]GA12-aldehyde, indicated that they are endogenous. Feeding [14C]GA53-aldehyde led to the production of [14C]GA53-aldehyde conjugate in seed coats and shoots and also to 13-hydroxylated GAs in shoots. Labeled GAs, recovered from plant tissue incubated with either [14C]GA12, [14C]GA12-aldehyde, or [3H]GA9, were used as appropriate markers for the recovery of endogenous GAs from seed coats or cotyledons. These GAs were purified by HPLC and identified and quantified by gas chromatography-mass spectrometry. GA15, GA24, GA9, GA51, GA51-catabolite, GA20, GA29, and GA29-catabolite were detected in seed coats, whereas GA9, GA53, GA44, GA19, GA20, and GA29 were found in cotyledons. The highest GA levels were for GA20 and GA29 in cotyledons (783 and 912 nanograms per gram fresh weight, respectively) and for GA29 and GA29-catabolite in seed coats (1940 and > 1940 nanograms per gram fresh weight, respectively).  相似文献   

4.
Experiments were designed to test the hypothesis that the labeled products recovered from plant tissue incubated with [14C]GA12-7-aldehyde ([14C]GA12ald) would serve as appropriate [14C]markers for the recovery of naturally-occurring gibberellins (GAs). The [14C]GA12ald (about 200 millicuries per millimole) was synthesized from pumpkin endosperm using [4,5-14C]mevalonic acid. It was added to the adaxial surface of isolated pea cotyledons at 22 days after flowering. Products recovered after 0.5 and 4.0 hour incubations yielded four major peaks which were separated by high performance liquid chromatography (HPLC). These products were purified by multiple-column HPLC using on-line radioactivity detection. They were then added as [14C]markers to two unlabeled pea extracts. In general, preparative HPLC followed by further HPLC purification resulted in a single UV-absorbing peak co-eluting with each [14C]marker. These [14C] and UV-absorbing peaks were shown to contain GA53, GA44, GA20, GA19, and GA17 by GC-MS. The finding of GA53 is novel; all others have previously been found in pea. Endogenous GAs of pea were thus readily detected using [14C]GA12ald metabolites as [14C]markers to recover naturally occurring GAs suggesting that the method may be applicable in detecting naturally occurring GAs in other species.  相似文献   

5.
In pea (Pisum sativum), normal fruit growth requires the presence of the seeds. The coordination of growth between the seed and ovary tissues involves phytohormones; however, the specific mechanisms remain speculative. This study further explores the roles of the gibberellin (GA) biosynthesis and catabolism genes during pollination and fruit development and in seed and auxin regulation of pericarp growth. Pollination and fertilization events not only increase pericarp PsGA3ox1 message levels (codes for GA 3-oxidase that converts GA20 to bioactive GA1) but also reduce pericarp PsGA2ox1 mRNA levels (codes for GA 2-oxidase that mainly catabolizes GA20 to GA29), suggesting a concerted regulation to increase levels of bioactive GA1 following these events. 4-Chloroindole-3-acetic acid (4-Cl-IAA) was found to mimic the seeds in the stimulation of PsGA3ox1 and the repression of PsGA2ox1 mRNA levels as well as the stimulation of PsGA2ox2 mRNA levels (codes for GA 2-oxidase that mainly catabolizes GA1 to GA8) in pericarp at 2 to 3 d after anthesis, while the other endogenous pea auxin, IAA, did not. This GA gene expression profile suggests that both seeds and 4-Cl-IAA can stimulate the production, as well as modulate the half-life, of bioactive GA1, leading to initial fruit set and subsequent growth and development of the ovary. Consistent with these gene expression profiles, deseeded pericarps converted [14C]GA12 to [14C]GA1 only if treated with 4-Cl-IAA. These data further support the hypothesis that 4-Cl-IAA produced in the seeds is transported to the pericarp, where it differentially regulates the expression of pericarp GA biosynthesis and catabolism genes to modulate the level of bioactive GA1 required for initial fruit set and growth.  相似文献   

6.
In G2 peas (Pisum sativum L.) apical senescence occurs only in long days (LD), and indeterminate growth is associated with elevated gibberellin (GA) levels in the shoot in short days (SD). Metabolism of GA12 aldehyde was investigated by feeding shoots grown in SD or LD with [14C]GA12 aldehyde through the cut end of the stem for 0.5 to 6 hours in the light and analyzing the tissue extract by high performance liquid chromatography. More radioactive products were detected than can be accounted for by the two GA metabolic pathways previously known to be present in peas. Three of the major products appear to be GA conjugates, but an additional pathway(s) of GA metabolism may be present. The levels of putative C20 GAs, [14C]GA53, [14C]GA44, [14C]GA19, and/or [14C] GA17, were all elevated in SD as compared to LD. Putative [14C]GA, was slightly higher in LD than in SD. Putative [14C]GA53 was a major metabolite after 30 minutes of treatment in SD but had declined after longer treatment times to be replaced by elevated levels of putative [14C] GA44 and [14C]GA19/17. Metabolism of GA20 was slow in both photoperiods. Although GA20 and GA19 are the major endogenous GAs as determined by gas chromatography-mass spectrometry, putative [14C]GA20 and [14C]GA19 were never major products of [14C]GA12 aldehyde metabolism. Thus, photoperiod acts in G2 peas to change the rate of GA53 production from GA12 aldehyde, with the levels of the subsequent GAs on the 13-OH pathway being determined by the amount of GA53 being produced.  相似文献   

7.
In this study, we investigated seed and auxin regulation of gibberellin (GA) biosynthesis in pea (Pisum sativum L.) pericarp tissue in situ, specifically the conversion of [14C]GA19 to [14C]GA20. [14C]GA19 metabolism was monitored in pericarp with seeds, deseeded pericarp, and deseeded pericarp treated with 4-chloroindole-3-acetic acid (4-CI-IAA). Pericarp with seeds and deseeded pericarp treated with 4-CI-IAA continued to convert [14C]GA19 to [14C]GA20 throughout the incubation period (2-24 h). However, seed removal resulted in minimal or no accumulation of [14C]GA20 in pericarp tissue. [14C]GA29 was also identified as a product of [14C]GA19 metabolism in pea pericarp. The ratio of [14C]GA29 to [14C]GA20 was significantly higher in deseeded pericarp (with or without exogenous 4-CI-IAA) than in pericarp with seeds. Therefore, conversion of [14C]GA20 to [14C]GA29 may also be seed regulated in pea fruit. These data support the hypothesis that the conversion of GA19 to GA20 in pea pericarp is seed regulated and that the auxin 4-CI-IAA can substitute for the seeds in the stimulation of pericarp growth and the conversion of GA19 to GA20.  相似文献   

8.
Gibberellins A1 and A3 are the major physiologically active gibberellins (GAs) present in young fruit of pea (Pisum sativum L.). The relative importance of these GAs in controlling fruit growth and their biosynthetic origins were investigated in cv. Alaska. In addition, the non-13-hydroxylated active GAs, GA4 and GA7, were identified for the first time in young seeds harvested 4 d after anthesis, although they are minor components and are not expected to play major physiological roles. The GA1 content is maximal in seeds and pods at 6 d after anthesis, the time of highest growth-rate of the pod (Garcia-Martinez et al. 1991, Planta 184: 53–60), whereas gibberellic acid (GA3), which is present at high levels in seeds 4–8 d after anthesis, has very low abundance in pods. Gibberellins A19, A20 and A29 are most concentrated in seeds at, or shortly after, anthesis and their abundance declines rapidly with development, concomitant with the sharp increase in GA1 and GA3 content. Application of GA1 or GA3 to the leaf subtending an emasculated flower stimulated parthenocarpic fruit development. Measurement of the GA content of the pods at 4 d after anthesis indicated that only 0.002–0.5% of the applied GA was transported to the fruit, depending on dose. There was a linear relationship between GA1 content and pod weight up to about 2 ng · (g FW)−1, whereas no such correlation existed for GA3 content. The concentration of endogenous GA1 in pods from pollinated ovaries is just sufficient to give the maximum growth response. It is concluded that GA1, but not GA3, controls pod growth in pea; GA3 may be involved in early seed development. The distribution of GAs within the seeds at 4 d post anthesis was also investigated. Most of the GA1, GA8, GA19, GA20 and GA29 was present in the testa, whereas GA3 was distributed equally between testa and endosperm and GA4 was localised mainly in the endosperm. Of the GAs analysed, only GA3 and GA20 were detected in the embryo. Metabolism experiments with intact tissues and cell-free fractions indicated compartmentation of GA biosynthesis within the seed. Using 14C-labelled GA12, GA9, 2,3-didehydroGA9 and GA20 as substrates, the testa was shown to contain 13-hydroxylase and 20-oxidase activities, the endosperm, 3β-hydroxylase and 20-oxidase activities. Both tissues also produced 16,17-dihydrodiols. However, GA1 and GA3 were not obtained as products and it is unlikely that they are formed via the early 13-hydroxylation pathway. [14C]gibberellin A12, applied to the inside surface of pods in situ, was metabolised to GA19, GA20, GA29, GA29-catabolite, GA81 and GA97, but GA1 was not detected. Gibberellin A20 was metabolised by this tissue to GA29 and GA29-catabolite. Received: 23 July 1996 / Accepted: 2 September 1996  相似文献   

9.
Cell-free extracts capable of converting [14C]-labeled gibberellins (GAs) were prepared from spinach (Spinacia oleracea L.) leaves. [14C]-labeled GAs, prepared enzymically from [14C]mevalonic acid, were incubated with these extracts, and products were identified by gas chromatography-mass spectrometry. The following pathway was found to operate in extracts from spinach leaves grown under long day (LD) conditions: GA12 → GA53 → GA44 → GA19 → GA20. The pH optima for the enzymic conversions of [14C]GA53, [14C]GA44 and [14C]GA19 were approximately 7.0, 8.0, and 6.5, respectively. These three enzyme activities required Fe2+, α-ketoglutarate and O2 for activity, and ascorbate stimulated the conversion of [14C]GA53 and [14C]GA19. Extracts from plants given LD or short days (SD) were examined, and enzymic activities were measured as a function of exposure to LD, as well as to darkness following 8 LD. The results indicate that the activities of the enzymes oxidizing GA53 and GA19 are increased in LD and decreased in SD or darkness, but that the enzyme activity oxidizing GA44 remains high irrespective of light or dark treatment. This photoperiodic control of enzyme activity is not due to the presence of an inhibitor in plants grown in SD. These observations offer an explanation for the higher GA20 content of spinach plants in LD than in SD.  相似文献   

10.
A cell-free system prepared from developing seed of runner bean (Phaseolus coccineus L.) converted [14C]gibberellin A12-aldehyde to several products. Thirteen of these were identified by capillary gas chromatography-mass spectrometry as gibberellin A1 (GA1), GA4, GA5, GA6, GA15, GA17, GA19, GA20, GA24, GA37, GA38, GA44 and GA53-aldehyde, all giving mass spectra with 14C-isotope peaks. GA8 and GA28 were also identified but contained no 14C. All the [14C]GA12-aldehyde metabolites, except GA15, GA24 and GA53-aldehyde, are known endogenous GAs of P. coccineus.Abbreviations GAn gibberellin An - GC-MS combined gas chromatography-mass spectrometry - HPLC highperformance liquid chromatography - MVA mevalonic acid - S-2 2000-g supernatant  相似文献   

11.
Theodor Lange 《Planta》1994,195(1):108-115
Gibberellin (GA) 20-oxidase was purified to apparent homogeneity from Cucurbita maxima endosperm by fractionated ammonium-sulphate precipitation, gel-filtration chromatography and anion-exchange and hydrophobic-interaction high-performance liquid chromatography (HPLC). Average purification after the last step was 55-fold with 3.9% of the activity recovered. The purest single fraction was enriched 101-fold with 0.2% overall recovery. Apparent relative molecular mass of the enzyme was 45 kDa, as determined by gel-filtration HPLC and sodium dodecyl sulphate-polyacrylamide gel electrophoresis, indicating that GA 20-oxidase is probably a monomeric enzyme. The purified enzyme degraded on two-dimensional gel electrophoresis, giving two protein spots: a major one corresponding to a molecular mass of 30 kDa and a minor one at 45 kDa. The isoelectric point for both was 5.4. The amino-acid sequences of the amino-terminus of the purified enzyme and of two peptides from a tryptic digest were determined. The purified enzyme catalysed the sequential conversion of [14C]GA12 to [14C]GA15, [14C]GA24 and [14C]GA25, showing that carbon atom 20 was oxidised to the corresponding alcohol, aldehyde and carboxylic acid in three consecutive reactions. [14C]Gibberellin A53 was similarly converted to [14C]GA44, [14C]GA19, [14C]GA17 and small amounts of a fourth product, which was preliminarily identified as [14C]GA20, a C19-gibberellin. All GAs except [14C]GA20 were identified by combined gas chromatography-mass spectrometry. The cofactor requirements in the absence of dithiothreitol were essentially as in its presence (Lange et. al, Planta 195, 98–107, 1994), except that ascorbate was essential for enzyme activity and the optimal concentration of catalase was lower.  相似文献   

12.
The role of gibberellins (GAs) during germination and early seedling growth is examined by following the metabolism and transport of radiolabeled GAs in cotyledon, shoot, and root tissues of pea (Pisum sativum L.) using an aseptic culture system. Mature pea seeds have significant endogenous GA20 levels that fall during germination and early seedling growth, a period when the seedling develops the capacity to transport GA20 from the cotyledon to the shoot and root of the seedling. Even though cotyledons at 0–2 days after imbibition have appreciable amounts of GA20, the cotyledons retain the ability to metabolize labeled GA19 to GA20 and express significant levels of PsGA20ox2 message (which encodes a GA biosynthesis enzyme, GA 20-oxidase). The large pool of cotyledonary GA20 likely provides substrate for GA1 synthesis in the cotyledons during germination, as well as for shoots and roots during early seedling growth. The shoots and roots express GA metabolism genes (PsGA3ox genes which encode GA 3-oxidases for synthesis of bioactive GA1, and PsGA2ox genes which encode GA 2-oxidases for deactivation of GAs to GA29 and GA8), and they develop the capacity to metabolize GAs as necessary for seedling establishment. Auxins also show an interesting pattern during early seedling growth, with higher levels of 4-chloro-indole-3-acetic acid (4-Cl-IAA) in mature seeds and higher levels of indole-3-acetic acid (IAA) in young root and shoot tissues. This suggests a changing role for auxins during early seedling development.  相似文献   

13.
In addition to the previously-reported gibberellins: GA1; GA8, GA20 and GA29 (García-Martínez et al., 1987, Planta 170, 130–137), GA3 and GA19 were identified by combined gas chromatography-mass spectrometry in pods and ovules of 4-d-old pollinated pea (Pisum sativum cv. Alaska) ovaries. Pods contained additionally GA17, GA81 (2-hydroxy GA20) and GA29-catabolite. The concentrations of GA1, GA3, GA8, GA19, GA20 and GA29 were higher in the ovules than in the pod, although, with the exception of GA3, the total content of these GAs in the pod exceeded that in the seeds. About 80% of the GA3 content of the ovary was present in the seeds. The concentrations of GA19 and GA20 in pollinated ovaries remained fairly constant for the first 12 ds after an thesis, after which they increased sharply. In contrast, GA1 and GA3 concentrations were maximal at 7 d and 4–6 d, respectively, after anthesis, at about the time of maximum pod growth rate, and declined thereafter. Emasculated ovaries at anthesis contained GA8, GA19 and GA20 at concentrations comparable with pollinated fruit, but they decreased rapidly. Gibberellins a1 and A3 were present in only trace amounts in emasculated ovaries at any stage. Parthenocarpic fruit, produced by decapitating plants immediately above an emasculated flower, or by treating such flowers with 2,4-dichlorophenoxyacetic acid or GA7, contained GA19 and GA20 at similar concentrations to seeded fruit, but very low amounts of GA1 and GA3 Thus, it appears that the presence of fertilised ovules is necessary for the synthesis of these last two GAs. Mature leaves and leaf diffusates contained GA1, GA8, GA19 and GA20 as determined by combined gas chromatography-mass spectrometry using selected ion monitoring. This provides further evidence that vegetative tissues are a possible alternative source of GAs for fruit-set, particularly in decapitated plants.Abbreviations 2,4-D 2,4-dichlorophenoxyacetic acid - FW fresh weight - GAn gibberellin An - GC-MS combined gas chromatography-mass spectrometry - HPLC high-performance liquid chromatography - KRI Kovats retention index - m/z mass to charge ratio We thank Mr M.J. Lewis for qualitative GC-MS analyses and Ms M.V. Cuthbert (LARS), R. Martinez Pardo and T. Sabater (IATA) for technical assistance. We are also grateful to Professor B.O. Phinney, University of California, Los Angeles, for gifts of [17-13C]GA8 and -GA29 and to Mr Paul Gaskin, University of Bristol, for the mass spectrum of GA29-catabolite and for a sample of GA81 The work in Spain was supported by Dirección General de Investigación Cientifica y Técnica (grant PB87-0402 to J.L.G.-M.). We also acknowledge the British Council and Ministerio de Educacion y Ciencia for travel grants through Accion Integrada Hispano-Britanica 56/142 (J.L.G.-M. and P.H.).  相似文献   

14.
The influence of the Na and Le genes in peas on gibberellin (GA) levels and metabolism were examined by gas chromatographic-mass spectrometric analysis of extracts from a range of stem-length genotypes fed with [13C, 3H]GA20. The substrate was metabolised to [13C, 3H]GA1, [13C, 3H]GA8 and [13C, 3H]GA29 in the immature, expanding apical tissue of all genotypes carrying Le. In contrast, [13C, 3H]GA29 and, in one line, [13C, 3H]GA29-catabolite, were the only products detected in plants homozygous for the le gene. These results confirm that the Le gene in peas controls the 3-hydroxylation of GA20 to GA1. Qualitatively the same results were obtained irrespective of the genotype at the Na locus. In all Na lines the [13C, 3H]GA20 metabolites were considerably diluted by endogenous [12C]GAs, implying that the metabolism of [13C, 3H]GA20 mirrored that of endogenous [12C]GA20. In contrast, the [13C, 3H]GA20 metabolites in na lines showed no dilution with [12C]GAs, confirming that the na mutation prevents the production of C19-GAs. Estimates of the levels of endogenous GAs in the apical tissues of Na lines, made from the 12C:13C isotope ratios and the radioactivity recovered in respective metabolites, varied between 7 and 40 ng of each GA per plant in the tissue expanded during the 5 d between treatment with [13C, 3H]GA20 and extraction. No [12C]GA1 and only traces of [12C]GA8 (in one line) were detected in the two Na le lines examined. These results are discussed in relation to recent observations on dwarfism in rice and maize.Abbreviations GAn gibberellin An - GC-MS gas chromatography-mass spectrometry - HPLC high-pressure liquid chromatography  相似文献   

15.
GAl5, GA3, GA5, GA19, GA20 and GA23 were identified by GC-MS in the acidic ethyl acetate-soluble fraction from the seeds of sweet potato (Ipomoea batatas Lam.). GA19 and GA23 were major GAs in the mature seeds, their contents being about 200 and 160 μg/kg fresh weight, respectively, while those of GA19 and GA23 in immature seeds were below 100 μg/kg fr. wt. The occurrence of glycosyl conjugates of GA3, GA5, GA8, GA17, GA19, GA20, GA23 and GA44 in the butanol fraction from mature seeds was shown by GC/MS analysis after enzymatic hydrolysis.

Besides the endogenous GAs in sweet potato, those in immature seeds of several other Convolvulaceae plants were investigated. The species of endogenous GAs were discussed in terms of chemotaxonomy.  相似文献   

16.
Gibberellins (GAs) were identified and quantified during flower and fruit development in the Christmas rose (Helleborus niger L.), a native of southeastern Europe with a long international horticultural tradition. Physiologically, the plant differs from popular model species in two major respects: (1) following anthesis, the initially white or rose perianth (formed in this species by the sepals) turns green and persists until fruit ripening, and (2) the seed is shed with an immature embryo, a miniature endosperm, and a prominent perisperm as the main storage tissue. GA1 and GA4 were identified by full-scan mass spectra as the major bioactive GAs in sepals and fruit. LC-MS/MS system in accord with previously verified protocols also afforded analytical data on 12 precursors and metabolites of GAs. In the fruit, GA4 peaked during rapid pericarp growth and embryo development and GA1 peaked during the subsequent period of rapid nutrient accumulation in the seeds and continued pericarp enlargement. In the sepals, the flux through the GA biosynthetic pathway was highest prior to the light green stage when the photosynthetic system was induced. Unfertilized, depistillated, and deseeded flowers became less green than the seed-bearing controls; chlorophyll accumulation could be restored by applying GA1, GA4, and, less efficiently, GA3 to the deseeded fruit. The sepals of unfertilized and depistillated flowers indeed contained very low levels of GA4 and gradually decreasing levels of GA1. However, the concentrations of their precursors and metabolites were less affected. These data suggest that a signal(s) from the fruit stimulates GA biosynthesis in the sepals resulting in greening. The fruit-derived GAs appear to be mainly involved in pericarp growth and seed development.  相似文献   

17.
The endogenous gibberellins (GAs) from shoots of the GA-insensitive mutant,gai, ofArabidopsis thaliana were analyzed and compared with the GAs from the Landsberg erecta (Ler) line. Twenty GAs were identified in Ler plants by full-scan gas chromatography-mass spectrometry (GC-MS) and Kovats retention indices (KRI's). These GAs are members of the early-13-hydroxylation pathway (GA53, GA44, GA19, GA17, GA20, GA1, GA29, and GA8), the non-3,13-hydroxylation pathway (GA12, GA15, GA24, GA25, GA9, and GA51), and the early-3-hydroxylation pathway (GA37, GA27, GA36, GA13, GA4, and GA34). The same GAs, except GA53, GA44, GA37, and GA29 were detected in thegai mutant by the same methods. In addition, extracts fromgai plants contained GA41 and GA71. Both lines also contained several unknown GAs. In Ler plants these were mainly hydroxy-GA12 derivatives, whereas in thegai mutant hydroxy-GA24, hydroxy-GA25, and hydroxy-GA9 compounds were detected. Quantification of seven GAs by GC-selected ion monitoring (SIM), using internal standards, and comparisons of the ion intensities in the SIM chromatograms of the other thirteen GAs, demonstrated that thegai mutant had reduced levels of all C20-dicarboxylic acids (GA53, GA44, GA19, GA12, GA15, GA24, GA37, GA27, and GA36). In contrast,gai plants had increased levels of C20-tricarboxylic acid GAs (GA17, GA25, and GA41) and of all C19-GAs (GA20, GA1, GA8, GA9, GA51, GA4, GA34, and GA71) except GA29. The 3β-hydroxylated GAs, GA1 and GA4, and their respective 2β-hydroxylated derivatives, GA8 and GA34, were the most abundant GAs found in shoots of thegai mutant. Thus, thegai mutation inArabidopsis results in a phenotype that resembles GA-deficient mutants, is insensitive to both applied and endogenous GAs, and contains low levels of C20-dicarboxylic acid GAs and high levels of C19-GAs. This indicates that theGAI gene controls a step beyond the synthesis of an active GA. Thegai mutant is presumably a GA-receptor mutant or a mutant with a block in the transduction pathway between the receptor and stem elongation. We thank Dr. L.N. Mander, Australian National University, Canberra, for providing [2H]gibberellins, Dr. B.O. Phinney, University of California, Los Angeles, USA for [13C]GA8, and Dr. D.A. Gage, MSU-NIH Mass Spectrometry Facility (grant No. DRR00480), for advice with mass spectrometry. This work was supported by a fellowship from the Spanish Ministry of Agriculture (I.N.I.A.) to M.T., by the U.S. Department of Energy under Contract DE-ACO2-76ERO-1338, and by U.S. Department of Agriculture grant No. 88-37261-3434 to J.A.D.Z.  相似文献   

18.
The gibberellin (GA) economy of young pea (Pisum sativum L.) fruits was investigated using a range of mutants with altered GA biosynthesis or deactivation. The synthesis mutation lh-2 substantially reduced the content of both GA4 and GA1 in young seeds. Among the other synthesis mutations, ls-1, le-1 and le-3, the largest reduction in seed GA1 content was only 1.7-fold (le-1), while GA4 was not reduced in these mutants, and in fact accumulated in some experiments (compared with the wild type). Mutation sln appeared to block the step GA20 to GA29 in young pods and seeds, but not as strongly as in older seeds. Mutations ls-1, le-1 and le-3 markedly reduced pod GA1 levels, but pod elongation was not affected. After feeds of [13C,3H]GA20 to leaves, the pods contained 13C,3H-labelled GA20, GA1, GA29 and GA81, and the seeds, [13C,3H]GA20 and [13C,3H]GA29. These findings are discussed in relation to recent suggestions regarding the role and origin of GA1 in pea fruits. Received: 6 June 1997 / Accepted: 15 July 1997  相似文献   

19.
Recognizing the physiological diversity of different plant organs, studies were conducted to investigate the distribution of endogenous gibberellins (GAs) in Brassica (canola or oilseed rape). GA1 and its biosynthetic precursors, GA20 and GA19, were extracted, chromatographically purified, and quantified by gas-chromatography-selected ion monitoring (GC-SIM), using [2H2]GAs as internal standards. In young (vegetative) B. napus cv. Westar plants, GA concentrations were lowest in the roots, increased acropetally along the shoot axis, and were highest in the shoot tips. GA concentrations were high but variable in leaves. GA1 concentrations also increased acropetally along the plant axis in reproductive plants. During early silique filling, GA1 concentrations were highest in siliques and progressively lower in flowers, inflorescence stalks (peduncles plus pedicels), stem, leaves, and roots. Concentrations of GA19 and GA20 showed similar patterns of distribution except in leaves, in which concentrations were higher, but variable. Immature siliques were qualitatively rich in endogenous GAs and GA1, GA3, GA4, GA8, GA9, GA17, GA19, GA20, GA24, GA29, GA34, GA51, and GA53 were identified by GC-SIM. In whole siliques, GA19, GA20, GA1, and GA8 concentrations declined during maturation due to declining levels in the maturing seeds; their concentrations in the silique coats remained relatively constant and low. These studies demonstrate that GAs are differentially distributed in Brassica with a general pattern of acropetally increasing concentration in shoots and high concentration in actively growing and developing organs.  相似文献   

20.
Biosynthesis of gibberellins (GAs) was studied in vivo in endosperms of Sechium edule Sw. Exogenous ent-[14C]kaurene was metabolized into four major products: GA12, GA4, GA7 and 16, 17-dihydro-16-hydroxy-GA15 alcohol glucoside. Other minor metabolites were also observed including ent-kaurenol and ent-kaurenal. Conversion of ent-[14C]kaurene to ent-kaurenol glucoside by endosperm cell-free preparations in the presence of UDPG was observed. However, the finding was not confirmed in in vivo studies and is probably artifactual. Overall evidence coming from the analysis of endogenous GAs and in vitro and in vivo biosynthetic studies are discussed in relation to the possible existence in the Sechium seeds of a different route, along with the known pathway, branching from ent-kaurene or ent-7-α-hydroxykaurenoic acid and this also leading to biologically active GAs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号