首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Heterorhabditis indica is a potential agent for the biological control of grubs in sugarcane fields in India. The type strain LN 2 was transferred to monoxenic cultures on its symbiont Photorhabdus luminescens and successfully produced on solid media. In liquid cultures, a mean dauer juvenile yield of 457 000 was obtained with a maximum of 648 000 per ml. Comparatively high yields have not been reported before. Therefore, costs related to the liquid culture production of H. indica will be lower than for other entomopathogenic nematodes currently used in biocontrol. Different bacterial clones had no significant influence on the dauer juvenile yields in liquid media. The exit from the dauer juvenile stage (recovery) after inoculation and the number of hermaphrodites significantly decreased when culture temperature was increased from 25-30 ° C; the dauer juvenile yields were not affected. The cell density of P. luminescens in batch cultures was higher at 25 and 30 ° C than at growth temperatures of 35 and 37 ° C. In continuous culture, the bacterial growth was inhibited when the growth temperature reached 38 ° C. After approximately 60 h, the bacteria adapted to higher temperature and the growth rate increased again. When the temperature was further increased to 40 ° C, the bacterial growth was inhibited.  相似文献   

2.
Galleria mellonella larvae cultured axenically were treated with axenic dauer juveniles of Heterorhabditis bacteriophora and Steinernema carpocapsae. After 3 days S. carpocapsae had killed all insects, with 9.4 +/- 4.3 nematodes per larva. H. bacteriophora were unable to kill G. mellonella, although 13.3 +/- 6.4 nematodes per Galleria were found in the hemocoel. Invading nematodes of both strains recovered from the dauer stage. H. bacteriophora developed into hermaphrodites with eggs and J1 in the uterus and in the hemolymph of the living insects. Development beyond the J1 stage was not recorded. An injection of supernatants from different Photorhabdus luminescens cultures killed the insects but could not provide nutrients to support a further development. Only the injection of bacterial cells supported production of dauers in the axenic insects. Axenic S. carpocapsae developed to adults and produced offspring. After 3 weeks an average of 5275 nematodes per larva were counted, of which 6.7% were dauer juveniles, 39.2% other juvenile stages, 11.9% males, and 42.2% females. Compared to in vivo reproduction in the presence of the symbiotic bacterium Xenorhabdus nematophilus the dauer juvenile yields were low. Even after 5 weeks the percentage of dauer juveniles did not surpass 10%.  相似文献   

3.
4.
Infection behavior of the rhabditid nematode Phasmarhabditis hermaphrodita to the grey garden slug Deroceras reticulatum was studied. The dauer (enduring or nonaging) juveniles of P. hermaphrodita invade D. reticulatum within 8-16 hr following external exposure, with the posterior mantle region containing the shell cavity serving as the main portal of entry. The dauer juveniles can recover, multiply, and produce new dauer juveniles in the slug and slug feces homogenates, but not in the soil extract. These results demonstrate that P. hermaphrodita is a facultative parasite of the slug and can complete its life cycle under nonparasitic conditions associated with the host. Although the juvenile and adult nematodes can kill the slug if injected into the shell cavity of the host, only the dauer juvenile can serve as an infective stage in the natural environment.  相似文献   

5.
Photorhabdus luminescens are bacterial symbionts of entomopathogenic nematodes of the genus Heterorhabditis. The bacto-helminthic complexes are used in biocontrol of insect pests in cryptic environments. For in vitro production, liquid media are incubated with P. luminescens for 24 h prior to the inoculation of nematode dauer juveniles. The nematodes develop to self-fertilizing hermaphrodites and produce offspring. The exit from the developmentally arrested dauer stage (recovery) is a response to a yet undescribed food signal. Major process instability is caused by low and unsynchronized recovery of the dauers. In living insects, dauer recovery is approximately 95% within 1 day. In liquid cultures of P. luminescens the recovery is spread over several days and varies between 0 and 81%. In complex culture media no food signal was detected. A food signal is produced by P. luminescens and excreted into the culture medium. The maximum food signal production was recorded during the late exponential growth phase. Compared to the food signal found in insects, the efficacy of the bacterial signal is much lower. The reasons for the variable activity of the bacterial food signal and its function during the nematode life cycle are discussed. Received: 13 March 1998 / Received revision: 15 June 1998 / Accepted: 19 June 1998  相似文献   

6.
The development of Bursaphelenchus xylophilus in pine wood infested with and free of Monochamus carolinensis was investigated. Formation of third-stage dispersal juveniles occurred in the presence and absence of pine sawyer beetles. The proportion of third-stage dispersal juveniles in the total nematode population was negatively correlated with moisture content of the wood. Formation of nematode dauer juveniles was dependent on the presence of the pine sawyer beetle. Dauer juveniles were present in 3 of 315 wood samples taken from non-beetle-infested Scots pine bolts and 81 of 311 samples taken from beetle-infested bolts. Nematode densities were greater in wood samples taken adjacent to insect larvae, pupae, and teneral adults compared with samples taken from areas void of insect activity. Nematodes recovered from beetle larvae, pupae, and teneral adults were mostly fourth-stage dauer juveniles, although some third-stage dispersal juveniles were also recovered. Dauer juvenile density was highest on teneral adult beetles.  相似文献   

7.
We experimentally investigated the relative role of kinshipand density on juvenile dispersal in the common lizard. A fewdays after birth, juveniles were introduced into seminaturalendosures, where they experienced different social environmentsin the first experiment we varied the density of unrelated adults(males or females) within the enclosure (0, 1, or 2 adults),and in the second experiment, we varied the level of kinshipand familiarity between juveniles and adults. Each enclosurewas connected to a second enclosure by small holes which allowedonly juveniles to move between enclosures. Juvenile movementswere monitored during 14 days after birth, as juvenile dispersalis mainly completed within 10 days after birth under naturalconditions. Most juveniles did not return to the first enclosure.Sex had no effect on juvenile dispersal. Adult densityand kinshipwith adults both affected dispersal. Adult female density increasedjuvenile dispersal whatever the level of kinship and familiaritywith the females. Dispersers had better body condition thannondispersers at high female densit and this difference wassignificantly greater when the mother and the familiar femalewere present in the enclosure. Furthermore, body condition ofmothers and familiar females was positively correlated withjuvenile dispersal, whereas there was no such correlation inthe case of unfamiliar and unrelated females. These resultsstrongly suggest that adult female density is a major factorpromoting dispersal in this species and that both intraspecificand kin competition motivate dispersal.  相似文献   

8.
9.
The nematode Heterorhabditis bacteriophora is the vector for transmitting the entomopathogenic bacterium Photorhabdus luminescens between insect larvae. The dauer juvenile (DJ) stage nematode selectively retains P. luminescens in its intestine until it releases the bacteria into the hemocoel of an insect host. We report the results of studying the transmission of the bacteria by its nematode vector. Cells of P. luminescens labeled with green fluorescent protein preferentially colonized a region of the DJ intestine immediately behind the basal bulb, extending for various distances toward the anus. Incubation of DJ nematodes in vitro in insect hemolymph induced regurgitation of the bacteria. Following a 30-min lag, the bacteria migrated in a gradual and staggered movement toward and ultimately exited the mouth. This regurgitation reaction was induced by a low-molecular-weight, heat- and protease-stable, anionic component present in arthropod hemolymph and in supernatants from insect cell cultures. Nematodes anesthetized with levamisole or treated with the antihelmenthic agent ivermectin did not release their bacteria into hemolymph. The ability to visualize P. luminescens in the DJ nematode intestine provides the first clues to the mechanism of release of the bacteria during infection of insect larvae. This and the partial characterization of a component of hemolymph triggering release of the bacteria render this fascinating example of both a mutualistic symbiosis and disease transmission amenable to future genetic and molecular study.  相似文献   

10.
The infective stage of entomopathogenic nematodes ( Heterorhabditis spp.) is the mobile, but developmentally arrested dauer juvenile (DJ). For commercial application, nematodes are produced in liquid culture. Prior to the inoculation of the DJ, their symbiotic bacterium Photorhabdus luminescens is cultured. The DJ exit from the arrested stage (recovery) and develop to reproductive adults. Recovery is a response to bacterial food signals. In liquid culture the percentage of DJs recovering from the DJ stage is highly variable, which significantly influences the number of reproducing hermaphrodites and the final DJ yields. The liquid culture yield is defined by the number of DJ mL -1 harvested from the medium. The heritability of the disposition to recover from the DJ stage and of the final DJ yield in liquid culture has been evaluated. From a hybrid strain of H. bacteriophora 30 homozygous inbred lines were established by inbreeding over seven generations. These inbred lines were propagated in liquid culture and DJ recovery and yields were recorded. The calculated heritability for the DJ recovery was low ( h 2 = 0.38). No significant genetic variability could be detected for this trait. In contrast, a high heritability ( h 2 = 0.90) was found for the total number of DJs produced in the liquid medium.  相似文献   

11.
More than a quarter of the world's population is infected with nematode parasites, and more than a hundred species of nematodes are parasites of humans [1-3]. Despite extensive morbidity and mortality caused by nematode parasites, the biological mechanisms of host-parasite interactions are poorly understood, largely because of the lack of genetically tractable model systems. We have demonstrated that the insect parasitic nematode Heterorhabditis bacteriophora, its bacterial symbiont Photorhabdus luminescens, and the fruit fly Drosophila melanogaster constitute a tripartite model for nematode parasitism and parasitic infection. We find that infective juveniles (IJs) of Heterorhabditis, which contain Photorhabdus in their gut, can infect and kill Drosophila larvae. We show that infection activates an immune response in Drosophila that results in the temporally dynamic expression of a subset of antimicrobial peptide (AMP) genes, and that this immune response is induced specifically by Photorhabdus. We also investigated the cellular and molecular mechanisms underlying IJ recovery, the developmental process that occurs in parasitic nematodes upon host invasion and that is necessary for successful parasitism. We find that the chemosensory neurons and signaling pathways that control dauer recovery in Caenorhabditis elegans also control IJ recovery in Heterorhabditis, suggesting conservation of these developmental processes across free-living and parasitic nematodes.  相似文献   

12.
昆虫病原线虫感染期幼虫恢复发育的研究进展   总被引:3,自引:0,他引:3  
昆虫病原线虫的感染期幼虫(infective juvenile,IJ)是其一生中唯一具有侵染能力和可自由生活于寄主体外的虫态,一般滞育不取食,体外包裹着已经蜕去的第2龄幼虫的表皮,对外界不良环境的耐受能力强,又称为耐受态幼虫(dauer juvenile,DJ),类似于秀丽隐杆线虫Caenorhabditis elegans的耐受态幼虫。在食物信息的诱导下,感染期幼虫脱鞘,释放出共生细菌,恢复取食并继续发育,这个过程称为感染期幼虫的恢复(IJ recovery)。这个过程是发生在寄生性线虫入侵寄主时的发育过程,对于成功寄生是必要的,在线虫的产业化培养中发挥着重要作用,感染期线虫的恢复率及其发育的同步性直接影响了线虫的产量。本文概述了感染期线虫的恢复发育过程,并对诱导感染期线虫恢复发育的食物信号(food signals)、恢复的影响因素及其检测手段进行了综述,同时讨论了未来的研究方向。  相似文献   

13.
Qualitative and quantitative genetic analysis of life span in experimental adult animals predicts that resistance to stress and longevity are positively correlated, but such studies on field populations of animals are rare. We tested this hypothesis using dauer juveniles of 15 natural populations of the entomopathogenic nematode, Heterorhabditis bacteriophora, collected from diverse localities. Dauer juvenile longevity at 25 degrees C in autoclaved tap water and tolerance to major environmental stresses including heat (survival at 40 degrees C for 2 h), ultraviolet (UV) radiation (original virulence remaining after exposure to 302 nm UV for 5 min), hypoxia (survival at approximately 0% dissolved O2 at 25 degrees C for 96 h), and desiccation (survival in 25% glycerol at 25 degrees C for 72 h) differed significantly among populations. Intrinsic dauer juvenile longevity, defined as the number of weeks to 90% mortality (LT90) estimated using probit analysis of nematode survival data at 25 degrees C varied between 6 and 16 weeks among populations. Longevity was most strongly correlated with heat followed by UV and hypoxia tolerance, respectively, but showed no correlation with desiccation tolerance. The strong positive correlation of longevity with heat tolerance was further confirmed through principal components analysis which showed almost identical variance for heat and longevity. Among the stress factors, only UV tolerance was positively correlated with heat and hypoxia tolerance. Differences in longevity and stress tolerance in nematode populations isolated from a single 200 m2 grassland locality further support another hypothesis that population structure of heterorhabditid nematodes is highly fragmented, thus suggesting the existence of metapopulation dynamics.  相似文献   

14.
The infective dauer juvenile (DJ2) of Anguina agrostis, a stage capable of surviving desiccation, is up to sixfold more resistant to the detergent sodium dodecyl sulfate than are freshly hatched juveniles or adult males, and twofold more resistant to the anesthetic phenoxypropanol. Thus, the DJ2, like dauer stages of other species, may also be more resistant to various types of environmental stress in its natural habitat. In A. agrostis, however, resistance appears to be acquired gradually during development of the second juvenile stage, rather than during a molt.  相似文献   

15.
High pH values (>11.0) cause the dissolution of occlusion bodies of the granulosis virus (GV) of Pseudaletia unipuncta and subsequent inactivation of the virus within 24 hr. The GV is also inactivated within 48 hr by 0.04% formaldehyde. The GV is found in the intestinal lumen of infective third stage nematodes (dauer juveniles) of Neoaplectana carpocapsae when development occurs in GV-infected hosts. The GV in these dauer juveniles retains its infectivity even when the nematodes are placed into an alkaline solution with pH values of 11.1 or 12.1 or in 0.04% formaldehyde up to 336 hr. However, significant loss of infectivity of GV occurs when the nematodes are in formaldehyde but not at high pH values. The dauer juveniles are ensheathed by the second stage cuticle. This cuticle probably protects the GV in the intestinal lumen of the nematode from the high pH and formaldehyde.  相似文献   

16.
We studied the recovery of juvenile fat snook (Centropomus parallelus) after subchronic exposure to different concentrations of copper. Healthy juveniles (1.98 g) were exposed to 25 or 50 μg Cu/L for 30 days (12 replicates with 5 fish in each one), and recovery was observed at 0, 4, 10, and 30 days after exposure (3 replicates with 5 fish in each one). Copper genotoxicity in exposed individuals was observed using a micronucleus assay, and recovery was not observed even 30 days post-exposure. Copper accumulation was observed in fish exposed to 25 or 50 μg/L of copper in the gills (14.4 and 34.4 μg/g, respectively) and muscle (5.7 and 5.5 μg/g, respectively), and a return to normal copper levels (6.0 μg/g for gills and 2.5 μg/g for muscle) was observed 4 and 30 days post-exposure in the gills and muscle tissues, respectively. Glutathione S-transferase (GST) was 80% inhibited in individuals exposed to copper and returned to normal levels for fish exposed to basal concentrations within 10 days. Although copper accumulation in tissues dispersed 30 days post-exposure, no recovery from genotoxicity was observed during this time. Thirty days was not enough to recover juvenile fat snook following subchronic exposure to copper.  相似文献   

17.
太湖新银鱼移植对(鳖)早期摄食和生长的影响   总被引:1,自引:0,他引:1  
研究选择长江中游西洞庭湖水系太湖新银鱼移植水体(黄石水库)和未移植水体(蒙泉水库),研究太湖新银鱼(Neosalanx taihuensis Chen)移植对浮游动物食性鱼类(Hemiculter leucisculus Basilewsky)早期生长和摄食的影响。2009年7月下旬和8月中旬共采集稚鱼157尾,其中7月下旬采集稚鱼在14—23日龄之间,两水体间生长差异不显著;8月中旬采集稚鱼在20—49日龄之间,黄石水库生长率显著小于蒙泉水库。对样品耳石日轮分析发现25日龄之前两水体稚鱼生长率相似,之后黄石水库稚鱼较蒙泉水库生长慢。食性分析发现25日龄前两水体稚鱼食物组成相似,主要摄食轮虫、小型枝角类和桡足类;25日龄后黄石水库稚鱼食性没有显著变化,而蒙泉水库稚鱼则转食大型枝角类、昆虫及鱼卵和仔鱼。两水体气候条件、营养状况、鱼类区系组成上基本相同,是否有太湖新银鱼移植是两水体间的主要差别。太湖新银鱼春群在1—5月间繁殖,而的繁殖在6月下旬之后。因此在早期生活史阶段与太湖新银鱼的食物竞争会主要发生在转食大型浮游动物之后。太湖新银鱼摄食使黄石水库大型浮游动物饵料资源短缺,稚鱼在25日龄后不能转食,是导致黄石水库幼鱼在25日龄后生长减慢的重要因素。  相似文献   

18.
《Biological Control》2000,17(1):73-81
The slug, Deroceras reticulatum (Stylommatophora: Limacidae), was exposed to different concentrations of infective dauer juveniles of the rhabditid nematode Phasmarhabditis hermaphrodita, in a two-stage bioassay, at 10°C. Slugs were exposed in groups of 10 or 12 to nematodes in plastic boxes filled with soil aggregates for 3 or 5 days and then transferred individually to petri dishes each containing a disk of Chinese cabbage leaf as food. Subsequently, slug food consumption and survival were measured for 10 to 13 days. Models were developed to describe the way that exposure to the nematode caused inhibition of slug feeding followed by death. Both effects were related to nematode concentrations and time after exposure to the nematode. Following exposure to high concentrations (300,000 dauer juveniles per box), slugs were killed rapidly, within a few days after the end of the exposure period. Following exposure to low concentrations of nematodes (7000 or 15,000 per box), substantial numbers of slugs survived until the end of the bioassay, but feeding activity by these slugs was strongly inhibited. It is suggested that inhibition of slug feeding is important for the success of this nematode as a biocontrol agent.  相似文献   

19.
Juvenile Fasciola hepatica is infective when administered orally. To determine whether the age of juveniles is a factor in infectivity by oral transfer, experimental mice were challenged orally with immature F. hepatica that had been grown in donor mice for 12, 14, 16, and 18 days. Experimental mice were examined for infections 12 16 days after the oral transfers. The infection success in experimental mice decreased with the age of juveniles. The worm recovery also decreased according to the age of juveniles. None of the juveniles was infective when grown for longer than 11 days. Once infected, orally transferred worms continued to grow. Juvenile age was a significant factor in determining the infectivity of orally transferred juvenile F. hepatica.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号