共查询到20条相似文献,搜索用时 0 毫秒
1.
Chandra Somasundaram Rahul K. Nath Joseph Perkinson Ingvar Bjarnason 《Bioscience Hypotheses》2009,2(5):290-294
Traditional non-steroidal anti-inflammatory drugs, cyclooxygenase-1 (COX-1) and cyclooxygenase-2 (COX-2) inhibitors control inflammation. While these drugs are formulated to reduce one of the cardinal signs of inflammation by reducing prostaglandin levels at the site of inflammation, COX-1 inhibitors induce inflammation in the stomach as well as the small bowel. The COX-2 inhibitors, a large portion of the non-steroidal anti-inflammatory drug market, provide a gastro-intestinally safer class of drugs. However, COX-2 inhibitors induce vasoconstriction via actions in renal and cardiovascular tissues. Since COX-2 inhibitors also have anticancer potential, it is worthwhile to design drug formulations that will not cause hypertension or cardiovascular damage. An attempt has thus been made in this article to formulate a hypothesis to circumvent the COX inhibitors induced inflammation and vasoconstriction through COX independent activation of calcitonin gene-related peptide (CGRP), a potent vasodilator neuropeptide found throughout the vascular and sensory nervous system. 相似文献
2.
Inhibitors of prostaglandin production, designated as classical non-steroidal anti-inflammatory drugs (NSAIDs) and acting
on the base of non-selective inhibition of cyclooxygenases, have been found in numerous studies to potentiate recovery of
perturbed haematopoiesis by removing the negative feedback control mediated by prostaglandins. However, classical NSAIDs show
pronounced undesirable gastrointestinal side effects, which limits the possibility of their utilization for various pathophysiological
states including myelosuppression. Specific cyclooxygenase-2 (COX-2) inhibitors, targeted at selective inhibition of this
inducible cyclooxygenase isoform and having much better gastrointestinal side effect profile, have been found in recent studies
to retain the haematopoiesis-stimulating effects of classical NSAIDs. These results suggest that the indication spectrum of
selective COX-2 inhibitors may be extended to the indication of myelosuppression of various etiology. Combining the anti-tumour
and haematopoiesis-stimulating activities in a single COX-2 inhibitor may have a positive clinical impact. 相似文献
3.
Teymour Vahedpour Jatinder Kaur Salar Hemmati Maryam Hamzeh-Mivehroud Ali Akbar Alizadeh Frank Wuest Siavoush Dastmalchi 《化学与生物多样性》2021,18(3):e2000832
A new series of 1,3,5-trisubstituted 2-pyrazolines for the inhibition of cyclooxygenase-2 (COX-2) were synthesized. The designed structures include a COX-2 pharmacophore SO2CH3 at the para-position of the phenyl ring located at C-5 of a pyrazoline scaffold. The synthesized compounds were tested for in vitro COX-1/COX-2 inhibition and cell toxicity against human colorectal adenocarcinoma cell lines HT-29. The lead compound (4-chlorophenyl){5-[4-(methanesulfonyl)phenyl]-3-phenyl-4,5-dihydro-1H-pyrazol-1-yl}methanone ( 16 ) showed significant COX-2 inhibition (IC50=0.05±0.01 μM), and antiproliferative activity (IC50=5.46±4.71 μM). Molecular docking studies showed that new pyrazoline-based compounds interact via multiple hydrophobic and hydrogen-bond interactions with key binding site residues of the COX-2 enzyme. 相似文献
4.
Cyclooxygenase (COX)-2 plays an important role in the development of cancer and has been recognized as a potential therapeutic
target. Because nonsteroidal anti-inflammatory drugs (NSAIDs) are able to inhibit the activity of this enzyme, the potential
efficacy of such drugs for purposes of cancer prevention or therapy is an area of intense research. Therefore, it is of critical
importance to unequivocally determine the expression levels of COX-2 protein in tumor cells. In this regard, there are several
conflicting reports in the literature where the same type of tumor cell lines were reported as COX-2 positive and as COX-2
negative. We found that during Western blot analysis of COX-2 positive and COX-2 negative cells, different antibodies to COX-2
protein are able to generate strong signals, which are false-positives and can be confused with COX-2. Thus, we believe that
some of the conflicting reports on COX-2 expression in tumor cell lines could be the result of improper interpretation of
the Western blot signals. Here, we present some of these pitfalls and suggest the inclusion of appropriate controls to unequivocally
identify COX-2 protein levels. 相似文献
5.
Fountoulaki S Perdih F Turel I Kessissoglou DP Psomas G 《Journal of inorganic biochemistry》2011,105(12):1645-1655
Copper(II) complexes with the non-steroidal anti-inflammatory drug diflunisal in the presence of N,N-dimethylformamide or nitrogen donor heterocyclic ligands (pyridine, 1,10-phenanthroline, 2,2′-bipyridine or 2,2′-bipyridylamine) have been synthesized and characterized. The deprotonated diflunisal ligands are coordinated to Cu(II) ion through carboxylato oxygen atoms. The crystal structures of [tetrakis(diflunisal)bis(N,N-dimethylformamide)dicopper(II)] 1 and [bis(diflunisal)bis(pyridine)copper(II)], 2 have been determined by X-ray crystallography and are the first reported crystal structures of diflunisal complexes. UV study of the interaction of the complexes with calf-thymus DNA (CT DNA) suggests binding of the complexes to CT DNA with the dinuclear [tetrakis(diflunisal)bis(N,N-dimethylformamide)dicopper(II)] compound exhibiting the highest binding constant, Kb. Intercalative binding mode may also be concluded using cyclic voltammetry and solution viscosity measurements of the complexes in the presence of CT DNA. Competitive studies with ethidium bromide (EB) indicate that the complexes can displace the DNA-bound EB suggesting competition with EB. Diflunisal and its complexes exhibit good binding propensity to human or bovine serum albumin protein showing relatively high binding constant values. 相似文献
6.
Massimo Rizzi 《Bioscience Hypotheses》2009,2(3):143-147
Clinical evidence from paediatric neurology supports the possibility that a protracted inflammatory state in the central nervous system (CNS) may enhance the predisposition of brain tissue to develop seizures. Consequently, non-steroidal anti-inflammatory drugs (NSAIDs) as well as selective cyclooxygenase-2 (COX-2) inhibitors were expected to positively modulate seizure susceptibility during a systemic inflammatory response. Nevertheless, experimental findings and clinical evidence provide controversial results. As a possible explanation for these apparent discrepancies, it is hypothesised that the amount of prostaglandin E2 (PGE2) induced in the immature brain parenchyma during systemic inflammatory response is crucial since PGE2 plays a dual role. Indeed, on the one hand, this prostaglandin increases seizure susceptibility by stimulation of glutamate release from neurons and astrocytes. On the other hand, however, the same prostaglandin induces a massive release of corticosterone, being this hormone known to inhibit efficiently the seizure susceptibility of the immature brain. Hence, the dose-response curve of any given NSAID/COX-2 inhibitor on seizure susceptibility is expected to show different patterns, depending on the amount of PGE2 levels produced in the brain parenchyma during the effect of drug. The proposed hypothesis also suggests that mild to moderate increase of PGE2 levels in the immature brain parenchyma may act as a ‘preconditioning’ stimulus, i.e., it may confer a transient resistance to develop seizure-induced brain injury, besides to efficiently counteract seizure susceptibility. 相似文献
7.
Ranatunge RR Earl RA Garvey DS Janero DR Letts LG Martino AM Murty MG Richardson SK Schwalb DJ Young DV Zemtseva IS 《Bioorganic & medicinal chemistry letters》2004,14(24):429-6052
A series of 3-(2-methoxytetrahydrofuran-2-yl)pyrazoles (4–10) was synthesized. The compounds were evaluated for their ability to inhibit cyclooxygenase-1 (COX-1) and cyclooxygenase-2 (COX-2) activity in human whole blood (HWB). The compound, 5-(4-methanesulfonylphenyl)-3-(2-methoxytetrahydrofuran-2-yl)-1-p-tolyl-1H-pyrazole 5 showed potent and selective COX-2 inhibition (IC50 for COX-1: >100 μM and COX-2: 1.2 μM). 相似文献
8.
There is still insufficient data about the risk-benefit profile about recommending non-aspirin, non-steroidal anti-inflammatory drugs (NA-NSAIDs) for colorectal cancer (CRC) prevention, especially in people aged 40 years or older. This study specifically addressed the association between regular NA-NSAIDs use and CRC risk in the population aged 40 years or older, performing a comprehensive systematic review and meta-analysis of all published studies on this topic until April 2018, by a search of PubMed, Scopus and Web of science databases and clinical trial registries. Two reviewers independently selected studies based on predefined inclusion criteria and assessed study quality using the Newcastle-Otawa scale. The data was combined with the random effects model. Potential heterogeneity was calculated as Q statistic and I2 value. A total of 23 studies involving more than 1 million subjects contributed to the analysis. Pooled odds ratio (OR) of NA-NSAIDs effects on CRC risk was 0.74 (0.67-0.81), I2 = 75.9%, p < 0.001. Heterogeneity was explained by a number of variables including the quality of the studies. Significant protective effects of NA-NSAIDs use were found for women (risk reduction of 19%), higher doses (risk reduction of 18%), distal colon cancer (risk reduction of 22%) and white people (risk reduction from 31% to 41%). From the results NA-NSAIDs use appears to be CRC chemopreventive for a specific subgroup of the population. 相似文献
9.
Shen-Zhen Ren Zhong-Chang Wang Xiao-Hua Zhu Dan Zhu Zhang Li Fa-Qian Shen Yong-Tao Duan Han Cao Jing Zhao Hai-Liang Zhu 《Bioorganic & medicinal chemistry》2018,26(14):4264-4275
The overexpress of COX-2 was clearly associated with carcinogenesis and COX-2 as a possible target has long been exploited for cancer therapy. In this work, we described the design and synthesis of a series of diarylpyrazole derivatives integrating with chrysin. Among them, compound e9 exhibited the most potent inhibitory activity against COX-2 and antiproliferative activity against Hela cells with IC50 value of 1.12?μM. Further investigation revealed that e9 could induce apoptosis of Hela cells by mitochondrial depolarization and block the G1 phase of cell cycle in a dose-dependent manner. Besides, molecular docking simulation results was further confirmed that e9 could bind well with COX-2. In summary, compound e9 may be promising candidates for cancer therapy. 相似文献
10.
《Bioorganic & medicinal chemistry》2016,24(5):1002-1005
Candida spp. are responsible for many biomaterial-related infections; they give rise to infective pathologies typically associated with biofilm formation. We recently reported that the echinocandin anidulafungin (ANF) showed a strong in vitro activity against both planktonic and biofilms cells. Herein, we report the antifungal activities of ANF alone and in association with some non-steroidal anti-inflammatory drugs (NSAIDs) against nine Candida strain biofilms: four Candida albicans, two Candida glabrata and three Candida guilliermondii. The activity of ANF was assessed using an in vitro microbiological model relevant for clinical practice. ANF proved oneself to be active against biofilms cells, and a clear-cut synergism was found against Candida species biofilms when ANF was used in combination with three NSAIDs: aspirin, diclofenac, ibuprofen. The positive synergism against Candida spp. of ANF in association with aspirin or the other NSAIDs proved to be a very effective antifungal treatment (FICI <0.5). These results may provide the starting point for new combination therapies of ANF with NSAIDs against Candida biofilm pathologies. 相似文献
11.
Yaonan Zhang Xiao Wang Yiwei Qiu Jillian Cornish Andrew J. Carr Zhidao Xia 《Biochemical and biophysical research communications》2014
Non-steroidal anti-inflammatory drugs (NSAIDs) are widely used in patients with injuries and inflammation of tendon and ligament, and as post-surgical analgesics. The aim of this study is to investigate the effect of indomethacin, a classic NSAID and its combinational effect with an anabolic agent of skeletal tissue, lactoferrin, on the proliferation and collagen formation of human tenocytes in vitro. A factorial experimental design was employed to study the dose-dependent effect of the combination of indomethacin and lactoferrin. The results showed that indomethacin at high concentration (100 μM) inhibited human tenocyte proliferation in culture medium with 1–10% fetal bovine serum (FBS) in vitro. Also, high dose of indomethacin inhibited the collagen formation of human tenocytes in 1% FBS culture medium. Lactoferrin at 50–100 μg/ml promoted human tenocyte survival in serum-free culture medium and enhanced proliferation and collagen synthesis of human tenocytes in 1% FBS culture medium. When 50–100 μg/ml lactoferrin was used in combination with 100–200 μM indomethacin, it partially rescued the inhibitory effects of indomethacin on human tenocyte proliferation, viability and collagen formation. To our knowledge, it is the first evidence that lactoferrin is anabolic to human tenocytes in vitro and reverses potential inhibitory effects of NSAIDs on human tenocytes. 相似文献
12.
Fernando Santos Lígia Teixeira Helena Ferreira Diana Gaspar José L. F. C. Lima 《Free radical research》2013,47(7):639-650
Non-steroidal anti-inflammatory drugs (NSAIDs) treat inflammatory processes by inhibition of cycloxygenase (COX). However, their action against lipid peroxidation can be an alternative pathway to COX inhibition. Since inflammation and lipid peroxidation are cell-surface phenomena, the effects of NSAIDs on membrane models were investigated. Peroxidation was induced by peroxyl radical (ROO?) derived from AAPH and assessed in aqueous or lipid media using fluorescence probes with distinct lipophilic properties: fluorescein; HDAF and DPH-PA. The antioxidant effect of Sulindac and its metabolites was tested and related with their membrane interactions. Drug–membrane interactions included the study of: drug location by fluorescence quenching; drug interaction with membrane surface by zeta-potential measurements; and membrane fluidity changes by steady-state anisotropy. Results revealed that the active NSAID (sulindac sulphide) penetrates into the lipid bilayer and protects the membrane against oxy-radicals. The inactive forms (sulindac and sulindac sulphone) present weaker interactions with the membrane and are better radical scavengers in aqueous media. 相似文献
13.
Constantinou-Kokotou Violetta 《International journal of peptide research and therapeutics》2002,9(2-3):143-152
Summary This article focuses on the synthesis and the biological activities of long chain amino alcohols. The methods for the synthesis
of these sphingosine analogues from various starting materials such as lipidic amino acids, serine, glyceraldehydes, long
chain 1,2-diols, are summarized in the first part of the review, followed by a discussion of the biological activities of
long chain amino alcohols and the applications for the synthesis of other bioactive compounds. 相似文献
14.
Violetta Constantinou-Kokotou 《Letters in Peptide Science》2002,9(2-3):143-152
This article focuses on the synthesis and the biological activities of long chain amino alcohols. The methods for the synthesis of these sphingosine analogues from various starting materials such as lipidic amino acids, serine, glyceraldehydes, long chain 1,2-diols, are summarized in the first part of the review, followed by a discussion of the biological activities of long chain amino alcohols and the applications for the synthesis of other bioactive compounds. 相似文献
15.
16.
《Bioorganic & medicinal chemistry letters》2014,24(16):3826-3834
The discovery of potent inhibitors of prostaglandin E2 (PGE2) synthesis in recent years has been proven to be an important game changer in pharmaceutical industry. It is known that excessive production of PGE2 triggers a vast array of biological signals and physiological events that contributes to inflammatory diseases such as rheumatoid arthritis, atherosclerosis, cancer, and pain. In this Letter, we report the synthesis of a series of minor prenylated chalcones and flavonoids which was found to be significantly active in suppressing the PGE2 production secreted by lipopolysaccharide-induced mouse macrophage cells (RAW 264.7). Among the compounds tested, 14b showed a dose-response inhibition of PGE2 production with an IC50 value of 2.1 μM. The suppression upon PGE2 secretion was not due to cell death since 14b did not reduce the cell viability in close proximity to the PGE2 inhibition concentration. The obtained atomic coordinates for the single-crystal XRD of 14b was then applied in the docking simulation to determine the potential important binding interactions with murine COX-2 and mPGES-1 putative binding sites. 相似文献
17.
Villegas I La Casa C de la Lastra CA Motilva V Herrerías JM Martín MJ 《Life sciences》2004,74(7):873-884
Nonsteroidal anti-inflammatory drugs (NSAID) are well known to induce gastric mucosal damage including bleeding, ulceration and perforation in humans and animals too. These effects are related with the inhibition of the enzyme cyclooxygenase, which is the main established mechanism of action for these drugs. Fasted rats were given piroxicam, preferential COX-1 inhibitor (10-20 mg/kg) or meloxicam, preferential COX-2 inhibitor (7.5-15 mg/kg) orally. Six or nine hours (h) later, respectively, the stomach was excised, the severity of the damage assessed and myeloperoxidase (MPO) activity measured, as well as prostaglandin PGE(2) content. Furthermore, in order to assess the effects of these oxicams over previously damaged gastric mucosa, 1 ml of 0.6 N HCl was administered p.o. followed, 1 h after, of the correspondent dose of each NSAID, and the same parameters were determined. Oral administration of both drugs dose-dependently caused acute gastric haemorrhage erosions. Myeloperoxidase activity was significantly increased by piroxicam administration. In addition, PGE(2) content was significantly reduced. The association between the administration of the acid and NSAID caused a worsening of the damage and, while myeloperoxidase activity did not modify by both piroxicam and meloxicam, PGE(2) levels were reduced. These results suggest that the PG derived from both COX-1 and COX-2 pathway plays a beneficial role in the gastroprotection, and thus caution should be exercise in the clinical use of preferential COX-2 inhibitors. 相似文献
18.
Rania H. Abd El-Hameed Shahenda Mahgoub Hend M. El-Shanbaky Mosaad S. Mohamed Sahar A. Ali 《Journal of enzyme inhibition and medicinal chemistry》2021,36(1):977
Inflammation is associated with the development of several diseases comprising cancer and cardiovascular disease. Agents that suppress cyclooxygenase (COX) and lipoxygenase (LOX) enzymes, besides chemokines have been suggested to minimise inflammation. Here, a variety of novel heterocyclic and non-heterocyclic compounds were prepared from novel three furanone derivatives. The structures of all synthesised compounds were confirmed by elemental and spectral analysis including mass, IR, and 1H-NMR spectroscopy. Anti-inflammatory activities of these synthesised compounds were examined in vitro against COX enzymes, 15-LOX, and tumour necrosis factor-α (TNF-α), using inhibition screening assays. The majority of these derivatives showed significant to high activities, with three pyridazinone derivatives (5b, 8b, and 8c) being the most promising anti-inflammatory agents with dual COX-2/15-LOX inhibition activities along with high TNF-α inhibition activity. 相似文献
19.
Asmaa Sakr Samar Rezq Samy M. Ibrahim Eman Soliman Mohamed M. Baraka Damian G. Romero Hend Kothayer 《Journal of enzyme inhibition and medicinal chemistry》2021,36(1):1810
Novel quinazolinones conjugated with indole acetamide (4a–c), ibuprofen (7a–e), or thioacetohydrazide (13a,b, and 14a-d) were designed to increase COX-2 selectivity. The three synthesised series exhibited superior COX-2 selectivity compared with the previously reported quinazolinones and their NSAID analogue and had equipotent COX-2 selectivity as celecoxib. Compared with celecoxib, 4 b, 7c, and 13 b showed similar anti-inflammatory activity in vivo, while 13 b and 14a showed superior inhibition of the inflammatory mediator nitric oxide, and 7 showed greater antioxidant potential in macrophages cells. Moreover, all selected compounds showed improved analgesic activity and 13 b completely abolished the pain response. Additionally, compound 4a showed anticancer activity in tested cell lines HCT116, HT29, and HCA7. Docking results were consistent with COX-1/2 enzyme assay results. In silico studies suggest their high oral bioavailability. The overall findings for compounds (4a,b, 7c, 13 b, and 14c) support their potential role as anti-inflammatory agents. 相似文献
20.
Three novel series of diarylpyrazole 10b-d and triarylpyrazole derivatives 11a-d &12a-d were synthesized through Vilsmier-Haack condition. The structures of prepared compounds were determined through IR, 1H NMR, 13C NMR, Mass spectral and elemental analysis. Docking of the synthesized compounds over COX-2 active site ensure their selectivity. Moreover, the target compounds were evaluated for both in vitro and in vivo inhibitory activity. All compounds were more selective for COX-2 isozyme than COX-1 isozyme and with excellent anti-inflammatory activity. Compounds 11b, 11d and 12b showed the highest anti-inflammatory activity (67.4%, 62.7%, 61.4% respectively), lower ulcerogenic liability (UI = 2.00, 2.75, 3.25 respectively) than indomethacin (UI = 14) and comparable to celecoxib (UI = 1.75) which were confirmed from the histopatholgical study. 相似文献