首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Signal transduction induced by generations of second messengers from membrane phospholipids is a major regulatory mechanism in the control of cell proliferation. Indeed, oncogenic p21ras alters the intracellular levels of phospholipid metabolites in both mammalian cells and Xenopus oocytes. However, it is still controversial whether this alteration it is biologically significant. We have analyzed the ras-induced signal transduction pathway in Xenopus oocytes and have correlated its mechanism of activation with that of the three most relevant phospholipases (PLs). After microinjection, ras-p21 induces a rapid PLD activation followed by a late PLA2 activation. By contrast, phosphatidylcholine-specific PLC was not activated under similar conditions. When each of these PLs was studied for its ability to activate intracellular signalling kinases, all of them were found to activate maturation-promoting factor efficiently. However, only PLD was able to activate MAP kinase and S6 kinase II, a similar pattern to that induced by p21ras proteins. Thus, the comparison of activated enzymes after microinjection of p21ras or PLs indicated that only PLD microinjection mimetized p21ras signalling. Finally, inhibition of the endogenous PLD activity by neomycin substantially reduced the biological activity of p21ras. All these results suggest that PLD activation may constitute a relevant step in ras-induced germinal vesicle breakdown in Xenopus oocytes.  相似文献   

2.
Xenopus laevis oocytes are a powerful tool for the characterization of signal transduction pathways leading to the induction of DNA synthesis. Since activation of PLA2, PLC, or PLD has been postulated as a mediator of ras function, we have used the oocyte system to study the putative functional relationship between ras-p21 and these phospholipases. A rapid generation of PA and DAG was observed after ras-p21 microinjection, suggesting the activation of both PLC and PLD enzymes. However, production of DAG was sensitive to inhibition of the PA-hydrolase by propranolol, indicating that PLD is the enzyme responsible for the generation of both PA and DAG. Microinjection of PLD or ras-p21 induced the late production of lysophosphatidylcholine on a p42MAPK-dependent manner, an indication of the activation of a PLA2. Inhibition of this enzyme by quinacrine does not inhibit PLD- or ras-induced GVBD, suggesting that PLA2 activation is not needed for ras or PLD function. Contrary to 3T3 fibroblasts, where ras-p21 is functionally dependent for its mitogenic activity on TPA- and staurosporine-sensitive PKC isoforms, in Xenopus oocytes, induction of GVBD by ras-p21 was independent of PKC, while PLC-induced GVBD was sensitive to PKC inhibition. Thus, our results demonstrate the activation of PLD and PLA2 by ras-p21 proteins, while no effect on PLC was observed.  相似文献   

3.
Transforming Harvey (Ha) ras oncogene products accelerated the time course of Xenopus oocyte maturation induced by insulin, insulinlike growth factor 1, or progesterone. The transforming constructs, [Val-12]Ha p21 and [Val-12, Thr-59]Ha p21, displayed equal potency and efficacy in their abilities to accelerate the growth peptide-induced response. Normal Ha p21 was only 60% as powerful and one-fifth as potent as the mutants containing valine in the 12 position. In contrast, two nontransforming constructs, [Val-12, Ala-35, Leu-36, Thr-59]Ha p21 and [Val-12, Thr-59]Ha(term-174) p21, had no effect on the time course of hormone-induced maturation. Effects of the transforming ras proteins on hormone-induced maturation correlated with their abilities to stimulate in vivo phosphodiesterase activity measured after microinjection of 200 microM cyclic [3H] AMP. When p21 injection followed 90 min of insulin treatment, there was no increase in phosphodiesterase activity over that measured after hormone treatment or p21 injection alone, but additive effects of p21 and insulin on enzyme activity were observed during the first 90 min of insulin treatment. Even though normal Ha p21 and transforming [Val-12, Thr-59]Ha p21 stimulated oocyte phosphodiesterase to equal levels when coinjected with substrate at the initiation of the in vivo assay, the transforming protein elicited a more sustained stimulation of enzyme activity. These results suggest that stimulation of a cyclic AMP phosphodiesterase activity associated with insulin-induced maturation is involved in the growth-promoting actions of ras oncogene products in Xenopus oocytes.  相似文献   

4.
Microinjection of transforming p21 ras protein induces maturation of Xenopus laevis oocytes, and the induction is blocked by coinjection of monoclonal antibody (Y13-259) against p21 ras proteins. Similar to other inducing agents, the effect of p21 ras protein is mediated via the appearance of maturation or meiosis-promoting factor activity. In addition, the neutralizing antibody markedly reduces oocyte maturation after insulin induction, whereas it fails to inhibit progesterone induction. Our results suggest that insulin induces maturation of oocytes via a different pathway than that of steroidal agents. The induction by insulin is ras dependent, and the action of ras may be directed at the steps before meiosis-promoting factor autocatalytic activation. These results suggest a role of p21 ras protein in the events associated with amphibian oocyte maturation.  相似文献   

5.
Swiss-3T3 cells were scrape-loaded with oncogenically activated p21ras protein. 10-20 min after introducing Val12p21ras into the cell, diacylglycerol levels were increased, but levels of inositol phosphates were unaltered. However, cellular choline and phosphocholine levels were increased with a similar time course to that observed for diacylglycerol production, suggesting that ras increases phosphatidylcholine turnover but not phosphatidylinositol turnover. Down-regulation of protein kinase C (by prolonged exposure to phorbol esters prior to scrape loading) blocked the ability of ras protein to elevate the levels of diacylglycerol, choline, and phosphocholine. Oncogenic ras can, therefore, cause a substantial increase in diacylglycerol (which correlates with increased phosphatidylcholine breakdown) in a protein kinase C-dependent fashion. Val12p21ras also increased arachidonic acid release, which was also dependent on protein kinase C activation. Induction of DNA synthesis by oncogenic ras was unaffected by inhibitors of prostaglandin synthesis, indicating that conversion of the released arachidonic acid to various prostaglandins is not required for stimulation of DNA synthesis by ras. We suggest that ras rapidly activates protein kinase C, which in turn activates a number of cellular signalling systems, leading to a sustained increase in diacylglycerol levels. This elevation of diacylglycerol could sustain protein kinase C activation over the 12-15 h required for initiation of DNA synthesis.  相似文献   

6.
After a 3 to 6 hour incubation, addition of progesterone (the most effective), insulin-like growth factor 1 (IGF-1; the second most effective), or insulin induces meiotic cell division in Xenopus oocytes. Measurement of an endogenous activator of protein kinase C, sn-1,2-diacylglycerol (DAG), by an enzymatic method recording mass demonstrates that all three hormones alter DAG levels. Five seconds after addition, only progesterone transiently reduces DAG levels by about 25%. At 15 minutes after addition, all three hormones produce a peak of DAG (115% to 160% of control values), with the more effective hormones producing a larger increase in DAG. Insulin produces the smallest DAG increase, but the DAG release is longer lasting. Finally, all three hormones induce a second peak in DAG levels just before white spot appearance (at 0.85 GVBD50, where 1.0 GVBD50 is when 50% of the cells have divided). With these data and since an activator of protein kinase C, a phorbol ester, has been found to induce meiosis, the kinase may play a role in early proliferative events at the plasma membrane and in late events at the nucleus.  相似文献   

7.
The ability of Xenopus oocytes to undergo insulin- or insulin-like growth factor 1-induced meiotic maturation develops during oogenesis, with cells 1.0 mm in diameter or larger responding in a size-dependent manner. Since insulin-induced oocyte maturation was shown previously to be p21 ras-dependent, experiments were performed to test whether a deficiency in the p21 ras system might account for meiotic incompetence in small oocytes (less than or equal to 0.9 mm diameter). Both small and large oocytes were found to contain comparable levels of membrane-associated p21, as determined by protein immunoblotting. Treatment of both small and large oocytes with 2 microM insulin for 2 hr increased endogenous levels of membrane-associated p21 by approximately 70%. Stimulation of microinjected p21-membrane association by insulin was observed to be both time- and concentration-dependent in large oocytes with an EC50 of 50 nM. In addition, comparable levels of GTPase activating protein were measured in extracts prepared from oocytes ranging from 0.8 to 1.3 mm in diameter. Therefore, the p21 system is apparently not limiting during oogenesis, and expression of some other cellular component must account for development of meiotic competence in Xenopus oocytes.  相似文献   

8.
Exoenzyme C3 from Clostridium botulinum types C and D specifically ADP-ribosylated a 21-kilodalton cellular protein, p21.bot. Guanyl nucleotides protected the substrate against denaturation, which implies that p21.bot is a G protein. When introduced into the interior of cells, purified exoenzyme C3 ADP-ribosylated intracellular p21.bot and changed its function. NIH 3T3, PC12, and other cells rapidly underwent temporary morphological alterations that were in certain respects similar to those seen after microinjection of cloned ras proteins. When injected into Xenopus oocytes, C3 induced migration of germinal vesicles and potentiated the cholera toxin-sensitive augmentation of germinal vesicle breakdown by progesterone, also as caused by ras proteins. Nevertheless, p21.bot was immunologically distinct from p21ras.  相似文献   

9.
Microinjection of Xenopus oocytes with ras protein (p21) was used to investigate the role of phospholipid metabolism in ras-induced meiotic maturation. Induction of meiosis by ras was compared with induction by progesterone, insulin, and the phorbol ester 12-O-tetradecanoylphorbol-13-acetate (TPA). Neomycin, which specifically binds to phosphatidylinositides and inhibits their metabolism, blocked meiotic maturation induced by ras or insulin but not by progesterone or TPA. In addition, p21 and TPA, but not insulin or progesterone, stimulated the incorporation of 32Pi into oocyte lipids. ras protein specifically stimulated 32P incorporation into phosphatidylinositides, whereas both ras and TPA stimulated 32P incorporation into phosphatidylcholine and phosphatidylethanolamine. The stimulatory effect of p21 on phosphatidylinositide metabolism correlated with the dose response and kinetics of ras-induced meiotic maturation. In addition, the ras oncogene protein was more potent than the proto-oncogene protein both in inducing meiotic maturation and in stimulating phosphatidylinositide metabolism. These results indicate that phosphatidylinositide turnover is required for ras-induced meiosis and suggest that phosphatidylinositide-derived second messengers mediate the biological activity of ras in Xenopus oocytes.  相似文献   

10.
Nuclear factor kappa B (NF-kappa B) plays a critical role in the regulation of a large variety of cellular genes. However, the mechanism whereby this nuclear factor is activated remains to be determined. In this report, we present evidence that in oocytes from Xenopus laevis, (i) ras p21- and phospholipase C (PLC)-mediated phosphatidylcholine (PC) hydrolysis activates NF-kappa B and (ii) protein kinase C zeta subspecies is involved in the activation of NF-kappa B in response to insulin/ras p21/PC-PLC. Thus, the microinjection of either ras p21 or PC-PLC, or the exposure of oocytes to insulin, promotes a significant translocation to the nucleus of an NF-kappa B-like activity. This effect is not observed when oocytes are incubated with phorbol myristate acetate or progesterone, both of which utilize a ras p21-independent pathway for oocyte activation. These data strongly suggest a critical role of the insulin/ras p21/PC-PLC/protein kinase C zeta pathway in the control of NF-kappa B activation.  相似文献   

11.
Both insulin and progesterone are capable of stimulating germinal vesicle breakdown (GVBD) of large, Stage VI oocytes of Xenopus laevis. Numerous studies have shown an increase in intracellular pH (pHi) and ribosomal protein S6 phosphorylation prior to GVBD in oocytes treated with progesterone. In this study the effect of insulin and progesterone on pHi and S6 phosphorylation was compared. Both hormones increased pHi and S6 phosphorylation to similar levels and the time course of pHi change was the same for both hormones. Half-maximal effects of insulin were observed at 7 X 10(-8) M concentrations. In the presence of 1 nM cholera toxin, the ability of progesterone to induce these two responses was inhibited while the action of insulin was unaffected. However, GVBD induced by either hormone was blocked by cholera toxin. In small, Stage IV oocytes that do not undergo GVBD in response to either progesterone or insulin, a partial increase in pHi without S6 phosphorylation occurred in response to progesterone but both events occurred in response to insulin. These results suggest that the inability of Stage IV oocytes to undergo GVBD in response to hormone is not due to a failure to increase pHi or phosphorylate S6. The results in this paper also indicate that these events are regulated differently by insulin and progesterone in Xenopus oocytes.  相似文献   

12.
In contrast to all cellular ras oncogenes which carry a single activating mutation at codon 12, 13 or 61, all known retroviral ras oncogenes have two mutations at codons 12 and 59. To understand the role of the mutation at codon 59, we have constructed plasmids containing genes for Harvey ras: p21(Gly-12,Thr-59) and p21(Val-12,Thr-59). Escherichia coli expressed proteins and their respective phosphorylated (Pi) and non-phosphorylated (non-Pi) proteins were purified to 95% homogeneity by ion-exchange chromatography and gel filtration. GTPase, autophosphorylation and nucleotide exchange activities of the mutants were studied. When the mutants were microinjected into Xenopus oocytes, the non-phosphorylated forms of p21(Gly-12,Thr-59) and p21(Val-12,Thr-59) showed high activity. Surprisingly, their phosphorylated forms were inactive. These results suggest that threonine at position 59 endows the protein with transforming activity but that phosphorylation of the residue inhibits biological activity. A structural interpretation of the observation is presented.  相似文献   

13.
14.
The sterol 4,4-dimethyl-5-cholesta-8,14,24-trien-3-ol (follicular fluid meiosis-activating sterol [FF-MAS]) isolated from human follicular fluid induces resumption of meiosis in mouse oocytes cultured in vitro. The purpose of this study was to examine the hypothesis that differential signal transduction mechanisms exist for FF-MAS-induced and spontaneous in vitro resumption of meiosis in mouse oocytes. Mouse oocytes were dissected from ovaries originating from mice primed with FSH 48 h before oocyte collection. Mechanically denuded germinal vesicle (GV) oocytes were in vitro matured in medium supplemented with hypoxanthine and FF-MAS or allowed to mature spontaneously; both groups were exposed to individual compounds known to inhibit specific targets in the cell. After 20-22 h of in vitro maturation, resumption of meiosis was assessed as the frequency of oocytes in GV breakdown (GVBD) stage. Pertussis toxin (2.5 microg/ml) did not influence resumption of meiosis in either group. Dibutyryl cyclic GMP (320 microM) inhibited FF-MAS-induced GVBD, but not spontaneous GVBD, whereas the subtype 5 phosphodiesterase-inhibitor zaprinast (50 microM) inhibited GVBD in both groups. Microinjection of the catalytic subunit of cAMP-dependent protein kinase into oocytes inhibited spontaneous GVBD, but not FF-MAS-induced GVBD. An inhibitor of cytoplasmic polyadenylation, cordycepin (80 microM), inhibited or retarded spontaneous GVBD to a further extent than it did FF-MAS-induced GVBD. Spontaneous GVBD was more sensitive to the histone H1 kinase-inhibitor olomoucine (250 microM) than was FF-MAS-induced GVBD. Addition of the mitogen-activated protein kinase (MAPK)-inhibitor PD 98059 (50 microM), phospholipase C-inhibitor U-73122 (10 microM), p21(ras)-inhibitor lovastatine (250 microM), and the src-like kinase inhibitor PP2 (20 microg/ml) inhibited FF-MAS-induced GVBD, but not spontaneous GVBD. Both MAPKs, extracellular regulated kinase (ERK) 1 and ERK2, were phosphorylated under FF-MAS-induced meiotic resumption, in contrast to spontaneous meiotic resumption, in which ERK1 and ERK2 phosphorylation occurred 2 h after GVBD. In the present study, we show that FF-MAS acts through an MAPK-dependent pathway, and we suggest that src-like kinase, p21(ras), and phosphoinositide signaling lie upstream of MAPK in the FF-MAS-activated signaling pathway. Clearly, striking pathway differences are present between spontaneous versus FF-MAS-induced meiotic resumption.  相似文献   

15.
Recent studies have demonstrated the activation of phospholipase C-mediated hydrolysis of phosphatidylcholine both by growth factors and by the product of ras oncogene, ras p21. Also, evidence has been presented indicating that the stimulation of this phospholipid-degradative pathway is sufficient to activate mitogenesis in fibroblasts. In Xenopus laevis oocytes, microinjection of transforming ras p21 is a potent inducer of maturation, whereas microinjection of a neutralizing anti-ras p21 antibody specifically inhibits maturation induced by insulin but not by progesterone. The results presented here demonstrated that microinjection of phosphatidylcholine-hydrolyzing phospholipase C is sufficient to induce maturation of Xenopus laevis oocytes. Furthermore, microinjection of a neutralizing anti-phosphatidylcholine-hydrolyzing phospholipase C specifically blocks the maturation program induced by ras p21/insulin but not by progesterone.  相似文献   

16.
Mitogen-activated protein (MAP) kinase is a serine/threonine kinase whose function is thought to be essential for the transduction of mitogenic signals. MAP kinase is activated by phosphorylation induced by a variety of extracellular stimuli, and its direct upstream activator has been identified. Using amphibian and mammalian systems, we show here that ras can activate MAP kinase and its activator. Injection of v-Ha-ras p21 into Xenopus immature oocytes activated both MAP kinase and maturation-promoting factor (MPF) activities. The activation of MAP kinase preceded that of MPF, demonstrating that ras activates MAP kinase in an MPF-independent pathway. Moreover, we found that the MAP kinase activator is also activated in ras-injected oocytes. Activation of MAP kinase and its activator occurred also when the v-Ki-ras gene was conditionally induced in rat fibroblastic 3Y1 cells. Furthermore, we observed that ras activated MAP kinase and its activator in a cell-free system prepared from Xenopus oocytes. Using an antibody against the Xenopus 45-kDa MAP kinase activator, we demonstrated that the 45-kDa activator molecule was activated by ras. These findings suggest that the MAP kinase activator/MAP kinase system may be the downstream components of ras signal transduction pathways.  相似文献   

17.
Full-grown oocytes of amphibians respond in vitro to exogenous progesterone by undergoing physiological maturation (breakdown of the germinal vesicle (GVBD), meiosis, and acquisition of the capacity for activation). Both cytoplasm and “cytosol” from maturing oocytes have been shown to produce similar events when injected into unstimulated oocytes. This activity appeared within 4 hr after hormone treatment in Rana pipiens and Xenopus laevis and represents the earliest detectable, specific response of the oocyte yet observed, i.e., 6–8 hr before GVBD in Rana. Maturing oocytes retained activity as long as 100 hr after exposure to progesterone, and activity was also obtained from ovulated eggs and cleaving embryos. In addition, cytoplasm from Rana pipiens, Xenopus laevis, or Ambystoma mexicanum was effective in inducing maturation in oocytes of each other, indicating a lack of specificity.Recipient oocytes of Xenopus laevis consistently began to mature within 1.5–3 hr after injection of maturing cytoplasm, well before progesterone-treated controls. The timing of the response was closely related to the quantity of cytoplasm transferred, suggesting the presence of both a minimum and threshold level of cytoplasmic factor. Serial cytoplasmic transfer in Xenopus oocytes showed no significant loss of activity through 10 injections.  相似文献   

18.
Microinjection of monoclonal antibodies (lines 238, 172, and 259) directed against the ras gene product, p21, into Xenopus laevis oocytes accelerated progesterone-induced germinal vesicle breakdown. Antibody 238 had the greatest effect on the acceleration of progesterone-induced oocyte maturation, and this effect was correlated with in vitro inhibition of adenylate cyclase (EC 4.6.1.1) activity in a concentration-dependent manner. Inhibition of adenylate cyclase by antibody 238 was also measured in membranes prepared from oocytes pretreated with either cholera toxin or pertussis toxin. These results suggest a role for the ras gene product in the regulation of vertebrate cell adenylate cyclase activity.  相似文献   

19.
tpr-met, a tyrosine kinase oncogene, is the activated form of the met proto-oncogene that encodes the receptor for hepatocyte growth factor/scatter factor. The tpr-met product (p65tpr-met) was tested for its ability to induce meiotic maturation in Xenopus oocytes. While src and abl tyrosine kinase oncogene products have previously been shown to be inactive in this assay, p65tpr-met efficiently induced maturation-promoting factor (MPF) activation and germinal vesicle breakdown (GVBD) together with the associated increase in ribosomal S6 subunit phosphorylation. tpr-met-mediated MPF activation and GVBD was dependent on the endogenous c-mosxe, while the increase in S6 protein phosphorylation was not significantly affected by the loss of mos function. The phosphodiesterase inhibitor 3-isobutyl-1-methylxanthine inhibits tpr-met-mediated GVBD at concentrations that prevent insulin- but not progesterone-induced oocyte maturation. Moreover, maturation triggered by tpr-met is also inhibited by cyclic AMP-dependent protein kinase. This is the first demonstration that a tyrosine kinase oncogene product, p65tpr-met, can induce meiotic maturation in Xenopus oocytes and activate MPF through a mos-dependent pathway, possibly the insulin or insulinlike growth factor 1 pathway.  相似文献   

20.
Recent evidence has accumulated showing that activation of PLC-catalysed hydrolysis of phosphatidylcholine (PC-PLC) is a critical step in mitogenic signal transduction both in fibroblasts and in oocytes from Xenopus laevis. The products of ras genes activate PC-PLC, bind guanine nucleotides, have intrinsic GTPase activity, and are regulated by a GTPase-activating protein (GAP). It has been suggested that, in addition to its regulatory properties, GAP may also be necessary for ras function as a downstream effector molecule. In this study, evidence is presented that strongly suggests that the functional interaction between ras p21 and GAP is sufficient and necessary for activation of maturation promoting factor (MPF) H1-kinase activity in oocytes, and that PC hydrolysis is critically involved in this mechanism. Therefore, we identify GAP as a further step required for signalling through PC-PLC, and necessary for the control of oocyte maturation in response to ras p21/insulin but not to progesterone.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号