首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Floral morphogenesis and the development of Cercidiphyllumjaponicum Sieb. et Zucc. were observed by scanning electron microscopy (SEM). The results showed that the pistillate inflorescences were congested spikes with the flowers arranged opposite. Great differences between the so-called "bract" and the vegetative leaf were observed both in morphogenesis and morphology. In morphogenesis, the "bract" primordium is crescent-shaped, truncated at the apex and not conduplicate, has no stipule primordium at the base but does have some inconspicuous teeth in the margin that are not glandular. The leaf primordium is triangular, cycloidal at the apex, conduplicate, has two stipule primordia at the base, has one gland-tooth at the apex occurring at first and some gland-teeth in the margin that occur later. In morphology, the "bract" is also different to the vegetative leaf in some characteristics that were also illustrated in the present paper. Based on the hypothesis that the bract is more similar to the vegetative leaf than the tepal, we considered that the so-called "bract" of C.japonicum might be the tepal of the pistillate flower in morphological nature. Therefore, each pistillate flower contains a tepal and a carpel. We did not find any trace of other floral organs in the morphogenesis of the pistillate flower. Therefore we considered that the unicarpellate status of extant Cercidiphyllum might be to highly reduce and advance characteristics that make the extant Cercidiphyllum isolated from both fossil Cercidiphyllum-like plants and its extant affinities.  相似文献   

2.
Myristica fragrans and M. malabarica are dioecious. Both staminate and pistillate plants produce axillary flowering structures. Each pistillate flower is solitary, borne terminally on a short, second-order shoot that bears a pair of ephemeral bracts. Each staminate inflorescence similarly produces a terminal flower and, usually, a third-order, racemose axis in the axil of each pair of bracts. Each flower on these indeterminate axes is in the axil of a bract. On the abaxial side immediately below the perianth, each flower has a bracteole, which is produced by the floral apex. Three tepal primordia are initiated on the margins of the floral apex in an acyclic pattern. Subsequent intercalary growth produces a perianth tube. Alternate with the tepals, three anther primordia arise on the margins of a broadened floral apex in an acyclic or helical pattern. Usually two more anther primordia arise adjacent to each of the first three primordia, producing a total of nine primordia. At this stage the floral apex begins to lose its meristematic appearance, but the residuum persists. Intercalary growth below the floral apex produces a columnar receptacle. The anther primordia remain adnate to the receptacle and grow longitudinally as the receptacle elongates. Each primordium develops into an anther with two pairs of septate, elongate microsporangia. In pistillate flowers, a carpel primordium encircles the floral apex eventually producing an ascidiate carpel with a cleft on the oblique apex and upper adaxial wall. The floral ontogeny supports the morphological interpretation of myristicaceous flowers as trimerous with either four-sporangiate anthers or monocarpellate pistils.  相似文献   

3.
In Tetracentron sinense of the basal eudicot family Trochodendraceae, the flower primordium, together with the much retarded floral subtending bract primordium appear to form a common primordium. The four tepals and the four stamens are initiated in four distinct alternating pairs, the first tepal pair is in transverse position. The four carpels arise in a whorl and alternate with the stamens. This developmental pattern supports the interpretation of the flower as dimerous in the perianth and androecium, but tetramerous in the gynoecium. There is a relatively long temporal gap between the initiation of the stamens and the carpels. The carpel primordia are then squeezed into the narrow gaps between the four stamens. In contrast to Trochodendron, the residual floral apex after carpel formation is inconspicuous. In their distinct developmental dimery including four tepals and four stamens, flowers of Tetracentron are reminiscent of other, related basal eudicots, such as Buxaceae and Proteaceae.  相似文献   

4.
Initiation of axillary and floral meristems in Arabidopsis   总被引:14,自引:0,他引:14  
Shoot development is reiterative: shoot apical meristems (SAMs) give rise to branches made of repeating leaf and stem units with new SAMs in turn formed in the axils of the leaves. Thus, new axes of growth are established on preexisting axes. Here we describe the formation of axillary meristems and floral meristems in Arabidopsis by monitoring the expression of the SHOOT MERISTEMLESS and AINTEGUMENTA genes. Expression of these genes is associated with SAMs and organ primordia, respectively. Four stages of axillary meristem development and previously undefined substages of floral meristem development are described. We find parallels between the development of axillary meristems and the development of floral meristems. Although Arabidopsis flowers develop in the apparent absence of a subtending leaf, the expression patterns of AINTEGUMENTA and SHOOT MERISTEMLESS RNAs during flower development suggest the presence of a highly reduced, "cryptic" leaf subtending the flower in Arabidopsis. We hypothesize that the STM-negative region that develops on the flanks of the inflorescence meristem is a bract primordium and that the floral meristem proper develops in the "axil" of this bract primordium. The bract primordium, although initially specified, becomes repressed in its growth.  相似文献   

5.
Geometry changes, especially surface expansion, accompanying flower primordium formation are investigated at the reproductive shoot apex of Arabidopsis with the aid of a non-invasive replica method and a 3-D reconstruction algorithm. The observed changes are characteristic enough to differentiate the early development of flower primordium in Arabidopsis into distinct stages. Primordium formation starts from the fast and anisotropic growth at the periphery of the shoot apical meristem, with the maximum extension in the meridional direction. Surprisingly, the primordium first becomes a shallow crease, and it is only later that this shape changes into a bulge. The bulge is formed from the shallow crease due to slower and less anisotropic growth than at the onset of primordium formation. It is proposed that the shallow crease is the first axil, i.e. the axil of a putative rudimentary bract subtending the flower primordium proper, while the flower primordium proper is the bulge formed at the bottom of this axil. At the adaxial side of the bulge, the second axil (a narrow and deep crease) is formed setting the boundary between the flower primordium proper and the shoot apical meristem. Surface growth, leading to the formation of the second axil, is slow and anisotropic. This is similar to the previously described growth pattern at the boundary of the leaf primordium in Anagallis.  相似文献   

6.
在扫描电镜下观察了桦木科(Betulaceae)铁木属花序和花的形态发生过程。结果显示, 铁木雌花序由多个小聚伞花序螺旋状排列组成。每个小花序原基分化出1枚初级苞片和一团小花序原基分生组织, 由小花序原基分生组织分化形成1对次级苞片和2个花原基, 每个花原基分化出2个或3个心皮原基, 形成二心皮或三心皮雌蕊, 雌蕊基部有1层环状花被原基。雄花序为柔荑状, 由多个小聚伞花序螺旋状排列组成。每个小花序原基分化出1枚初级苞片和一团小花序原基分生组织, 由小花序原基分生组织分化出3个花原基分区, 位于中央的花原基分区, 分化形成5-6枚雄蕊原基, 两侧的花原基分区, 分别分化形成3-4枚雄蕊原基, 雄蕊原基分化形成四药囊雄蕊。雄蕊原基纵裂, 但花丝纵裂没有达到基部。  相似文献   

7.
王文采 《广西植物》2016,36(Z1):207-208
该文描述了自缅甸北部发现的荨麻科楼梯草属一新种,克钦楼梯草。此种在体态上与骤尖楼梯草甚为相似,与后者的区别在于本种的每一茎节具正常叶和一退化叶,托叶狭披针状条形和无脉,雌总苞苞片无角状突起,雌小苞片较大,呈楔状长圆形,雌花具一小花被片,以及雌蕊具一宽倒卵球形柱头。  相似文献   

8.
榛属 (桦木科) 花序及花的形态发生   总被引:1,自引:0,他引:1  
在扫描电镜下观察了桦木科榛属榛、毛榛和滇榛的花序和花的形态发生过程。榛属雌花序由多个小聚伞花序螺旋状排列组成;每个小花序原基分化出1枚初级苞片和一团小花序原基分生组织,由小花序原基分生组织分化形成2个花原基;每个花原基分化出2个心皮原基,形成二心皮雌蕊;雌蕊基部有2层花被原基,内层花被原基环状,外层花被发生于花原基近轴面和远轴面,近轴面和远轴面的花被不均等分化,外层花被发生早于内层花被。雄花序为柔荑状,由多个小聚伞花序螺旋状排列组成。每个小花序原基分化出1枚初级苞片和一团小花序原基分生组织,由小花序原基分生组织分化出2枚次级苞片和4~6个雄蕊原基,形成4~6枚雄蕊,每个雄蕊具4个药囊,在雄蕊原基分化形成4药囊雄蕊过程中,出现雄蕊原基纵裂,并且花丝纵裂至基部。为进一步全面探讨桦木科属间系统演化关系提供了证据。  相似文献   

9.
王文采 《广西植物》2017,37(5):541-546
该文描述了荨麻科三新种:(1)自中国重庆市发现的荨麻科荨麻属一新种,城口荨麻。此种与异株荨麻有亲缘关系,区别特征为此种的茎被少数刺毛,叶片多为心形,雄、雌花序均不分枝,瘦果在中央稍凹陷。(2)自中国广西发现的荨麻科赤车属一新种,来宾赤车。此种与特产云南东南部的富宁赤车相近缘,与后者的区别在于本种茎的毛开展或向上弯曲,叶片长椭圆形,基部斜楔形,雌花具3~4枚花被片,其中1~2枚较大花被片在背面顶端具一长筒状突起。(3)自缅甸北部发现的荨麻科楼梯草属一新种,克钦楼梯草。此种在体态上与骤尖楼梯草甚为相似,与后者的区别在于本种的每一茎节具正常叶和一退化叶,托叶狭披针状条形和无脉,雌总苞苞片无角状突起,雌小苞片较大,呈楔状长圆形,雌花具一小花被片,以及雌蕊具一宽倒卵球形柱头。  相似文献   

10.
Passiflora foetida bears an unbranched tendril, one or two laterally situated flowers, and one accessory vegetative bud in the axil of each leaf. The vegetative shoot apex has a single-layered tunica and an inner corpus. The degree of stratification in the peripheral meristem, the discreteness of the central meristem, and its centric and acentric position in the shoot apex are important plastochronic features. The procambium of the lateral leaf trace is close to the site of stipule initiation. The main axillary bud differentiates at the second node below the shoot apex. Adaxial to the bud 1–3 layers of cells form a shell-zone delimiting the bud meristem from the surrounding cells. A group of cells of the bud meristem adjacent to the axis later differentiates as an accessory bud. A second accessory bud also develops from the main bud opposite the previous one. A bud complex then consists of two laterally placed accessory bud primordia and a centrally-situated tendril bud primordium. The two accessory bud primordia differentiate into floral branches. During this development the initiation of a third vegetative accessory bud occurs on the axis just above the insertion of the tendril. This accessory bud develops into a vegetative branch and does not arise from the tissue of the tendril and adjacent two floral buds. The trace of the tendril bud consists of two procambial strands. There is a single strand for the floral branch trace. The tendril primordium grows by marked meristematic activity of its apical region and general intercalary growth.  相似文献   

11.
榛属(桦木科)花序及花的形态发生   总被引:1,自引:0,他引:1  
在扫描电镜下观察了桦木科榛属榛、毛榛和滇榛的花序和花的形态发生过程。榛属雌花序由多个小聚伞花序螺旋状排列组成;每个小花序原基分化出1枚初级苞片和一团小花序原基分生组织,由小花序原基分生组织分化形成2个花原基;每个花原基分化出2个心皮原基,形成二心皮雌蕊;雌蕊基部有2层花被原基,内层花被原基环状,外层花被发生于花原基近轴面和远轴面,近轴面和远轴面的花被不均等分化,外层花被发生早于内层花被。雄花序为柔荑状,由多个小聚伞花序螺旋状排列组成。每个小花序原基分化出1枚初级苞片和一团小花序原基分生组织,由小花序原基分生组织分化出2枚次级苞片和4。6个雄蕊原基,形成4—6枚雄蕊,每个雄蕊具4个药囊,在雄蕊原基分化形成4药囊雄蕊过程中.出现雄蕊原基纵裂。并且花丝纵裂至基部。为进一步全面探讨桦木科属间系统演化关系提供了证据。  相似文献   

12.
IMAICHI  RYOKO 《Annals of botany》1989,63(2):249-256
The morphogenesis of the leaf sheath was studied in Botrychiumstrictum and B. virginianum of subgenus Osmundopteris. In thetwo species, the leaf primordium is initiated on the lowestpart of a ridge which is formed by partial growth of the shootapex. The leaf primordium first grows to cover the shoot apexalmost entirely except for a slit-like opening. The openingis formed by the frontal rim of the growing leaf primordium,i.e. the leaf margin, and the rear part of the shoot apex. Asthe leaf grows, the leaf margin elongates and takes a reverseV-shape. On both lateral edges of the leaf margin, marginalgrowth occurs to form the lobes of the leaf sheath. Such marginalgrowth and a small amount of growth on the uppermost portionof the sheath is involved in the leaf sheath formation in B.cirginianum, while only marginal growth takes place in B. strictum.The leaf sheath of Botrychium virginianum, in comparison tothat of B. strictum, has a morphogenesis which is more similarto the completely covering leaf sheath of subgenera Botrychiumand Sceptridhim. Based on the morphogenesis of the leaf sheath,systematic relationships in subgenus Osmundopteris are discussed Botrychium virginianum, B. strictum, subgenus Osmundopteris, leaf ontogeny, leaf sheath formation, scanning electron microscopy, light microscopy  相似文献   

13.
The structure and the ontogenetic process of the reproductive shoot apex forming a terminal inflorescence ofClethra barbinervis were examined, especially concerning the superficial view of the apex. The system of contact parastichies is 2+3 in phyllotaxis in the vegetative phase, changing to 5+8 for bract arrangement in the reproductive phase. At the same time the size of the apex is conspicuously enlarged. The size of the foliage leaf primordia in the vegetative phase is larger than that of the bract primordia in the reproductive phase. The radial cell files, which are clear in the vegetative shoot apex, are not recognizable at least in the early stage of the reproductive phase. The author proposes a close correlation between the appearance of the radial cell files, as well as the construction of the apical sectors, and the sizes of the shoot apex and leaf primordia. It may be proposed also that the construction of the apical sectors is closely correlated with the phyllotaxis.  相似文献   

14.
The spicate inflorescence of Saururus cernuus L. (Saururaceae) results from the activity of an inflorescence apical meristem which produces 200–300 primordia in acropetal succession. The inflorescence apex arises by conversion of the terminal vegetative apex. During transition the apical meristem increases greatly in height and width and changes its cellular configuration from one of tunica-corpus to one of mantle (with two tunica layers) and core. Primordia are initiated by periclinal divisions in the subsurface layer. These are “common” primordia, each of which subsequently divides to produce a floral apex above and a bract primordium below. The bract later elongates so that the flower appears borne on the bract. All common primordia are formed by the time the inflorescence is about 4.4 mm long; the apical meristem ceases activity at this stage. As cessation approaches, cell divisions become rare in the apical meristem, and height and width of the meristem above the primordia diminish, as primordia continue to be initiated on the flanks. Cell differentiation proceeds acropetally into the apical meristem and reaches the summital tunica layers last of all. Solitary bracts are initiated just before apical cessation, but no imperfect or ebracteate flowers are produced in Saururus. The final event of meristem activity is hair formation by individual cells of the tunica at the summit, a feature not previously reported for apical meristems.  相似文献   

15.
This paper describes inflorescence structure, including organogenesis of the panicle and flower clusters and vasculature of flowering branches, for two species of Ptychosperma, a genus of arecoid palms. The inflorescence is an infrafoliar panicle with up to four orders of branches in a spirodistichous arrangement conforming to an irregular one-half phyllotaxy. The primordium of the inflorescence is crescentic and the apex has two tunica layers, a group of central cells, and a rib meristem. The distal flower-bearing parts or rachillae of all branches develop acropetally early in ontogeny and are vertically oriented in the bud. Although these rachillae terminate branches of different sizes and orders, they are similar in size and in number of flower clusters produced. Internodes and lower parts of branches develop later. Bracts of four types are produced: a prophyll and empty peduncular bract, bracts which subtend lateral branches, bracts subtending triads, and floral bracteoles. The prophyll and peduncular bracts are tubular and completely closed around all branches until about three months before the flowers reach anthesis. Bracts subtending lateral branches and those that subtend triads enlarge by small amounts of apical, adaxial, and marginal growth to cover subtended apices during early ontogeny, but are small to absent at maturity. Flower clusters are triads of two lateral staminate and a central pistillate flower. Organogenesis indicates that the triad is a sympodial unit. Flowers develop successively, each floral apex bearing a bracteole that subtends the next flower. The vasculature of the inflorescence may be divided into two systems. Bundles of the main axis extend acropetally into the vertically oriented branches as they are initiated and form a central cylinder of larger bundles in each branch. Flower clusters are supplied by a peripheral system of smaller bundles that develop later in relation to the developing floral organs. Bundles of the peripheral system branch frequently, but branching levels are irregular. The irregular branching of peripheral bundles appears related to the phyllotaxy of the flower clusters and the random right or left position of the first flower of the triad. The level of branching of a bundle may depend on the position of a floral primordium with respect to an existing procambial strand. Three (-4) bundles supply each staminate flower and six (-10) the pistillate flower. The histologically specialized inflorescence has stomata and contains abundant starch. Tannins and raphides, spherical silica bodies, and various forms of sclerenchyma appear in sequence and apparently provide support and protection during the long exposure of the branches.  相似文献   

16.
The structure of the plumule of Nelumbo nucifera Gaertn. and its feature covered with scale are seldom seen in dicotyledon. The fact that the plumule possesses scale is even more uncommon. This particular phenomenon is investigated by observing the differentiation of the plumule apex and the development of the leaf organs. After the seed is formed, the embryo has two young leaves and a terminal bud covered with scale. In the bud it has already differentiated the 3rd and the 4th leaf primordium and a shoot apex, the differentiation of which is very complex. So the structure of the plumule passes through 4 plastochrons altogether. It is made clear through observation and analysis that, before the 4th leaf primordium is formed, the transforma- tions of the shoot apex of the embryo in each plastochron are fundamentally alike. After the 4th leaf primordium is developed, the shoot apex becomes complex and there appear 3 different active cell regions which become the bases of vegetative bud of the seeding apex. The development of these 3 active cell regions will be stated in “The Structure of the Vegetative Bud of Nelumbo nucifera Gaertn. and the Nature of its Scales.” The apices of the plumule are almost slightly domed in structure. As a rule, their width is from 95 to 107 μ. Their height is from 17 to 20 μ during one plastochron. Before the 3rd leaf initiation, the anatomical structure of apices is examined and the fol- lowing zones may be delimited: zone of tunica initials, zone of corpus initials, peripheral zone, and zone of rib meristems. It is frequently observed that the cell of corpus in subapical peripheral zone develops periclinal division, which is the initial cell of leaf primordium; Procambium will appear before the stage of the appearance of leaf buttress. The apex of the plumule is in an apical position, but when the seedling is formed, as the developing leaves are alternate, the directions of the shoot apex are changed, simultaneously the base part of the leaf encloses the axis, and the adaxial meristem also differentiates the scale which encloses the terminal bud, thus placing the bud in axillary of the leaf and forming a zigzag phenomenon of the axis of the seedling. Above the basal adaxial side of the leaf primordium develops the scale of the plumule with meristem periclinal division of closely attached protoderm as its base. So the scale of the plumule of Nelumbo nucifera Gaertn. and the axillary stipule are of the same origin. To sum up, the scale of the embryo of Nelumbo nucifera Gaertn. is differentiated from the adaxial meristem of the basal part of the leaf primordium, and is the derivative part of the leaf. It has the same function as the coleoptile of the monocotyledon. Whether they are homologous organs or not is still to be investigated.  相似文献   

17.
Foliar ontogeny of Magnolia grandiflora was studied to elucidate possible unique features of evergreen leaves and their development. The apex of Magnolia grandiflora is composed of a biseriate or triseriate tunica overlying a central initial zone, a peripheral zone and a pith rib meristem. Leaf primordia are initiated by periclinal divisions on the apical flank of the tunica in its second layer. This initiation and expansion is seasonal just as in related deciduous magnolias. Following leaf initiation, a foliar buttress is formed and the leaf base gradually extends around the apex. As growth continues, separation of the leaf blade primordium from the stipule proceeds by intensified anticlinal divisions in the surface and subsurface layers near the base. Marginal growth begins in the blade primordium when it reaches approximately 200 μm in height and results in the formation of two wing-like extensions, the lamina. This young blade remains in a conduplicately folded position next to the stipule until bud break.  相似文献   

18.
At the onset of flowering, the Arabidopsis thaliana primary inflorescence meristem starts to produce flower meristems on its flank. Determination of floral fate is associated with changes in the growth pattern and expression of meristem identity genes and suppression of a subtending leaf called a bract. Here, we show a role in floral fate determination and bract suppression for the PUCHI gene, an AP2/EREBP family gene that has previously been reported to play roles in lateral root morphogenesis. Mutations in PUCHI cause partial conversion of flowers to inflorescences, indicating that PUCHI is required for flower meristem identity. PUCHI is transiently expressed in the early flower meristem and accelerates meristem bulging while it prevents the growth of the bract primordium. The function of PUCHI in floral fate determination and bract suppression overlaps that of the BLADE-ON-PETIOLE1 (BOP1) and BOP2 genes, which encode a pair of redundant regulatory proteins involved in various developmental processes, including leaf morphogenesis and flower patterning. We also show that PUCHI acts together with BOP1 and BOP2 to promote expression of LEAFY and APETALA1, two central regulators of floral meristem identity. Expression patterns of the PUCHI and BOP genes point to a role in spatial control of flower-specific activation of these meristem identity genes.  相似文献   

19.
马尾松雌球果的发生和早期发育研究   总被引:1,自引:0,他引:1  
采用常规石蜡制片技术对马尾松雌球果的发生和早期发育进行了研究。结果表明:雌球果原基发生时间为10月中旬,不同的树龄和着生部位,其发生时间不同。雌球果原基与营养茎端在外部形态及内部细胞组织学分区结构有明显差异。营养茎端外形扁平,内部顶端分生组织结构有顶端原始细胞区、中央母细胞区、形成层状过渡区、周围分生组织区及肋状分生组织区5个明显的分区;而雌球果原基外形呈圆锥状,内部结构只有套层和髓区。12月初,最初的苞片原基在雌球果原基的鳞片的叶腋处产生,之后其由基部向顶部连续发生。翌年1月初,在苞片原基的叶腋处,珠鳞原基发生,发生方向亦为向顶发育。2月底,苞片体积不再发生变化,珠鳞膨大端的基部的近轴面分化出2个倒生胚珠。从雌球果原基发生到胚珠分化历时4个多月。亚热带的冬季气候对马尾松雌球果的生长发育没有明显的抑制作用。  相似文献   

20.

Background and Aims

In spite of recent phylogenetic analyses for the Chenopodiaceae–Amaranthaceae complex, some morphological characters are not unambiguously interpreted, which raises homology questions. Therefore, ontogenetic investigations, emphasizing on ‘bracteoles’ in Atripliceae and flowers in Chenopodioideae, were conducted. This first paper presents original ontogenetic observations in Beta vulgaris, which was chosen as a reference species for further comparative investigation because of its unclarified phylogenetic position and its flowers with a (semi-)inferior ovary, whereas all other Chenopodiaceae–Amaranthaceae have hypogynous flowers.

Methods

Inflorescences and flowers were examined using scanning electron microscopy and light microscopy.

Key Results

Floral development starts from an inflorescence unit primordium subtended by a lateral bract. This primordium develops into a determinate axis on which two opposite lateral flowers originate, each subtended by a bracteole. On a flower primordium, first five tepal primordia appear, followed by five opposite stamen primordia. Simultaneously, a convex floral apex appears, which differentiates into an annular ovary primordium with three stigma primordia, surrounding a central, single ovule. A floral tube, which raises the outer floral whorls, envelops the ovary, resulting in a semi-inferior ovary at mature stage. Similarly, a stamen tube is formed, raising the insertion points of the stamens, and forming a staminal ring, which does not contain stomata. During floral development, the calyces of the terminal flower and of one of the lateral flowers often fuse, forming a compound fruit structure.

Conclusions

In Beta vulgaris, the inflorescence is compound, consisting of an indeterminate main axis with many elementary dichasia as inflorescence units, of which the terminal flower and one lateral flower fuse at a later stage. Floral parts develop starting from the outer whorl towards the gynoecium. Because of the formation of an epigynous hypanthium, the ovary becomes semi-inferior in the course of floral development.Key words: Beta vulgaris, Chenopodiaceae, floral ontogeny, gynoecial development, epigynous hypanthium, semi-inferior ovary, inflorescence ontogeny, LM, SEM  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号