首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
This work describes the development of an automated flow-based biosensor that employs genetically modified acetylcholinesterase (AChE) enzymes B394, B4 and wild type B131. The biosensor was based on a screen printed carbon electrode (SPE) that was integrated into a flow cell. Enzymes were immobilised on cobalt (II) phthalocyanine (CoPC) modified electrodes by entrapment in a photocrosslinkable polymer (PVA-AWP). The automated flow-based biosensor was successfully used to quantify three organophosphate pesticides (OPs) in milk samples. The OPs used were chlorpyriphos-oxon (CPO), ethyl paraoxon (EPOx) and malaoxon (MOx). The total analysis time for the assay was less than 15 min. Initially, the biosensor performance was tested in phosphate buffer solution (PBS) using B394, B131 and B4 biosensors. The best detection limits were obtained with B394; therefore, this biosensor was used to produce calibration data in milk with three OPs in the concentration range of 5 × 10(-6)M to 5 × 10(-12)M. The limit of detection (LOD) obtained in milk for CPO, EPOx and MOx were 5 × 10(-12)M, 5 × 10(-9)M and 5 × 10(-10)M, respectively, with a correlation coefficient R(2)=0.9910. The automated flow-based biosensor successfully quantified the OPs in different fat-containing milk samples. There were no false positives or false negatives observed for the analytical figures of merit for the constructed biosensors. This method is inexpensive, sensitive, portable, non-invasive and provides real-time results. This analytical system can provide rapid detection of highly toxic OPs in food matrices such as milk.  相似文献   

3.
Automated methods for multiplexed pathogen detection   总被引:1,自引:0,他引:1  
Detection of pathogenic microorganisms in environmental samples is a difficult process. Concentration of the organisms of interest also co-concentrates inhibitors of many end-point detection methods, notably, nucleic acid methods. In addition, sensitive, highly multiplexed pathogen detection continues to be problematic. The primary function of the BEADS (Biodetection Enabling Analyte Delivery System) platform is the automated concentration and purification of target analytes from interfering substances, often present in these samples, via a renewable surface column. In one version of BEADS, automated immunomagnetic separation (IMS) is used to separate cells from their samples. Captured cells are transferred to a flow-through thermal cycler where PCR, using labeled primers, is performed. PCR products are then detected by hybridization to a DNA suspension array. In another version of BEADS, cell lysis is performed, and community RNA is purified and directly labeled. Multiplexed detection is accomplished by direct hybridization of the RNA to a planar microarray. The integrated IMS/PCR version of BEADS can successfully purify and amplify 10 E. coli O157:H7 cells from river water samples. Multiplexed PCR assays for the simultaneous detection of E. coli O157:H7, Salmonella, and Shigella on bead suspension arrays was demonstrated for the detection of as few as 100 cells for each organism. Results for the RNA version of BEADS are also showing promising results. Automation yields highly purified RNA, suitable for multiplexed detection on microarrays, with microarray detection specificity equivalent to PCR. Both versions of the BEADS platform show great promise for automated pathogen detection from environmental samples. Highly multiplexed pathogen detection using PCR continues to be problematic, but may be required for trace detection in large volume samples. The RNA approach solves the issues of highly multiplexed PCR and provides "live vs. dead" capabilities. However, sensitivity of the method will need to be improved for RNA analysis to replace PCR.  相似文献   

4.
Nanowire-based detection strategies provide promising new routes to bioanalysis that could one day revolutionize the healthcare industry. This review covers recent developments in nanowire sensors for multiplexed detection of biomolecules such as nucleic acids and proteins. We focus on encoded nanowire suspension arrays and semiconductor nanowire-based field-effect transistors. Nanowire assembly and integration with microchip technology is emphasized as a key step toward the ultimate goal of multiplexed detection at the point of care using portable, low power, electronic biosensor chips.  相似文献   

5.
6.
Killed viral vaccines and bacterial toxoids are weakly immunogenic. Numerous compounds are under evaluation as immunological adjuvants and peptide-carriers to improve the immune response. The hemocyanins, giant extracellular copper proteins in the blood of many mollusks, are widely used as immune stimulants. In the present study we investigated the adjuvant properties of hemocyanins isolated from marine gastropods Rapana thomasiana and Megathura crenulata. An immunization with Influenza vaccine or tetanus toxoid combined with Rapana thomasiana hemocyanin (RtH) and Keyhole limpet hemocyanin (KLH) in mice induced an anti-influenza cytotoxic response lasting at least 5 months and an antibody response to viral proteins. The IgG antibody response to the tetanus toxoid (TT) combined with RtH or KLH was comparable to the response of the toxoid in complete Freund's adjuvant. The results obtained demonstrate that the both hemocyanins are acceptable as potential bio-adjuvants for subunit vaccines.  相似文献   

7.
Luminescent quantum dots for multiplexed biological detection and imaging   总被引:48,自引:0,他引:48  
Recent advances in nanomaterials have produced a new class of fluorescent labels by conjugating semiconductor quantum dots with biorecognition molecules. These nanometer-sized conjugates are water-soluble and biocompatible, and provide important advantages over organic dyes and lanthanide probes. In particular, the emission wavelength of quantum-dot nanocrystals can be continuously tuned by changing the particle size, and a single light source can be used for simultaneous excitation of all different-sized dots. High-quality dots are also highly stable against photobleaching and have narrow, symmetric emission spectra. These novel optical properties render quantum dots ideal fluorophores for ultrasensitive, multicolor, and multiplexing applications in molecular biotechnology and bioengineering.  相似文献   

8.
In this work, the direct electrochemical determination of poly-histidine tagged proteins using immunosensor based on anti-His (C-term) antibody immobilized on gold electrodes modified with 1,6-hexanedithiol, gold colloid particles or gold nanorods is described. The recombinant histidine-tagged silk proteinase inhibitor protein (rSPI2-His(6)) expressed in Pichia system selected as antigen for this immonosensor. An electrochemical impedance spectroscopy was used as label free detection technique for immune conjugation. The gold nanorods modified electrode layer showed better analytical response than gold nano particles. The linear calibration range was observed between 10pg/ml and 1ng/ml with limit of detection 5pg/ml (S/N=3). Up to four successive assay cycles with retentive sensitivity were achieved for the immunosensors regenerated with 0.2M glycine-HCl buffer, pH 2.8. The performance of this immnosensor were compared with immuoblotting techniques.  相似文献   

9.
10.
Escherichia coli, Salmonella, Listeria monocytogenes and Campylobacter jejuni are bacterial pathogens commonly implicated in foodborne illnesses. Generally used detection methods (i.e., culture, biochemical testing, ELISA and nucleic acid amplification) can be laborious, time-consuming and require multiple tests to detect all of the pathogens. Our objective was to develop rapid assays to simultaneously detect these four organisms through the presence of antigen or DNA using the Luminex LabMAP system. For nucleic acid detection, organism-specific capture probes corresponding to the 23S ribosomal RNA gene (rrl) were coupled covalently to LabMAP microspheres. Target molecules included synthetic complementary oligonucleotides and genomic DNA isolated from ATCC type strains or other well-characterized strains of each organism. Universal PCR primers were designed to amplify variable regions of bacterial 23S ribosomal DNA, yielding biotinylated amplicons of 86 to 109 bp in length. Varying quantities of targets were hybridized to the combined microsphere sets, labeled with streptavidin-R-phycoerythrin and analyzed on the Luminex(100) system. Results of nucleic acid detection assays, obtained in 30 to 40 min following amplification, correctly and specifically identified each bacterial species with a detection sensitivity of 10(3) to 10(5) genome copies. Capture-sandwich immunoassays were developed with organism-specific antibodies coupled to different microsphere sets. Microspheres were incubated with organism-specific standards and reactivity was assessed with biotinylated detection antibodies and streptavidin-R-phycoerythrin. In the immunoassays, microsphere-associated fluorescence was organism concentration dependent with detectable response at < or = 1000 organisms/ml and with no apparent cross-reactivity. We have demonstrated that the Luminex LabMAP system is a rapid, flexible platform capable of simultaneous, sensitive and specific detection of pathogens. The practical significance of this multiplexing approach would be to provide more timely, economical and comprehensive information than is available with conventional isolation and identification methodologies.  相似文献   

11.
In this paper, a brief overview of the most commonly used methods for the separation and analysis of peptides and proteins in stability and bioanalysis studies is presented. To investigate the physical stability of peptides and proteins, size-exclusion chromatography and electrophoretic separation techniques are being used, apart from several other methods. To determine the chemical stability of these compounds, separation systems are also important, with informative detection modes, such as various spectroscopic detections, electrochemical detection and mass spectrometric detection. For the bioanalysis of peptides, separation is the most important factor, while the detection must be done at the highest possible level of sensitivity.  相似文献   

12.
Collagens are extended trimeric proteins composed of the repetitive sequence glycine-X-Y. A collagen-related structural motif (CSM) containing glycine-X-Y repeats is also found in numerous proteins often referred to as collagen-like proteins. Little is known about CSMs in bacteria and viruses, but the occurrence of such motifs has recently been demonstrated. Moreover, bacterial CSMs form collagen-like trimers, even though these organisms cannot synthesize hydroxyproline, a critical residue for the stability of the collagen triple helix. Here we present 100 novel proteins of bacteria and viruses (including bacteriophages) containing CSMs identified by in silico analyses of genomic sequences. These CSMs differ significantly from human collagens in amino acid content and distribution; bacterial and viral CSMs have a lower proline content and a preference for proline in the X position of GXY triplets. Moreover, the CSMs identified contained more threonine than collagens, and in 17 of 53 bacterial CSMs threonine was the dominating amino acid in the Y position. Molecular modeling suggests that threonines in the Y position make direct hydrogen bonds to neighboring backbone carbonyls and thus substitute for hydroxyproline in the stabilization of the collagen-like triple-helix of bacterial CSMs. The majority of the remaining CSMs were either rich in proline or rich in charged residues. The bacterial proteins containing a CSM that could be functionally annotated were either surface structures or spore components, whereas the viral proteins generally could be annotated as structural components of the viral particle. The limited occurrence of CSMs in eubacteria and lower eukaryotes and the absence of CSMs in archaebacteria suggests that DNA encoding CSMs has been transferred horizontally, possibly from multicellular organisms to bacteria.  相似文献   

13.
In this study, the structural basis for thermal stability in archaeal and bacterial proteins was investigated. There were many common factors that confer resistance to high temperature in both archaeal and bacterial proteins. These factors include increases in the Lys content, the bends and blanks of secondary structure, the Glu content of salt bridge; decreases in the number of main–side chain hydrogen bond and exposed surface area, and changes in the bends and blanks of amino acids. Certainly, the utilization of charged amino acids to form salt bridges is a primary factor. In both heat-resistant archaeal and bacterial proteins, most Glu and Asp participate in the formation of salt bridges. Other factors may influence either archaeal or bacterial protein thermostability, which includes the more frequent occurrence of shorter 310-helices and increased hydrophobicity in heat-resistant archaeal proteins. However, there were increases in average helix length, the Glu content in salt bridges, temperature factors and decreases in the number of main–side chain hydrogen bonds, uncharged–uncharged hydrogen bonds, hydrophobicity, and buried and exposed polar surface area in heat-resistant bacterial proteins. Evidently, there are few similarities and many disparities between the heat-resistant mechanisms of archaeal and bacterial proteins.  相似文献   

14.
15.
An optical waveguide array biosensor suitable for rapid detection of multiple bio-hazardous agents is presented. SpectroSens? optical microchip sensors contain multiple spatially-separated waveguide channels with integral high-precision Bragg gratings sensitive to changes in refractive-index; selective surface-functionalisation of discrete sensing channels with different antibodies as bio-recognition elements enables selective multi-analyte biological detection. Interactions between target antigens in the test sample and respective surface-immobilised antibodies result in localised changes in refractive-index; the biosensor response manifests as increases in wavelength of light reflected from specific sensing channels. Multiplexed, label-free detection of 8 different biological agents, encompassing bacterial spores, vegetative cells, viruses and proteinaceous toxins has been demonstrated in real-time. Selective detection of Bacillus atrophaeus (BG) spores, Escherichia coli cells, MS2 viruses and ovalbumin (OVA) protein (simulant bio-hazardous agents) was first demonstrated as proof-of-concept; subsequently, detection of Bacillus anthracis (BA) spores (UM23CL2 strain), Franciscella tularensis (FT) cells (live vaccine strain), Vaccinia viruses (heat-killed) and ricin toxin (bio-hazardous agents) was proven. Two optical microchip sensors, each comprising 8 sensing channels were packaged into a single disposable cartridge allowing simultaneous 16-channel data acquisition. The specific antibody deposition sequence used in this study enabled detection of either 4 simulants or 4 bio-hazardous agents using a single consumable. The final device, a culmination of the multidisciplinary convergence of the fields of biology, chemistry, optoelectronics and microfluidics, is man-portable and inherently robust. The performance characteristics of the SpectroSens? technology platform highlight its potential for exploitation as a ‘detect to warn/treat’ biodetector in security and defence operations.  相似文献   

16.
Implication of apoptosis in numerous physiological and pathological processes has resulted in the development of numerous methods to detect apoptosis, but none of them is adapted to all cell types. In this study, we induced apoptosis on murine immortalized astrocytes with urine from multiple sclerosis (MS) patients. Among techniques allowing the detection of apoptotic cells, only a few are adapted to adherent cells such as astrocytes. We compared several techniques (propidium iodide labelling and flow cytometry analysis, TUNEL and annexin V labelling in immunofluorescence, DNA ladder, ELISA tests to detect nucleosomes) in order to choose the method best adapted to our adherent cellular model and to discuss their practicability for the detection of apoptosis on adherent cells.
For technical course, propidium iodide labelling followed by flow cytometry analysis as a quantitative technique, and TUNEL in IF (easier and quicker than propidium iodide) as a semiquantitative test were both retained as best adapted to our case.
Moreover, in our model, we have observed that phosphatydilserine externalization and DNA fragmentation were concomittant after induction of apoptosis.
Techniques studied in this article would allow an enlarged study of the apoptotic mechanism in several pathologies by culture of adherent cells sensitive to apoptosis in vitro .  相似文献   

17.
In this paper we describe a molecular beacon format assay in which encoded nanowire particles are used to achieve multiplexing. We demonstrate this principle with the detection of five viral pathogens; Hepatitis A virus, Hepatitis C virus, West Nile Virus, Human Immune Deficiency virus and Severe Acute Respiratory Syndrome virus. Oligonucleotides are designed complementary to a target sequence of interest containing a 3′ universal fluorescence dye. A 5′ thiol causes the oligonucleotides to self-assemble onto the metal nanowire. The single-stranded oligonucleotide contains a self-complementary hairpin stem sequence of 10 bases that forces the 3′ fluorophore to come into contact with the metallic nanowire surface, thereby quenching the fluorescence. Upon addition of target DNA, there is hybridization with the complementary oligonucleotides. The resulting DNA hybrid is rigid, unfolds the hairpin structure, and causes the fluorophore to be moved away from the surface such that it is no longer quenched. By using differently encoded nanowires, each conjugated with a different oligonucleotide sequence, multiplexed DNA assays are possible using a single fluorophore, from a multiplexed RT-PCR reaction.  相似文献   

18.
Rotavirus detection by direct electron microscopy was compared with direct and indirect immune electron microscopy techniques. The latter two approaches permitted the enumeration of 25 and 103 times more rotaviruses respectively, than direct electron microscopy. Also, 70% and 90% of the virus particles were aggregated by direct and indirect immune electron microscopy techniques respectively, thus facilitating their detection.  相似文献   

19.
20.
Formaldehyde treated cherry mottle leaf virus (ChMLV) and the isolated coat protein were used successfully for the production of polyclonal and monoclonal antibodies. The monoclonal antibodies had a titre of 1:51 200 and consisted of IgG1 and IgG2. The antibodies reacted with all 11 isolates of ChMLV, from five locations in Canada and the USA, included in this study. Several serological procedures were assessed to compare their sensitivity for detecting ChMLV. Plate-trapped antigen ELISA (PTA-ELISA) and dot-blot immunobinding assay (DBIA), using virus specific MAbs, were the most sensitive tests in this study. Triple antibody sandwich ELISA (TAS-ELISA) and Western blot were found to be less sensitive. Dilution of the samples appeared to increase the sensitivity of both PTA-ELISA and Western blot detection. Young leaves and flowers of Prunus avium were the best tissue for detecting the virus which could also be detected in the fruit and leaves of P. tomentosa. April and May were optimal for detection of the virus in the field, whereas both April to May and August to September were optimal for screenhouse-grown plants.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号