首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Bacillus anthracis causes three forms of anthrax: inhalational, gastrointestinal, and cutaneous. Anthrax is characterized by both toxemia, which is caused by secretion of immunomodulating toxins (lethal toxin and edema toxin), and septicemia, which is associated with bacterial encapsulation. Here we report that, contrary to the current view of B. anthracis pathogenesis, B. anthracis spores germinate and establish infections at the initial site of inoculation in both inhalational and cutaneous infections without needing to be transported to draining lymph nodes, and that inhaled spores establish initial infection in nasal-associated lymphoid tissues. Furthermore, we found that Peyer's patches in the mouse intestine are the primary site of bacterial growth after intragastric inoculation, thus establishing an animal model of gastrointestinal anthrax. All routes of infection progressed to the draining lymph nodes, spleen, lungs, and ultimately the blood. These discoveries were made possible through the development of a novel dynamic mouse model of B. anthracis infection using bioluminescent non-toxinogenic capsulated bacteria that can be visualized within the mouse in real-time, and demonstrate the value of in vivo imaging in the analysis of B. anthracis infection. Our data imply that previously unrecognized portals of bacterial entry demand more intensive investigation, and will significantly transform the current perception of inhalational, gastrointestinal, and cutaneous B. anthracis pathogenesis.  相似文献   

2.
Bacillus anthracis is a sporulating Gram-positive bacterium that causes the disease anthrax. The highly stable spore is the infectious form of the bacterium that first interacts with the prospective host, and thus the interaction between the host and spore is vital to the development of disease. We focused our study on the response of murine splenocytes to the B. anthracis spore by using paraformaldehyde-inactivated spores (FIS), a treatment that prevents germination and production of products associated with vegetative bacilli. We found that murine splenocytes produce IL-12 and IFN-gamma in response to FIS. The IL-12 was secreted by CD11b cells, which functioned to induce the production of IFN-gamma by CD49b (DX5) NK cells. The production of these cytokines by splenocytes was not dependent on TLR2, TLR4, TLR9, Nod1, or Nod2; however, it was dependent on the signalling adapter protein MyD88. Unlike splenocytes, Nod1- and Nod2-transfected HEK cells were activated by FIS. Both IL-12 and IFN-gamma secretion were inhibited by treatment with B. anthracis lethal toxin. These observations suggest that the innate immune system recognizes spores with a MyD88-dependent receptor (or receptors) and responds by secreting inflammatory cytokines, which may ultimately aid in resisting infection.  相似文献   

3.
CCR7 is necessary to direct dendritic cells (DCs) to secondary lymphoid nodes and to elicit an adaptative immune response. Despite its importance, little is known about the molecular mechanisms used by CCR7 to direct DCs to lymph nodes. In addition to chemotaxis, CCR7 regulates the migratory speed of DCs. We investigated the intracellular pathways that regulate CCR7-dependent chemotaxis and migratory speed. We found that CCR7 induced a G(i)-dependent activation of MAPK members ERK1/2, JNK, and p38, with ERK1/2 and p38 controlling JNK. MAPK members regulated chemotaxis, but not the migratory speed, of DCs. CCR7 induced activation of PI3K/Akt; however, these enzymes did not regulate either chemotaxis or the speed of DCs. CCR7 also induced activation of the GTPase Rho, the tyrosine kinase Pyk2, and inactivation of cofilin. Pyk2 activation was independent of G(i) and Src and was dependent on Rho. Interference with Rho or Pyk2 inhibited cofilin inactivation and the migratory speed of DCs, but did not affect chemotaxis. Interference with Rho/Pyk2/cofilin inhibited DC migratory speed even in the absence of chemokines, suggesting that this module controls the speed of DCs and that CCR7, by activating its components, induces an increase in migratory speed. Therefore, CCR7 activates two independent signaling modules, one involving G(i) and a hierarchy of MAPK family members and another involving Rho/Pyk2/cofilin, which control, respectively, chemotaxis and the migratory speed of DCs. The use of independent signaling modules to control chemotaxis and speed can contribute to regulate the chemotactic effects of CCR7.  相似文献   

4.
Initiation of inhalation anthrax is believed to involve phagocytosis of Bacillus anthracis spores by alveolar macrophages, followed by spore germination within the phagolysosome. In order to establish a systemic infection, it is predicted that bacilli then escape from the macrophage and replicate extracellularly. Mechanisms utilized by B. anthracis to escape from the macrophage are not well characterized, but a role for anthrax toxin has been proposed. Here we report the isolation of an anthrax toxin-resistant cell line (R3D) following chemical mutagenesis of toxin-sensitive RAW 264.7 murine macrophage cells. Both R3D and RAW 264.7 cells phagocytize spores of a B. anthracis Sterne strain. However, RAW 264.7 cells are killed following spore challenge, whereas R3D cells survive. Resistance to toxin and spore challenge correlates with loss of expression of anthrax toxin receptor 2 (ANTXR2/CMG-2). When R3D cells are complemented with cDNA encoding either murine ANTXR2 or human anthrax toxin receptor 1 (ANTXR1/TEM-8), toxin and spore challenge susceptibility are restored, indicating that over-expression of either ANTXR can confer susceptibility to anthrax spore challenge. Taken together, these results indicate that anthrax toxin expression by the germinated spore enables B. anthracis killing of the macrophage from within.  相似文献   

5.
Immunological and virological events that occur during the earliest stages of HIV-1 infection are now considered to have a major impact on subsequent disease progression. We observed changes in the frequencies of CD8(bright) T cells expressing different chemokine receptors in the peripheral blood and lymph nodes of rhesus macaques during the acute phase of the pathogenic SIVmac251 infection; the frequency of CD8(bright) T cells expressing CXCR4 decreased, while the frequency of those expressing CCR5 increased. These reciprocal changes in chemokine receptor expression were associated with changes in the proportion of cycling (Ki67(+)) CD8(bright) T cells, and with the pattern of CD8(bright) T cell differentiation as defined by expression of CCR7 and CD45RA. In contrast, during the primary phase of the attenuated SIVmac251Deltanef infection, no major change was observed. Whereas during the acute phase of the infection with pathogenic SIV (2 wk postinfection) no correlate of disease protection was identified, once the viral load set points were established (2 mo postinfection), we found that the levels of cycling and of CCR5- and CXCR4-positive CD8(bright) T cells were correlated with the extent of viral replication and therefore with SIV-infection outcome. Our data reveal that, during primary SIV infection, despite intense CD8 T cell activation and an increase in CCR5 expression, which are considered as essential for optimal effector function of CD8(+) T cells, these changes are associated with a poor prognosis for disease progression to AIDS.  相似文献   

6.
Cyclic diguanylate (c-di-GMP) is a bacterial intracellular signaling molecule. We have shown that treatment with exogenous c-di-GMP inhibits Staphylococcus aureus infection in a mouse model. We now report that c-di-GMP is an immodulator and immunostimulatory molecule. Intramammary treatment of mice with c-di-GMP 12 and 6 h before S. aureus challenge gave a protective effect and a 10,000-fold reduction in CFUs in tissues (p < 0.001). Intramuscular vaccination of mice with c-di-GMP coinjected with S. aureus clumping factor A (ClfA) Ag produced serum with significantly higher anti-ClfA IgG Ab titers (p < 0.001) compared with ClfA alone. Intraperitoneal injection of mice with c-di-GMP activated monocyte and granulocyte recruitment. Human immature dendritic cells (DCs) cultured in the presence of c-di-GMP showed increased expression of costimulatory molecules CD80/CD86 and maturation marker CD83, increased MHC class II and cytokines and chemokines such as IL-12, IFN-gamma, IL-8, MCP-1, IFN-gamma-inducible protein 10, and RANTES, and altered expression of chemokine receptors including CCR1, CCR7, and CXCR4. c-di-GMP-matured DCs demonstrated enhanced T cell stimulatory activity. c-di-GMP activated p38 MAPK in human DCs and ERK phosphorylation in human macrophages. c-di-GMP is stable in human serum. We propose that cyclic dinucleotides like c-di-GMP can be used clinically in humans and animals as an immunomodulator, immune enhancer, immunotherapeutic, immunoprophylactic, or vaccine adjuvant.  相似文献   

7.
From the site of transmission at mucosal surfaces, HIV is thought to be transported by DCs to lymphoid tissues. To initiate migration, HIV needs to activate DCs. This activation, reflected by intra- and extracellular changes in cell phenotype, is investigated in the present study. In two-thirds of the donors, R5- and X4-tropic HIV-1 strains induced partial up-regulation of DC activation markers such as CD83 and CD86. In addition, CCR7 expression was increased. HIV-1 initiated a transient phosphorylation of p44/p42 ERK1/2 in iDCs, whereas p38 MAPK was activated in both iDCs and mDCs. Up-regulation of CD83 and CD86 on DCs was blocked when cells were incubated with specific p38 MAPK inhibitors before HIV-1-addition. CCR7 expression induced by HIV-1 was sufficient to initiate migration of DCs in the presence of secondary lymphoid tissue chemokine (CCL21) and MIP-3beta (CCL19). Preincubation of DCs with a p38 MAPK inhibitor blocked CCR7-dependent DC migration. Migrating DCs were able to induce infection of autologous unstimulated PBLs in the Transwell system. These data indicate that HIV-1 triggers a cell-specific signaling machinery, thereby manipulating DCs to migrate along a chemokine gradient, which results in productive infection of nonstimulated CD4(+) cells.  相似文献   

8.
Dendritic cells (DCs) play essential roles in both innate and adaptive immune responses. In addition, mutual regulation of the nervous system and immune system is well studied. One of neuropeptides, calcitonin gene-related peptide (CGRP), is a potent regulator in immune responses; in particular, it has anti-inflammatory effects in innate immunity. For instance, a deficiency of the CGRP receptor component RAMP 1 (receptor activity-modifying protein 1) results in higher cytokine production in response to LPS (lipopolysaccharide). On the other hand, how CGRP affects DCs in adaptive immunity is largely unknown. In this study, we show that CGRP suppressed Th1 cell differentiation via inhibition of IL-12 production in DCs using an in vitro co-culture system and an in vivo ovalbumin-induced delayed-type hypersensitivity (DTH) model. CGRP also down-regulated the expressions of chemokine receptor CCR2 and its ligands CCL2 and CCL12 in DCs. Intriguingly, the frequency of migrating CCR2+ DCs in draining lymph nodes of RAMP1-deficient mice was higher after DTH immunization. Moreover, these CCR2+ DCs highly expressed IL-12 and CD80, resulting in more effective induction of Th1 differentiation compared with CCR2 DCs. These results indicate that CGRP regulates Th1 type reactions by regulating expression of cytokines, chemokines, and chemokine receptors in DCs.  相似文献   

9.
Bacillus anthracis infects hosts as a spore, germinates, and disseminates in its vegetative form. Production of anthrax lethal and edema toxins following bacterial outgrowth results in host death. Macrophages of inbred mouse strains are either sensitive or resistant to lethal toxin depending on whether they express the lethal toxin responsive or non-responsive alleles of the inflammasome sensor Nlrp1b (Nlrp1b(S/S) or Nlrp1b(R/R), respectively). In this study, Nlrp1b was shown to affect mouse susceptibility to infection. Inbred and congenic mice harboring macrophage-sensitizing Nlrp1b(S/S) alleles (which allow activation of caspase-1 and IL-1β release in response to anthrax lethal toxin challenge) effectively controlled bacterial growth and dissemination when compared to mice having Nlrp1b(R/R) alleles (which cannot activate caspase-1 in response to toxin). Nlrp1b(S)-mediated resistance to infection was not dependent on the route of infection and was observed when bacteria were introduced by either subcutaneous or intravenous routes. Resistance did not occur through alterations in spore germination, as vegetative bacteria were also killed in Nlrp1b(S/S) mice. Resistance to infection required the actions of both caspase-1 and IL-1β as Nlrp1b(S/S) mice deleted of caspase-1 or the IL-1 receptor, or treated with the Il-1 receptor antagonist anakinra, were sensitized to infection. Comparison of circulating neutrophil levels and IL-1β responses in Nlrp1b(S/S),Nlrp1b(R/) (R) and IL-1 receptor knockout mice implicated Nlrp1b and IL-1 signaling in control of neutrophil responses to anthrax infection. Neutrophil depletion experiments verified the importance of this cell type in resistance to B. anthracis infection. These data confirm an inverse relationship between murine macrophage sensitivity to lethal toxin and mouse susceptibility to spore infection, and establish roles for Nlrp1b(S), caspase-1, and IL-1β in countering anthrax infection.  相似文献   

10.
Dormant spores of Bacillus anthracis germinate during host infection and their vegetative growth and dissemination precipitate anthrax disease. Upon host death, bacilli engage a developmental programme to generate infectious spores within carcasses. Hallmark of sporulation in Bacillus spp. is the formation of an asymmetric division septum between mother cell and forespore compartments. We show here that sortase C (SrtC) cleaves the LPNTA sorting signal of BasH and BasI, thereby targeting both polypeptides to the cell wall of sporulating bacilli. Sortase substrates are initially produced in different cell compartments and at different developmental stages but penultimately decorate the envelope of the maturing spore. srtC mutants appear to display no defect during the initial stages of infection and precipitate lethal anthrax disease in guinea pigs at a similar rate as wild-type B. anthracis strain Ames. Unlike wild-type bacilli, srtC mutants do not readily form spores in guinea pig tissue or sheep blood unless their vegetative forms are exposed to air.  相似文献   

11.
Anthrax is caused by infection with Bacillus anthracis, a spore-forming gram-positive bacterium. A major virulence factor for B. anthracis is an immunomodulatory tripartite exotoxin that has been reported to alter immune cell chemotaxis and activation. It has been proposed that B. anthracis infections initiate through entry of spores into the regional draining lymph nodes where they germinate, grow, and disseminate systemically via the efferent lymphatics. If this model holds true, it would be predicted that surgical removal of infected tissues, debridement, would have little effect on the systemic dissemination of bacteria. This model was tested through the development of a mouse debridement model. It was found that removal of the site of subcutaneous infection in the ear increased the likelihood of survival and reduced the quantity of spores in the draining cervical lymph nodes (cLN). At the time of debridement 12 hours post-injection measurable levels of exotoxins were present in the ear, cLN, and serum, yet leukocytes within the cLN were activated; countering the concept that exotoxins inhibit the early inflammatory response to promote bacterial growth. We conclude that the initial entry of spores into the draining lymph node of cutaneous infections alone is not sufficient to cause systemic disease and that debridement should be considered as an adjunct to antibiotic therapy.  相似文献   

12.
Inhalation of Bacillus anthracis, a bioterrorism agent, results in a high mortality rate despite appropriate antibiotic therapy. Macrophages appear to be a key factor in B. anthracis pathogenesis. The burst of pro-inflammatory cytokines from macrophages could be a major cause of death in anthrax. However, preactivation of Toll-like receptors (TLRs) could modify the host response. TLR ligands stimulate the release of activating cytokines but may also down-modulate the subsequent deleterious cytokine response to pathogens. We developed a cell culture model to measure macrophage responses to B. anthracis spores and bacilli. We found that germination from spores to bacilli produced a substantial stimulus for the secretion of the cytokines IL-6, TNF-alpha, IL-10, and IL-12 p40. Our studies showed that pretreatment of mouse macrophages with the TLR9 ligand ISS-1018, or the TLR7 ligands R-848 and IT-37, results in a substantial decrease in the subsequent secretion of IL-6 and TNF-alpha in response to B. anthracis infection of macrophages. Furthermore, the TLR7 and TLR9 ligands significantly decreased anthrax-induced cytotoxicity in the macrophages. These findings suggest that TLR ligands may contribute to the enhancement of innate immunity in B. anthracis infection by suppressing potentially deleterious pro-inflammatory cytokine responses and by improving macrophage viability.  相似文献   

13.
The causative agent of anthrax, Bacillus anthracis, is capable of circumventing the humoral and innate immune defense of the host and modulating the blood chemistry in circulation to initiate a productive infection. It has been shown that the pathogen employs a number of strategies against immune cells using secreted pathogenic factors such as toxins. However, interference of B. anthracis with the innate immune system through specific interaction of the spore surface with host proteins such as the complement system has heretofore attracted little attention. In order to assess the mechanisms by which B. anthracis evades the defense system, we employed a proteomic analysis to identify human serum proteins interacting with B. anthracis spores, and found that plasminogen (PLG) is a major surface-bound protein. PLG efficiently bound to spores in a lysine- and exosporium-dependent manner. We identified α-enolase and elongation factor tu as PLG receptors. PLG-bound spores were capable of exhibiting anti-opsonic properties by cleaving C3b molecules in vitro and in rabbit bronchoalveolar lavage fluid, resulting in a decrease in macrophage phagocytosis. Our findings represent a step forward in understanding the mechanisms involved in the evasion of innate immunity by B. anthracis through recruitment of PLG resulting in the enhancement of anti-complement and anti-opsonization properties of the pathogen.  相似文献   

14.
Differentiation of CD8(+) T cells at the tumor site toward effector and memory stages may represent a key step for the efficacy of antitumor response developing naturally or induced through immunotherapy. To address this issue, CD8(+) T lymphocytes from tumor-invaded (n = 142) and tumor-free (n = 42) lymph nodes removed from the same nodal basin of melanoma patients were analyzed for the expression of CCR7, CD45RA, perforin, and granzyme B. By hierarchical cluster analysis, CD8(+) T cells from all tumor-free lymph nodes and from 56% of the tumor-invaded lymph node samples fell in the same cluster, characterized mainly by CCR7(+) CD45RA(+/-) cytotoxic factor(-) cells. The remaining three clusters contained only samples from tumor-invaded lymph nodes and showed a progressive shift of the CD8(+) T cell population toward CCR7(-) CD45RA(-/+) perforin(+) granzyme B(+) differentiation stages. Distinct CD8(+) T cell maturation stages, as defined by CCR7 vs CD45RA and by functional assays, were identified even in melanoma- or viral Ag-specific T cells from invaded lymph nodes by HLA tetramer analysis. Culture for 7 days of CCR7(+) perforin(-) CD8(+) T cells from tumor-invaded lymph nodes with IL-2 or IL-15, but not IL-7, promoted, mainly in CCR7(+)CD45RA(-) cells, proliferation coupled to differentiation to the CCR7(-) perforin(+) stage and acquisition of melanoma Ag-specific effector functions. Taken together, these results indicate that CD8(+) T cells differentiated toward CCR7(-) cytotoxic factor(+) stages are present in tumor-invaded, but not in tumor-free, lymph nodes of a relevant fraction of melanoma patients and suggest that cytokines such as IL-2 and IL-15 may be exploited to promote Ag-independent maturation of anti-tumor CD8(+) T cells.  相似文献   

15.
Dendritic cells (DCs) contribute to human immunodeficiency virus type 1 (HIV-1) transmission and dissemination by capturing and transporting infectious virus from the mucosa to draining lymph nodes, and transferring these virus particles to CD4+ T cells with high efficiency. Toll-like receptor (TLR)-induced maturation of DCs enhances their ability to mediate trans-infection of T cells and their ability to migrate from the site of infection. Because TLR-induced maturation can be inhibited by nuclear receptor (NR) signaling, we hypothesized that ligand-activated NRs could repress DC-mediated HIV-1 transmission and dissemination. Here, we show that ligands for peroxisome proliferator-activated receptor gamma (PPARγ) and liver X receptor (LXR) prevented proinflammatory cytokine production by DCs and inhibited DC migration in response to the chemokine CCL21 by preventing the TLR-induced upregulation of CCR7. Importantly, PPARγ and LXR signaling inhibited both immature and mature DC-mediated trans-infection by preventing the capture of HIV-1 by DCs independent of the viral envelope glycoprotein. PPARγ and LXR signaling induced cholesterol efflux from DCs and led to a decrease in DC-associated cholesterol, which has previously been shown to be required for DC capture of HIV-1. Finally, both cholesterol repletion and the targeted knockdown of the cholesterol transport protein ATP-binding cassette A1 (ABCA1) restored the ability of NR ligand treated cells to capture HIV-1 and transfer it to T cells. Our results suggest that PPARγ and LXR signaling up-regulate ABCA1-mediated cholesterol efflux from DCs and that this accounts for the decreased ability of DCs to capture HIV-1. The ability of NR ligands to repress DC mediated trans-infection, inflammation, and DC migration underscores their potential therapeutic value in inhibiting HIV-1 mucosal transmission.  相似文献   

16.
During human immunodeficiency virus (HIV) infection, enhanced migration of infected cells to lymph nodes leads to efficient propagation of HIV-1. The selective chemokine receptors, including CXCR4 and CCR7, may play a role in this process, yet the viral factors regulating chemokine-dependent T cell migration remain relatively unclear. The functional cooperation between the CXCR4 ligand chemokine CXCL12 and the CCR7 ligand chemokines CCL19 and CCL21 enhances CCR7-dependent T cell motility in vitro as well as cell trafficking into the lymph nodes in vivo. In this study, we report that a recombinant form of a viral CXCR4 ligand, X4-tropic HIV-1 gp120, enhanced the CD4 T cell response to CCR7 ligands in a manner dependent on CXCR4 and CD4, and that this effect was recapitulated by HIV-1 virions. HIV-1 gp120 significantly enhanced CCR7-dependent CD4 T cell migration from the footpad of mice to the draining lymph nodes in in vivo transfer experiments. We also demonstrated that CXCR4 expression is required for stable CCR7 expression on the CD4 T cell surface, whereas CXCR4 signaling facilitated CCR7 ligand binding to the cell surface and increased the level of CCR7 homo- as well as CXCR4/CCR7 hetero-oligomers without affecting CCR7 expression levels. Our findings indicate that HIV-evoked CXCR4 signaling promotes CCR7-dependent CD4 T cell migration by up-regulating CCR7 function, which is likely to be induced by increased formation of CCR7 homo- and CXCR4/CCR7 hetero-oligomers on the surface of CD4 T cells.  相似文献   

17.
Immature dendritic cells (DCs), unlike mature DCs, require the viral determinant nef to drive immunodeficiency virus (SIV and HIV) replication in coculture with CD4(+) T cells. Since immature DCs may capture and get infected by virus during mucosal transmission, we hypothesized that Nef associated with the virus or produced during early replication might modulate DCs to augment virus dissemination. Adenovirus vectors expressing nef were used to introduce nef into DCs in the absence of other immunodeficiency virus determinants to examine Nef-induced changes that might activate immature DCs to acquire properties of mature DCs and drive virus replication. Nef expression by immature human and macaque DCs triggered IL-6, IL-12, TNF-alpha, CXCL8, CCL3, and CCL4 release, but without up-regulating costimulatory and other molecules characteristic of mature DCs. Coincident with this, nef-expressing immature DCs stimulated stronger autologous CD4(+) T cell responses. Both SIV and HIV nef-expressing DCs complemented defective SIVmac239 delta nef, driving replication in autologous immature DC-T cell cultures. In contrast, if DCs were activated after capturing delta nef, virus growth was not exacerbated. This highlights one way in which nef-defective virus-bearing immature DCs that mature while migrating to draining lymph nodes could induce stronger immune responses in the absence of overwhelming productive infection (unlike nef-containing wild-type virus). Therefore, Nef expressed in immature DCs signals a distinct activation program that promotes virus replication and T cell recruitment but without complete DC maturation, thereby lessening the likelihood that wild-type virus-infected immature DCs would activate virus-specific immunity, but facilitating virus dissemination.  相似文献   

18.
Bordetella bronchiseptica establishes persistent infection of the murine respiratory tract. We hypothesize that long-term colonization is mediated in part by bacteria-driven modulation of dendritic cells (DCs) leading to altered adaptive immune responses. Bone marrow-derived DCs (BMDCs) from C57BL/6 mice infected with live B. bronchiseptica exhibited high surface expression of MHCII, CD86, and CD80. However, B. bronchiseptica-infected BMDCs did not exhibit significant increases in CD40 surface expression and IL-12 secretion compared with BMDCs treated with heat-killed B. bronchiseptica. The B. bronchiseptica type III secretion system (TTSS) mediated the increase in MHCII, CD86, and CD80 surface expression, while the inhibition of CD40 and IL-12 expression was mediated by adenylate cyclase toxin (ACT). IL-6 secretion was independent of the TTSS and ACT. These phenotypic changes may result from differential regulation of MAPK signaling in DCs. Wild-type B. bronchiseptica activated the ERK 1/2 signaling pathway in a TTSS-dependent manner. Additionally, ACT was found to inhibit p38 signaling. These data suggest that B. bronchiseptica drive DC into a semimature phenotype by altering MAPK signaling. These semimature DCs may induce tolerogenic immune responses that allow the persistent colonization of B. bronchiseptica in the host respiratory tract.  相似文献   

19.
Because T cells act primarily through short-distance interactions, homing receptors can identify colocalizing cells that serve common functions. Expression patterns for multiple chemokine receptors on CD4(+) T cells from human blood suggested a hierarchy of receptors that are induced and accumulate during effector/memory cell differentiation. We characterized CD4(+)CD45RO(+) T cells based on expression of two of these receptors, CCR5 and CCR2, the principal subsets being CCR5(-)CCR2(-) (~70%), CCR5(+)CCR2(-) (~25%), and CCR5(+)CCR2(+) (~5%). Relationships among expression of CCR5 and CCR2 and CD62L, and the subsets' proliferation histories, suggested a pathway of progressive effector/memory differentiation from the CCR5(-)CCR2(-) to CCR5(+)CCR2(-) to CCR5(+)CCR2(+) cells. Sensitivity and rapidity of TCR-mediated activation, TCR signaling, and effector cytokine production by the subsets were consistent with such a pathway. The subsets also showed increasing responsiveness to IL-7, and the CCR5(+)CCR2(+) cells were CD127(bright) and invariably showed the greatest response to tetanus toxoid. CCR5(+)CCR2(+) cells also expressed the largest repertoire of chemokine receptors and migrated to the greatest number of chemokines. By contrast, the CCR5(+)CCR2(-) cells had the greatest percentages of regulatory T cells, activated/cycling cells, and CMV-reactive cells, and were most susceptible to apoptosis. Our results indicate that increasing memory cell differentiation can be uncoupled from susceptibility to death, and is associated with an increase in chemokine responsiveness, suggesting that vaccination (or infection) can produce a stable population of effector-capable memory cells that are highly enriched in the CCR5(+)CCR2(+) subset and ideally equipped for rapid recall responses in tissue.  相似文献   

20.
Moltedo B  Li W  Yount JS  Moran TM 《PLoS pathogens》2011,7(11):e1002345
Migratory lung dendritic cells (DCs) transport viral antigen from the lungs to the draining mediastinal lymph nodes (MLNs) during influenza virus infection to initiate the adaptive immune response. Two major migratory DC subsets, CD103(+) DCs and CD11b(high) DCs participate in this function and it is not clear if these antigen presenting cell (APC) populations become directly infected and if so whether their activity is influenced by the infection. In these experiments we show that both subpopulations can become infected and migrate to the draining MLN but a difference in their response to type I interferon (I-IFN) signaling dictates the capacity of the virus to replicate. CD103(+) DCs allow the virus to replicate to significantly higher levels than do the CD11b(high) DCs, and they release infectious virus in the MLNs and when cultured ex-vivo. Virus replication in CD11b(high) DCs is inhibited by I-IFNs, since ablation of the I-IFN receptor (IFNAR) signaling permits virus to replicate vigorously and productively in this subset. Interestingly, CD103(+) DCs are less sensitive to I-IFNs upregulating interferon-induced genes to a lesser extent than CD11b(high) DCs. The attenuated IFNAR signaling by CD103(+) DCs correlates with their described superior antigen presentation capacity for na?ve CD8(+) T cells when compared to CD11b(high) DCs. Indeed ablation of IFNAR signaling equalizes the competency of the antigen presenting function for the two subpopulations. Thus, antigen presentation by lung DCs is proportional to virus replication and this is tightly constrained by I-IFN. The "interferon-resistant" CD103(+) DCs may have evolved to ensure the presentation of viral antigens to T cells in I-IFN rich environments. Conversely, this trait may be exploitable by viral pathogens as a mechanism for systemic dissemination.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号