首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The antithrombin-binding region of heparin is a pentasaccharide sequence with the predominant structure -GlcNAc(6-OSO3)-GlcA-GlcNSO3(3,6-di-OSO3)-Ido A(2-OSO3)- GlcNSO3(6-OSO3)-. By using the 3-O-sulfated glucosamine residue as a marker for the anti-thrombin-binding sequence, the location of this sequence within the heparin chain was investigated. Heparin with high affinity for antithrombin (HA-heparin) contains few N-acetyl groups located outside the antithrombin-binding region, and cleavage at such groups was therefore expected to be essentially restricted to this region. HA-heparin was cleaved at N-acetylated glucosamine units by partial deacetylation followed by treatment with nitrous acid at pH 3.9, and the resulting fragments with low affinity for anti-thrombin (LA-fragments) were recovered after affinity chromatography on immobilized antithrombin. The LA-fragments were further divided into subfractions of different molecular size by gel chromatography and were then analyzed with regard to the occurrence of the nonreducing terminal GlcA-GlcNSO3(3,6-di-OS-O3)- sequence. Such units were present in small, intermediate-sized as well as large fragments, suggesting that the antithrombin-binding regions were randomly distributed along the heparin chains. In another set of experiments, HA-heparin was subjected to limited, random depolymerization by nitrous acid (pH 1.5), and the resulting reducing terminal anhydromannose residues were labeled by treatment with NaB3H4. The molecular weight distributions of such labeled LA-fragments, determined by gel chromatography, again conformed to a random distribution of the antithrombin-binding sequence within the heparin chains. These results are in apparent disagreement with previous reports (Radoff, S., and Danishefsky, I. (1984) J. Biol. Chem. 259, 166-172; Rosenfeld, L., and Danishefsky, I. (1988) J. Biol. Chem. 263, 262-266) which suggest that the antithrombin-binding region is preferentially located at the nonreducing terminus of the heparin molecule.  相似文献   

2.
35S-labelled heparins were recovered from adipose tissue, hearts, lungs, peritoneal cavities and skins of rats given H2(35)SO4. Their purification involved incubation with Pronase, precipitation with cetylpyridinium chloride in 1.0 M-NaCl, gradient elution from DEAE-Sephacel and incubation with chondroitinase ABC. Each product was divided into proteoglycan and "depolymerization products' fractions by gel filtration on Bio-Gel A-15m. Heparin chains were released from a portion of each proteoglycan fraction by beta-elimination with NaOH. Proteoglycans, chains and depolymerization products were separated by gradient elution from a column of antithrombin-agarose into fractions with no affinity, low affinity and high affinity for antithrombin. The relative sizes of the products were determined by gel filtration on columns of Bio-Gel A-50m, A-15m, A-1.5m and A-0.5m. Skin was the major source of heparin and contained the largest proteoglycans and the lowest proportion of depolymerization products. Lungs contained the smallest proteoglycans, the smallest depolymerization products and the highest proportion of depolymerization products. The highest proportions of proteoglycans, chains and depolymerization products with high affinity for antithrombin were found in adipose tissue. The lowest proportions of each of these fractions were found in the peritoneal cavity. The data suggest that there was relatively little biosynthesis of sites with high affinity for antithrombin in peritoneal-cavity mast cells and that heparin catabolism was most active in lungs. Each source of heparin was unique with respect to both biosynthesis and subsequent breakdown of its proteoglycans.  相似文献   

3.
Approximately half of all rat skin heparin proteoglycans have polysaccharide chains that have no sites with high binding affinity for antithrombin. The rest have chains with high-affinity antithrombin-binding-site densities ranging from zero to five sites per chain, with a high degree of variation. Proteoglycans vary in size because of diversity in the number of chains per molecule; the relationship between proteoglycan size and high-affinity antithrombin-binding-site density has not been studied previously. Polydisperse heparin proteoglycans from rat skin, labelled biosynthetically with 35S, were fractionated by gel filtration on Bio-Gel A-150m and arbitrarily divided into five fractions of decreasing average molecular size. Fractionation of these products on antithrombin-agarose showed that the proportion of proteoglycans with high affinity for antithrombin decreased from 39% to 25% as molecular size decreased. However, as the molecular size of high-affinity proteoglycans decreased, the proportion of their chains that had high affinity increased from 29% to 59%. Therefore molecular size is a significant factor in determining the proportion of high-affinity chains in heparin proteoglycans. A model of heparin biosynthesis is proposed in which areas of specific enzyme activity that control the synthesis of the antithrombin-binding-site sequence are sparsely and nonrandomly distributed on mast-cell Golgi membranes. It is postulated that the likelihood of a developing proteoglycan encountering one of these hypothetical areas is molecular-size-dependent.  相似文献   

4.
Biosynthesis of heparin. O-sulfation of the antithrombin-binding region   总被引:1,自引:0,他引:1  
The antithrombin-binding region in heparin is a pentasaccharide sequence with the predominant structure GlcNAc(6-OSO3)-GlcA-GlcNSO3(3,6-di-OSO3)-IdoA -(2-OSO3)-GlcNSO3(6-OSO3) (where GlcA and IdoA represent D-glucuronic and L-iduronic acid, respectively), in which the 3-O-sulfate residue on the internal glucosaminyl unit is a marker group for this particular region of the polysaccharide molecule. A heparin octasaccharide which contained the above pentasaccharide sequence was N/O-desulfated and re-N-sulfated and was then incubated with adenosine 3'-phosphate 5'-phospho[35S]sulfate in the presence of a microsomal fraction from mouse mastocytoma tissue. Fractionation of the resulting 35S-labeled octasaccharide on antithrombin-Sepharose yielded a high affinity fraction that accounted for approximately 2% of the total incorporated label. Structural analysis of this fraction indicated that the internal glucosamine unit of the pentasaccharide sequence was 3-O-35S-sulfated, whereas both adjacent glucosamine units carried 6-O-[35S]sulfate groups. In contrast, the fractions with low affinity for antithrombin (approximately 98% of incorporated 35S) showed no consistent O-35S sulfation pattern and essentially lacked glucosaminyl 3-O-[35S]sulfate groups. It is suggested that the 3-O-sulfation reaction concludes the formation of the antithrombin-binding region. This proposal was corroborated in a similar experiment using a synthetic pentasaccharide with the structure GlcNSO3(6-OSO3)-GlcA-GlcNSO3(6-OSO3)-Id oA (2-OSO3)-GlcNSO3(6-OSO3) as sulfate acceptor. This molecule corresponds to a functional antithrombin-binding region but for the lack of a 3-O-sulfate group at the internal glucosamine unit. The 35S-labeled pentasaccharide recovered after incubation bound with high affinity to antithrombin-Sepharose and contained a 3-O-[35S]sulfate group at the internal glucosamine residue as the only detectable labeled component. The use of this pentasaccharide substrate along with the affinity matrix provides a highly specific assay for the 3-O-sulfotransferase.  相似文献   

5.
Further characterization of the antithrombin-binding sequence in heparin   总被引:8,自引:0,他引:8  
An octasaccharide with high affinity for antithrombin, isolated after partial deaminative cleavage of heparin and previously found to have the following predominant structure
, has been studied further. High-voltage, paper electrophoresis of the 3H-labelled disaccharides obtained by deamination with HNO2 (pH 1.5) followed by reduction with Na[3H]BH4 showed 25% of mono-O-sulfated components, in addition to l-iduronic acid(2-O-SO3)-2,5-anhydro-d-[3H]mannitol(6-O-SO3). The monosulfated disaccharides were identified by high-pressure, ion-exchange chromatography as l-iduronic acid(2-O-SO3)-2,5-anhydro-d-[3H]mannitol, l-iduronic acid-2,5-anhydro-d-[3H]mannitol(6-O-SO3), and d-glucuronic acid-2,5-anhydro-d-[3H]-mannitol(6-O-SO3). These components originated from the reducing, terminal disaccharide residue (units 7 and 8), as indicated by selective labelling with Na[3H]BH4. The structural variability within this region suggests that it is not part of the antithrombin-binding sequence. Neither enzymic removal of the non-sulfated l-iduronic acid unit 1 nor N-deacetylation (by hydrazinolysis) at unit 2 had any significant effect on the affinity of the octasaccharide for antithrombin. However, removal of the disaccharide corresponding to units 1 and 2, by selective deamination of the N-deacetylated octasaccharide, yielded a low-affinity hexasaccharide. In addition, a high-affinity deamination product was formed, presumably an octasaccharide containing a 6-sulfated 2-deoxy-2-C-formyl-d-pentofuranosyl unit due to ring contraction in unit 2. These results suggest that the 6-sulfate group in unit 2 may be involved in antithrombin binding. It is concluded that the antithrombin-binding site in heparin is represented by the pentasaccharide sequence extending from unit 2 to unit 6 of the octasaccharide studied.  相似文献   

6.
7.
Oligosaccharides with different affinities for antithrombin were isolated following partial deaminative cleavage of pig mucosal heparin with nitrous acid. The smallest high-affinity component obtained was previously identified as an octasaccharide with the predominant structure: (Formula: see text). The interaction of this octasaccharide, and of deca- and dodecasaccharides containing the same octasaccharide sequence, with antithrombin was studied by spectroscopic techniques. The near-ultraviolet difference spectra, circular dichroism spectra, and fluorescence enhancements induced by adding these oligosaccharides to antithrombin differed only slightly from the corresponding parameters measured in the presence of undegraded high-affinity heparin. Moreover, the binding constants obtained for the oligosaccharides and for high-affinity heparin were similar (1.0-2.9 X 10(7) M-1 at I = 0.3). In contrast, two hexasaccharides corresponding to units 1-6 and 3-8, respectively, of the above sequence showed about a 1000-fold lower affinity for antithrombin, and also induced considerably different spectral perturbations in antithrombin. Since the 1-6 hexasaccharide contains a reducing-terminal anhydromannose residue instead of the N-sulfated glucosamine unit 6 of the intact sequence, these results strongly support our previous conclusion that the N-sulfate group at position 6 is essential to the interaction with antithrombin. The low affinity of the hexasaccharide 3-8 provides further evidence that a pentasaccharide sequence 2-6 constitutes the actual antithrombin-binding region in the heparin molecule. Structural analysis of the various oligosaccharides revealed natural variants with an N-sulfate group substituted for the N-acetyl group at position 2. The preponderance of N-acetyl over N-sulfate groups at this position may be rationalized in terms of the mechanism of heparin biosynthesis, assuming that the D-gluco configuration of unit 3 is an essential feature of the antithrombin-binding region.  相似文献   

8.
The synthetic antithrombin-binding heparin pentasaccharide and a full-length heparin of approximately 26 saccharides containing this specific sequence have been compared with respect to their interactions with antithrombin and their ability to promote inhibition and substrate reactions of antithrombin with thrombin and factor Xa. The aim of these studies was to elucidate the pentasaccharide contribution to heparin's accelerating effect on antithrombin-proteinase reactions. Pentasaccharide and full-length heparins bound antithrombin with comparable high affinities (KD values of 36 +/- 11 and 10 +/- 3 nM, respectively, at I 0.15) and induced highly similar protein fluorescence, ultraviolet and circular dichroism changes in the inhibitor. Stopped-flow fluorescence kinetic studies of the heparin binding interactions at I 0.15 were consistent with a two-step binding process for both heparins, involving an initial weak encounter complex interaction formed with similar affinities (KD 20-30 microM), followed by an inhibitor conformational change with indistinguishable forward rate constants of 520-700 s-1 but dissimilar reverse rate constants of approximately 1 s-1 for the pentasaccharide and approximately 0.2 s-1 for the full-length heparin. Second order rate constants for antithrombin reactions with thrombin and factor Xa were maximally enhanced by the pentasaccharide only 1.7-fold for thrombin, but a substantial 270-fold for factor Xa, in an ionic strength-independent manner at saturating oligosaccharide. In contrast, the full-length heparin produced large ionic strength-dependent enhancements in second order rate constants for both antithrombin reactions of 4,300-fold for thrombin and 580-fold for factor Xa at I 0.15. These enhancements were resolvable into a nonionic component ascribable to the pentasaccharide and an ionic component responsible for the additional rate increase of the larger heparin. Stoichiometric titrations of thrombin and factor Xa inactivation by antithrombin, as well as sodium dodecyl sulfate-polyacrylamide gel electrophoresis of the products of these reactions, indicated that pentasaccharide and full-length heparins similarly promoted the formation of proteolytically modified inhibitor during the inactivation of factor Xa by antithrombin, whereas only the full-length heparin was effective in promoting this substrate reaction of antithrombin during the reaction with thrombin.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

9.
Subfractions of 35S-labelled rat skin heparin proteoglycans with various degrees of high affinity for antithrombin were obtained by gradient elution from a column of antithrombin-agarose. Heparin chains released from the proteoglycan preparations by beta-elimination with alkali were re-fractionated on the same column. Proportions of chains with high affinity for antithrombin (HA-chains) ranged from 17% to 76%. These separations also revealed three overlapping subfractions of HA-chains. Their proportions varied in a manner consistent with a stepwise increase in the degree of affinity of HA-chains for antithrombin, this presumably being due to the biosynthesis of increasing numbers of antithrombin-binding sites per chain. The anticoagulant activity, with respect to thrombin neutralization, ranged from 32 units/mg to 287 units/mg. It is suggested that HA-chains may have from one to five or six antithrombin-binding sites. Thus the asymmetric distribution of these sites in rat skin heparin proteoglycans is much more marked than was realized from the earlier work of Horner & Young [(1982) J. Biol. Chem. 257, 8749-8754].  相似文献   

10.
Metabolism of rat bone proteoglycans in vivo.   总被引:2,自引:2,他引:0       下载免费PDF全文
Former evaluations of the role of proteoglycans in mineralization have neglected to address the possibility that the metabolism of proteoglycans may be of significance in this regard. This problem was studied by using radiolabeling in vivo of rat calvaria with [35Sulphate for 2-72 h and a sequential extraction procedure to yield two pools of newly synthesized proteoglycans: one obtained from non-mineralized tissue by extraction with guanidinium chloride (GdmCl) and another obtained only after demineralization with EDTA. Total radioactivity in calvaria was maximal after 12 h of incorporation, but by 36 h had declined to a level that was about 55-65% of maximum. Radioactivity in the GdmCl extract declined steadily after 12 h, whereas that in the EDTA extract remained constant until 36 h, when it began to increase. Each extract contained a minor proteoglycan that eluted at the void volume (Vo) of a Sepharose CL-6B column. Unlike in the EDTA extract, this proteoglycan gradually disappeared from the GdmCl extract. Each extract also contained a major, smaller proteoglycan, with a Kav. of 0.24 and 0.36 in the GdmCl and EDTA extracts respectively. Papain digestion of each extract yielded glycosaminoglycan chains with Kav. values of 0.32 and 0.50 on CL-6B in the GdmCl and EDTA extracts respectively. Digestion of each extract with chondroitinase ABC and chondroitinase AC showed that the glycosaminoglycans were of similar disaccharide composition, with about 85% being 4-sulphated and the remainder 6-sulphated and/or iduronic acid-containing. These data suggest that about 45% of the newly synthesized proteoglycans are removed from the tissue during the course of mineralization.  相似文献   

11.
Previous work has shown that versican, decorin and a catabolic fragment of decorin, termed decorunt, are the most abundant proteoglycans in human skin. Further analysis of versican indicates that four major core protein species are present in human skin at all ages examined from fetal to adult. Two of these are identified as the V0 and V1 isoforms, with the latter predominating. The other two species are catabolic fragments of V0 and V1, which have the amino acid sequence DPEAAE as their carboxyl terminus. Although the core proteins of human skin versican show no major age-related differences, the glycosaminoglycans (GAGs) of adult skin versican are smaller in size and show differences in their sulfation pattern relative to those in fetal skin versican. In contrast to human skin versican, human skin decorin shows minimal age-related differences in its sulfation pattern, although, like versican, the GAGs of adult skin decorin are smaller than those of fetal skin decorin. Analysis of the catabolic fragments of decorin from adult skin reveals the presence of other fragments in addition to decorunt, although the core proteins of these additional decorin catabolic fragments have not been identified. Thus, versican and decorin of human skin show age-related differences, versican primarily in the size and the sulfation pattern of its GAGs and decorin in the size of its GAGs. The catabolic fragments of versican are detected at all ages examined, but appear to be in lower abundance in adult skin compared with fetal skin. In contrast, the catabolic fragments of decorin are present in adult skin, but are virtually absent from fetal skin. Taken together, these data suggest that there are age-related differences in the catabolism of proteoglycans in human skin. These age-related differences in proteoglycan patterns and catabolism may play a role in the age-related changes in the physical properties and injury response of human skin.  相似文献   

12.
1. Human skin fibroblasts internalize homologous sulphated proteoglycans by adsorptive endocytosis. Endocytosis rate is half maximal when the concentration of the proteoglycans is 0.1 nM. At saturation, a single fibroblast may endocytose up to 8 X 10(6) proteoglycan molecules/h. 2. The kinetics of prote;glycan binding to the cell surface suggest the presence of 6 X 10(5) high-affinity binding sites per cell. The bulk of sulphated proteoglycans associates to low-affinity binding sites on the cell surface. 3. Glycosaminoglycans and other anionic macromolecules inhibit endocytosis of sulphated proteoglycans non-competitively. The lack of interaction of glycosaminoglycans with the cell-surface receptors for sulphated proteoglycans suggests that the protein core of proteoglycans is essential for binding to the cell surface. 4. The effects of trypsin, cell density, serum concentration and medium pH on endocytosis and degradation of endocytosed sulphated proteoglycans is described. 5. A comparison of the number of the high-affinity binding sites and the number of molecules endocytosed with respect to time suggests a recycling of the proteoglycan receptors between the cell surface and the endocytotic vesicles and/or the lysosomes.  相似文献   

13.
Heparan sulphate and chondroitin/dermatan sulphate proteoglycans of human skin fibroblasts were isolated and separated after metabolic labelling for 48 h with 35SO4(2-) and/or [3H]leucine. The proteoglycans were obtained from the culture medium, from a detergent extract of the cells and from the remaining ''matrix'', and purified by using density-gradient centrifugation, gel and ion-exchange chromatography. The core proteins of the various proteoglycans were identified by electrophoresis in SDS after enzymic removal of the glycosaminoglycan side chains. Skin fibroblasts produce a number of heparan sulphate proteoglycans, with core proteins of apparent molecular masses 350, 250, 130, 90, 70, 45 and possibly 35 kDa. The major proteoglycan is that with the largest core, and it is principally located in the matrix. A novel proteoglycan with a 250 kDa core is almost entirely secreted or shed into the culture medium. Two exclusively cell-associated proteoglycans with 90 kDa core proteins, one with heparan sulphate and another novel one with chondroitin/dermatan sulphate, were also identified. The heparan sulphate proteoglycan with the 70 kDa core was found both in the cell layer and in the medium. In a previous study [Fransson, Carlstedt, Cöster & Malmström (1984) Proc. Natl. Acad. Sci. U.S.A. 81, 5657-5661] it was suggested that skin fibroblasts produce a proteoglycan form of the transferrin receptor. However, the core protein of the major heparan sulphate proteoglycan now purified does not resemble this receptor, nor does it bind transferrin. The principal secreted proteoglycans are the previously described large chondroitin sulphate proteoglycan (PG-L) and the small dermatan sulphate proteoglycans (PG-S1 and PG-S2).  相似文献   

14.
Heparin with high anticoagulant activity was isolated from the two marine clam species Anomalocardia brasiliana and Tivela mactroides. A large portion of the polysaccharide chains of both preparations bound with high affinity to immobilized antithrombin. Titrations monitored by tryptophan fluorescence showed that clam polysaccharide chains with Mr approximately 22,500 contained up to three binding sites for antithrombin and that the binding constants for the interaction of these chains with antithrombin were higher than those reported for mammalian heparin of comparable size. Structural analysis of clam heparin fractions and subfractions of clam heparin with differing affinity for immobilized antithrombin revealed the presence of large amounts (up to 25-30% of the total disaccharide units) of the 3-O-sulfated saccharide sequences (-GlcNSO3)-GlcA-GlcNSO3(3-OSO3)- and (-GlcNSO3)-GlcA-GlcNSO3(3,6-di-OSO3)-, previously identified as unique markers for the antithrombin-binding region of heparin. The content of these saccharide sequences was found to increase with increasing affinity of the parent polysaccharide for antithrombin. Structural analysis of the clam heparins also demonstrated the occurrence of a novel saccharide sequence, tentatively identified as (-GlcNSO3)-IdA-GlcNSO3(3,6-di-OSO3)-, that has not previously been found in heparin or related polysaccharides. The contents of this latter sequence, at most 3-4% of the total disaccharide units, showed no correlation with the affinity for antithrombin.  相似文献   

15.
Sepharose CL-6B column chromatography of crude extracts from the slices of regenerating rat livers after partial hepatectomy and sham-operated controls labeled with [35S]sulfuric acid revealed an enhancement of [35S]sulfate incorporation into proteoglycan fractions during regeneration. The 35S-labeled proteoglycans contained heparan sulfate (more than 80% of the total) and chondroitin/dermatan sulfate. The 35S-incorporation into both glycosaminoglycans increased to maxima 3-5 days after partial hepatectomy and decreased thereafter toward the respective control levels. When [35S]sulfuric acid was replaced by [3H]glucosamine, similar results were obtained. These results suggest that the maximal stimulation of proteoglycan synthesis in regenerating rat liver follows the maximal mitosis of hepatic cells 1-2 days after partial hepatectomy. The 35S-labeled proteoglycans from regenerating liver 3 days after partial hepatectomy and control were analyzed further. They were similar in chromatographic behavior on a gel filtration or an anion-exchange column and in glycosaminoglycan composition. Their glycosaminoglycans were indistinguishable in electrophoretic mobility. However, these proteoglycans were slightly but significantly different in their affinity to octyl-Sepharose and in the molecular-weight distribution of their glycosaminoglycans.  相似文献   

16.
17.
M Nagarajan  V S Rao 《Biopolymers》1979,18(6):1407-1420
Various models proposed for heparin have been examined by a stereochemical approach involving contact distance criteria and potential energy calculations. The present study suggests that the model favored by Atkins and coworkers [Biochem. J. (1973) 135 , 729–733 and (1974) 143 , 251–252] is not stereochemically satisfactory. An alternative model has been proposed with N-acetyl-D -glucosamine and one of the uronides in the 4C1 conformation and the other uronide (probably sulfated) in the 1C4 conformation. The observed variations in the tetrasaccharide periodicities (16.5–17.3 Å) in different crystalline modifications of heparin have been attributed to possible changes in the rotational angles about the interunit glycosidic bonds rather than a change in the pyranose ring conformation. The proposed model is also independent of the observed variation in the relative composition of uronic acid residues in heparin. These conclusions are in disagreement with those of earlier workers.  相似文献   

18.
19.
Skin undergoes dramatic age-related changes in its mechanical properties, including changes in tissue hydration and resiliency. Proteoglycans are macromolecular conjugates of protein and carbohydrate (glycosaminoglycan) which are involved in these tissue properties. In order to examine whether age-related changes in skin proteoglycans may contribute to the age-related changes in the mechanical properties of skin, proteoglycans from human skin of various ages were extracted and analyzed. Samples were obtained from two different fetal ages, from mature skin, and from senescent skin. As a function of age, there is a decrease in the proportion of large chondroitin sulfate proteoglycans (versican) and a concomitant increase in the proportion of small dermatan sulfate proteoglycans (decorin). Based on reactivity with antibodies to various chondroitin sulfate epitopes, fetal versican differs from the versican found in older skin with respect to the chondroitin sulfate chains. Also, the decorin of fetal skin is slightly larger, while the decorin of older skin shows greater polydispersity in both its size and its charge to mass ratio. There are also age-related differences in the size and polydispersity of the core proteins of decorin. The most pronounced change in skin proteoglycans is the appearance in mature skin of a proteoglycan which is smaller than decorin, but which has the same amino terminal amino acid sequence as decorin. This small proteoglycan is abundant in mature skin and may be a catabolic fragment of decorin or an alternatively spliced form of decorin. In light of the known ability of decorin to influence collagen fibrillogenesis and fibril diameter, the appearance of this small decorin-related proteoglycan may have a significant effect on skin elasticity. The observation that proteoglycans in skin show dramatic age-related differences suggests that these changes may be involved in the age-related changes in the physical properties of skin.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号