首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
A number of neurodegenerative diseases are mediated by mutation-induced protein misfolding. The resulting genetic defects, however, are expressed in varying phenotypes. Of the several well-established glycolytic enzyme deficiencies, triosephosphate isomerase (TPI) deficiency is the only one in which haemolytic anaemia is coupled with progressive, severe neurological disorder. In a Hungarian family with severe decrease in TPI activity, two germ line-identical but phenotypically differing compound heterozygote brothers inherited two independent (Phe(240)-->Leu and Glu(145)-->stop codon) mutations. We have demonstrated recently [Orosz, Oláh, Alvarez, Keserü, Szabó, Wágner, Kovári, Horányi, Baróti, Martial, Hollán and Ovádi (2001) Blood 98, 3106-3112] that the mutations of TPI explain in themselves neither the severe decrease in the enzyme activity characteristic of TPI deficiency nor the enhanced ability of the mutant enzyme from haemolysate of the propositus to associate with subcellular particles. Here we present kinetic (flux analysis), thermodynamic (microcalorimetry and fluores cence spectroscopy), structural (in silico) and ultrastructural (immunoelectron microscopy) data for characterization of mutant isomerase structures and for the TPI-related metabolic processes in normal and deficient cells. The relationships between mutation-induced TPI misfolding and formation of aberrant protein aggregates are discussed.  相似文献   

2.
Thiamine (vitamin B1) deficiency, the underlying cause of Wernicke–Korsakoff syndrome, is associated with the development of focal neuronal loss in vulnerable areas of the brain. Although the actual mechanism(s) that lead to the selective histological lesions characteristic of this disorder remain unresolved, oxidative stress has been shown to play a major role in its pathophysiology. In this review, the multifactorial influence of oxidative stress on a variety of processes known to take part in the development of structural lesions in TD including excitotoxicity, neuroinflammation, blood–brain barrier integrity, mitochondrial integrity, apoptosis, nucleic acid function, and neural stem cells will be discussed, and therapeutic strategies undertaken for treating neurodegeneration examined which may have an impact on the future treatment of this important vitamin deficiency.  相似文献   

3.
4.
BackgroundThiamine deficiency (TD) has a number of features in common with the neurodegenerative diseases development and close relationship between TD and oxidative stress (OS) has been repeatedly reported in the literature. The aim of this study is to understand how alimentary TD, accompanied by OS, affects the expression and level of two thiamine metabolism proteins in rat brain, namely, thiamine transporter 1 (THTR1) and thiamine pyrophosphokinase (TPK1), and what factors are responsible for the observed changes.MethodsThe effects of OS caused by TD on the THTR1and TPK1 expression in rat cortex, cerebellum and hippocampus were examined. The levels of active and oxidized forms of ThDP (enzymatically measured) in the blood and brain, ROS and SH-groups in the brain were also analyzed.ResultsTD increased the expression of THTR1 and protein level in all studied regions. In contrast, expression of TPK1 was depressed. TD-induced OS led to the accumulation of ThDP oxidized inactive form (ThDPox) in the blood and brain. In vitro reduction of ThDPox by dithiothreitol regenerates active ThDP suggesting that ThDPox is in disulfide form. A single high-dose thiamine administration to TD animals had no effect on THTR1 expression, partly raised TPK1 mRNA and protein levels, but is unable to normalize TPK1 enzyme activity. Brain and blood ThDP levels were increased in these conditions, but ThDPox was not decreased.General significanceIt is likely, that the accumulation of ThDPox in tissue could be seen as a potential marker of neurocellular dysfunction and thiamine metabolic state.  相似文献   

5.
Thiamine deficiency in rats induced by oxythiamine is accompanied by an increase in the free NADP+/NADPH ratio in liver tissue, which results in multifold stimulation of the metabolite flux in the oxidation branch of the pentose cycle. The increase in the intracellular concentrations of isocitrate and alpha-ketoglutarate with a simultaneous decrease of malate in the liver of vitamin-deficient rats points to the inhibition of alpha-ketoglutarate dehydrogenase responsible for the anomalous metabolism under conditions of thiamine deficiency. The decrease of the functional activity of the tricarboxylic acid cycle is concomitant with the activation of conversions in the oxidation branch of the pentose cycle, glucuronate and glycolytic pathways of carbohydrate metabolism, which is directed at eliminating the energy deficiency in rats with B1-hypovitaminosis.  相似文献   

6.
Thiamine deficiency (TD) impairs hippocampal neurogenesis. However, the mechanisms involved are not identified. In this work, TD mouse model was generated using a thiamine-depleted diet at two time points, TD9 and TD14 for 9 and 14 days of TD respectively. The activities of pyruvate dehydrogenase (PDH), α-ketoglutamate dehydrogenase (KGDH), glucose-6-phosphate dehydrogenase (G6PD), and transketolase (TK), as well as on the contents of NADP+ and NADPH were determined in whole mouse brain, isolated cortex, and hippocampus of TD mice model. The effects of TK silencing on the growth and migratory ability of cultured hippocampal progenitor cells (HPC), as well as on neuritogenesis of hippocampal neurons were explored. The results showed that TD specifically reduced TK activity in both cortex and hippocampus, without significantly affecting the activities of PDH, KGDH, and G6PD in TD9 and TD14 groups. The level of whole brain and hippocampal NADPH in TD14 group were significantly lower than that of control group. TK silencing significantly inhibited the proliferation, growth, and migratory abilities of cultured HPC, without affecting neuritogenesis of cultured hippocampal neurons. Taken together, these results demonstrate that decreased TK activity leads to pentose-phosphate pathway dysfunction and contributes to impaired hippocampal neurogenesis induced by TD. TK and pentose-phosphate pathway may be considered new targets to investigate hippocampal neurogenesis.  相似文献   

7.
8.
9.
The metabolism of K and Mg is closely linked. Mg deficiency may arise together with and contribute to the persistence of K deficiency. Isolated disturbances of K balance do not produce secondary abnormalities in Mg homeostasis. In contrast, primary disturbances in Mg balance, particularly Mg depletion, produce secondary K depletion. This appears to result from an inability of the cell to maintain the normally high intracellular concentration of K, perhaps as a result of an increase in membrane permeability to K and / or inhibition of Na+-K+-ATPase. Cases of Mg deficiency accompanying with Mg-dependent or -independent K deficiency are not uncommon among the general population. K and Mg deficiencies are found in patients with chronic alcoholism, cardiac diseases, diabetes mellitus (type II), genetic forms of renal potassium and magnesium wasting (Gitelman's and Bartter's syndromes), severe diarrhea and vomiting, malnutrition, during therapy with some kind of drugs. Various K-Mg salts allowing simultaneously eliminating deficiency of Mg and K are described in the literature. K-Mg aspartate is most distributed among K-Mg salts. It can be used as adjuvant therapy in ischaemic heart disease (in angina pectoris and conditions after myocardial infarction), prophylaxis and adjuvant therapy of cardiac arrhythmia (e.g. prevention of toxic symptoms during therapy with digoxin). Differences in metabolism and utilisation of D- and L-amino acids probably may effect on pharmacological properties of K-Mg L- and D-aspartates, and what is more pharmacological doses of Mg and K salts may induce toxicity which differs according to the nature of the anions. In our research it was established, that L-aspartate salts are better delivery forms for cations such as Mg and K than D-aspartate salts. K-Mg L-aspartate can be more beneficial in the treatment of several forms of primary Mg and K deficiency than K-Mg DL-aspartate and K-Mg D-aspartate.  相似文献   

10.
11.
12.
13.
14.
15.
16.
17.
BackgroundIncreasing evidence from pathological and biochemical investigations suggests that mitochondrial metabolic impairment and oxidative stress play a crucial role in the pathogenesis of mitochondrial diseases, such as mitochondrial myopathy, encephalopathy, lactic acidosis, and stroke-like episodes (MELAS) syndrome, and various neurodegenerative disorders. Recent advances in molecular imaging technology with positron emission tomography (PET) and functional magnetic resonance imaging (MRI) have accomplished a direct and non-invasive evaluation of the pathophysiological changes in living patients.Scope of reviewIn this review, we focus on the latest achievements of molecular imaging for mitochondrial metabolism and oxidative stress in mitochondrial diseases and neurodegenerative disorders.Major conclusionsMolecular imaging with PET and MRI exhibited mitochondrial metabolic changes, such as enhanced glucose utilization with lactic acid fermentation, suppressed fatty acid metabolism, decreased TCA-cycle metabolism, impaired respiratory chain activity, and increased oxidative stress, in patients with MELAS syndrome. In addition, PET imaging clearly demonstrated enhanced cerebral oxidative stress in patients with Parkinson's disease or amyotrophic lateral sclerosis. The magnitude of oxidative stress correlated well with clinical severity in patients, indicating that oxidative stress based on mitochondrial dysfunction is associated with the neurodegenerative changes in these diseases.General significanceMolecular imaging is a promising tool to improve our knowledge regarding the pathogenesis of diseases associated with mitochondrial dysfunction and oxidative stress, and this would facilitate the development of potential antioxidants and mitochondrial therapies.  相似文献   

18.
Mitochondriopathy is emerging as a new cancer theory; however, the relevance of mitochondrial pathobiology in breast cancer has not yet been completely explored. Herein we report on altered expression levels of the oxidative phosphorylation system (OXPHOS) subunits, mitochondrial structural injury and impaired ATP content from a breast-infiltrating ductal carcinoma (IDC). With this purpose, a human mammary carcinoma (HMC-1) cell, referred to a human mammary epithelial cell (HMEC) line, was assayed for: a) OXPHOS levels by quantitative cryo-immunoelectron microscopy (CIEM) labeling; b) morphological characterization by a newly introduced damage grading (scale Mt-g1-3), calculated on the % of intact cristae carrying mitochondria; c) bioenergetic impairment by luminometric determinations of cellular ATP content and cytochemical visualization of COX activity. Drastic OXPHOS reduction was observed in HMC-1 cells for the succinate-dehydrogenase complex II SDH-B protein, while decreasing was reported for the NADH-ubiquinone oxidoreductase complex I NDUFS3 and the ubiquinol cytochrome c reductase complex III UQCRC2 subunits. A significant dropping was detected for the ATP-synthase complex V F1β protein. For the COX complex near-depletion of the mitochondrial-encoded COXI and no apparent variation of the COXIV subunits were observed. Injury grading was categorized assigning three levels of morphological damage in HMC-1 mitochondria: i) severe (4.6%), ii) moderate (23.1%), iii) slight (44.6%), corresponding to 0%, 1-50% and 51-75% of area occupied by intact cristae. ATP generation and COX activity appeared significantly reduced in HMC-1 cells. The structural damage grading here described could provide new insight on IDC mitochondrial impairment and represent hallmark in the breast cancer mitochondriopathy.  相似文献   

19.
A second-step revertant (L1) of a temperature-sensitive mutant (C1) of Newcastle disease virus agglutinated erythrocytes normally but had less than 3% of the wild-type (strain AV) levels of neuraminidase activity. Revertant L1 had seven times more virion-associated N-acetylneuraminic acid (NANA) than strain AV. NANA residues on purified virions were specifically labeled with periodate and tritiated borohydride. Analyses of radiolabeled L1 virions on sodium dodecyl sulfate-polyacrylamide gels showed that most of the virion-associated NANA was in a high-molecular-weight component with an electrophoretic mobility different from that of any known viral protein. NANA was also detected in molecules with the electrophoretic mobility of the viral glycoproteins HN and F1. Revertant L1 had a twofold lower rate constant of attachment to HeLa cells than that of the wild-type. Treatment of L1 virions with Vibrio cholerae neuraminidase removed the excess NANA and returned L1 attachment kinetics to normal. Revertant N1, which has 10-fold more neuraminidase activity than L1, penetrated host cells at the same rate as L1. L1 was impaired in elution from erythrocytes. Removal of virion-associated NANA exacerbated this defect. Despite a small disadvantage in attachment and a major defect in elution relative to strain AV, revertant L1 enjoyed a slight advantage over the wild-type during a single reproductive cycle in cultured chicken embryo cells.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号