首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The clinical relevance of gene therapy using the recombinant adeno-associated virus (rAAV) vectors often requires widespread distribution of the vector, and in this case, systemic delivery is the optimal route of administration. Humoral blood factors, such as antibodies or complement, are the first barriers met by the vectors administered systemically. We have found that other blood proteins, galectin 3 binding protein (G3BP) and C-reactive protein (CRP), can interact with different AAV serotypes in a species-specific manner. While interactions of rAAV vectors with G3BP, antibodies, or complement lead to a decrease in vector efficacy, systemic transduction of the CRP-deficient mouse and its respective control clearly established that binding to mouse CRP (mCRP) boosts rAAV vector 1 (rAAV-1) and rAAV-6 transduction efficiency in skeletal muscles over 10 times. Notably, the high efficacy of rAAV-6 in CRP-deficient mice can be restored by reconstitution of the CRP-deficient mouse with mCRP. Human CRP (hCRP) does not interact with either rAAV-1 or rAAV-6, and, consequently, the high efficiency of mCRP-mediated muscle transduction by these serotypes in mice cannot be translated to humans. No interaction of mCRP or hCRP was observed with rAAV-8 and rAAV-9. We show, for the first time, that serum components can significantly enhance rAAV-mediated tissue transduction in a serotype- and species-specific manner. Bioprocessing in body fluids should be considered when transfer of a preclinical proof of concept for AAV-based gene therapy to humans is planned.  相似文献   

2.
Recent epidemiological studies have indicated that baseline C-reactive protein (CRP) levels may have value in prediction of cardiovascular risk. Using six tag single-nucleotide polymorphisms (SNPs) selected from our complete list of SNPs on the CRP gene, we investigated the association of CRP genotypes with plasma CRP levels and cardiovascular risk in the National Heart, Lung, and Blood Institute (NHLBI) Family Heart Study cohort (1,296 Caucasians, 48.5% male, 54.7 +/- 12.8 yr old). There was a significant trend toward association of CRP haplotypes with CRP levels (P = 0.045). SNP analysis indicated a highly significant association of SNP -757 (rs3093059, P = 0.0004) and SNP -286 (rs3091244, P = 0.0065) and a borderline association of SNP -7180 (rs1341665, P = 0.06) with CRP levels. Neither CRP haplotypes nor individual SNP genotypes were associated with intima-media thickness of the common carotid or internal carotid artery or the bifurcation of the carotid arteries. These results indicated a strong impact of local SNPs of the CRP gene on plasma CRP levels, but there was no direct evidence that these genetically controlled CRP elevations by local CRP SNPs contributed to cardiovascular disease phenotypes.  相似文献   

3.
In humans, a chronically increased circulating level of C-reactive protein (CRP), a positive acute-phase reactant, is an independent risk factor for cardiovascular disease. This observation has led to considerable interest in the role of inflammatory proteins in atherosclerosis. In this review, after discussing CRP, we focus on the potential role in the pathogenesis of human vascular disease of inflammation-induced proteins that are carried by lipoproteins. Serum amyloid A (SAA) is transported predominantly on HDL, and levels of this protein increase markedly during acute and chronic inflammation in both animals and humans. Increased SAA levels predict the risk of cardiovascular disease in humans. Recent animal studies support the proposal that SAA plays a role in atherogenesis. Evidence is accruing that secretory phospholipase A(2), an HDL-associated protein, and platelet-activating factor acetylhydrolase, a protein associated predominantly with LDL in humans and HDL in mice, might also play roles both as markers and mediators of human atherosclerosis. In contrast to positive acute-phase proteins, which increase in abundance during inflammation, negative acute-phase proteins have received less attention. Apolipoprotein A-I (apoA-I), the major apolipoprotein of HDL, decreases during inflammation. Recent studies also indicate that HDL is oxidized by myeloperoxidase in patients with established atherosclerosis. These alterations may limit the ability of apoA-I to participate in reverse cholesterol transport. Paraoxonase-1 (PON1), another HDL-associated protein, also decreases during inflammation. PON1 is atheroprotective in animal models of hypercholesterolemia. Controversy over its utility as a marker of human atherosclerosis may reflect the fact that enzyme activity rather than blood level (or genotype) is the major determinant of cardiovascular risk. Thus, multiple lipoprotein-associated proteins that change in concentration during acute and chronic inflammation may serve as markers of cardiovascular disease. In future studies, it will be important to determine whether these proteins play a causal role in atherogenesis.  相似文献   

4.
Plasma adrenomedullin (AM) levels are elevated in various pathological states including cardiovascular and inflammatory diseases. The present study investigated whether an increased AM level is a marker of vascular complications in patients with atherosclerotic risks. In 114 patients with cardiovascular risks and/or diseases including ischemic heart disease (IHD) and peripheral arterial disease (PAD), plasma AM concentration and other inflammatory markers such as high sensitive C-reactive protein (CRP) and interleukin (IL)-6 were examined. The plasma AM level was not altered by the absence or presence of each of four major risk factors, i.e., hypertension, diabetes mellitus, hyperlipidemia, and smoking and its level was not significantly correlated with blood pressure, plasma glucose, or serum lipid levels. The patients with IHD had a significantly higher concentration of plasma AM than those without IHD. The AM level in subjects with PAD was also increased significantly compared with those without PAD. The plasma AM was strongly correlated with inflammatory parameters such as CRP and IL-6. Among AM, CRP, and IL-6, however, only AM was an independent predictor for both IHD and PAD by multiple logistic regression analysis. Our findings suggest the possibility that plasma AM is a novel sensitive marker for the presence of vascular lesions in patients with atherosclerotic risks.  相似文献   

5.
Elevated plasma levels of C-reactive protein (CRP) are associated with increased risk of cardiovascular disease. CRP immunoreactive protein is also detected in the lesions of atherosclerosis. However, it is not known whether the CRP contents of atherosclerotic lesions are associated with the initiation and progression of atherosclerosis. To examine this hypothesis, we investigated different types of atherosclerotic lesions of rabbits fed with a cholesterol-rich diet for 6, 12, 16, and 28 weeks and examined their relationship with CRP. We measured the aortic atherosclerotic area, macrophages, and smooth muscle cells along with CRP contents in the lesions. Atherosclerotic lesions of aortas began to form at 6 weeks and were characterized by accumulation of macrophages in the intima, and lesions became more fibrotic in the advanced stage. Both plasma CRP levels and the lesional CRP contents were associated with the lesion size. Our results suggest that plasma CRP, as well as lesional CRP, associated with the formation and progression of atherosclerotic lesions.  相似文献   

6.
7.
Mast cells promote atherosclerosis by releasing proinflammatory cytokines   总被引:9,自引:0,他引:9  
Mast cells contribute importantly to allergic and innate immune responses by releasing various preformed and newly synthesized mediators. Previous studies have shown mast cell accumulation in human atherosclerotic lesions. This report establishes the direct participation of mast cells in atherogenesis in low-density lipoprotein receptor-deficient (Ldlr(-/-)) mice. Atheromata from compound mutant Ldlr(-/-) Kit(W-sh)(/W-sh) mice showed decreased lesion size, lipid deposition, T-cell and macrophage numbers, cell proliferation and apoptosis, but increased collagen content and fibrous cap development. In vivo, adoptive transfer of syngeneic wild-type or tumor necrosis factor (TNF)-alpha-deficient mast cells restored atherogenesis to Ldlr(-/-)Kit(W-sh/W-sh) mice. Notably, neither interleukin (IL)-6- nor interferon (IFN)-gamma-deficient mast cells did so, indicating that the inhibition of atherogenesis in Ldlr(-/-)Kit(W-sh/W-sh) mice resulted from the absence of mast cells and mast cell-derived IL-6 and IFN-gamma. Compared with wild-type or TNF-alpha-deficient mast cells, those lacking IL-6 or IFN-gamma did not induce expression of proatherogenic cysteine proteinase cathepsins from vascular cells in vitro or affect cathepsin and matrix metalloproteinase activities in atherosclerotic lesions, implying that mast cell-derived IL-6 and IFN-gamma promote atherogenesis by augmenting the expression of matrix-degrading proteases. These observations establish direct participation of mast cells and mast cell-derived IL-6 and IFN-gamma in mouse atherogenesis and provide new mechanistic insight into the pathogenesis of this common disease.  相似文献   

8.
Although serum amyloid A (SAA) is an excellent marker for coronary artery disease, its direct effect on atherogenesis in vivo is obscure. In this study we investigated the direct effect of SAA on promoting the formation of atherosclerosis in apolipoprotein E-deficient (ApoE?/?) mice. Murine SAA lentivirus was constructed and injected into ApoE?/? mice intravenously. Then, experimental mice were fed a chow diet (5% fat and no added cholesterol) for 14 wks. The aortic atherosclerotic lesion area was larger with than without SAA treatment. With increased SAA levels, the plasma levels of interleukin-6 and tumor necrosis factor-α were significantly increased. Macrophage infiltration in atherosclerotic regions was enhanced with SAA treatment. A migration assay revealed prominent dose-dependent chemotaxis of SAA to macrophages. Furthermore, the expression of monocyte chemotactic protein-1 and vascular cell adhesion molecule-1 (VCAM-1) was upregulated significantly with SAA treatment. SAA-induced VCAM-1 production was detected in human aortic endothelial cells in vitro. Thus, an increase in plasma SAA directly accelerates the progression of atherosclerosis in ApoE?/? mice. SAA is not only a risk marker for atherosclerosis but also an active participant in atherogenesis.  相似文献   

9.
Connexin37 protects against atherosclerosis by regulating monocyte adhesion   总被引:7,自引:0,他引:7  
A genetic polymorphism in the human gene encoding connexin37 (CX37, encoded by GJA4, also known as CX37) has been reported as a potential prognostic marker for atherosclerosis. The expression of this gap-junction protein is altered in mouse and human atherosclerotic lesions: it disappears from the endothelium of advanced plaques but is detected in macrophages recruited to the lesions. The role of CX37 in atherogenesis, however, remains unknown. Here we have investigated the effect of deleting the mouse connexin37 (Cx37) gene (Gja4, also known as Cx37) on atherosclerosis in apolipoprotein E-deficient (Apoe(-/-)) mice, an animal model of this disease. We find that Gja4(-/-)Apoe(-/-) mice develop more aortic lesions than Gja4(+/+)Apoe(-/-) mice that express Cx37. Using in vivo adoptive transfer, we show that monocyte and macrophage recruitment is enhanced by eliminating expression of Cx37 in these leukocytes but not by eliminating its expression in the endothelium. We further show that Cx37 hemichannel activity in primary monocytes, macrophages and a macrophage cell line (H36.12j) inhibits leukocyte adhesion. This antiadhesive effect is mediated by release of ATP into the extracellular space. Thus, Cx37 hemichannels may control initiation of the development of atherosclerotic plaques by regulating monocyte adhesion. H36.12j macrophages expressing either of the two CX37 proteins encoded by a polymorphism in the human GJA4 gene show differential ATP-dependent adhesion. These results provide a potential mechanism by which a polymorphism in CX37 protects against atherosclerosis.  相似文献   

10.
11.
Cardiovascular disease is a major cause of morbidity and mortality in the United States. While many studies have focused upon the effects of adult second-hand smoke exposure on cardiovascular disease development, disease development occurs over decades and is likely influenced by childhood exposure. The impacts of in utero versus neonatal second-hand smoke exposure on adult atherosclerotic disease development are not known. The objective of the current study was to determine the effects of in utero versus neonatal exposure to a low dose (1 mg/m3 total suspended particulate) of second-hand smoke on adult atherosclerotic lesion development using the apolipoprotein E null mouse model. Consequently, apolipoprotein E null mice were exposed to either filtered air or second-hand smoke: (i) in utero from gestation days 1–19, or (ii) from birth until 3 weeks of age (neonatal). Subsequently, all animals were exposed to filtered air and sacrificed at 12–14 weeks of age. Oil red-O staining of whole aortas, measures of mitochondrial damage, and oxidative stress were performed. Results show that both in utero and neonatal second-hand smoke exposure significantly increased adult atherogenesis in mice compared to filtered air controls. These changes were associated with changes in aconitase and mitochondrial superoxide dismutase activities consistent with increased oxidative stress in the aorta, changes in mitochondrial DNA copy number and deletion levels. These studies show that in utero or neonatal exposure to second-hand smoke significantly influences adult atherosclerotic lesion development and results in significant alterations to the mitochondrion and its genome that may contribute to atherogenesis.  相似文献   

12.
Triglyceride-rich lipoproteins (TGRLs) and low-density-lipoprotein (LDL) cholesterol are independent risk factors for coronary artery disease. We have previously proposed that the very low-density-lipoprotein (VLDL) receptor is one of the receptors required for foam cell formation by TGRLs in human macrophages. However, the VLDL receptor proteins have not been detected in atherosclerotic lesions of several animal models. Here we showed no VLDL receptor protein was detected in mouse macrophage cell lines (Raw264.7 and J774.2) or in mouse peritoneal macrophages in vitro. Furthermore, no VLDL receptor protein was detected in macrophages in atherosclerotic lesions of chow-fed apolipoprotein E-deficient or cholesterol-fed LDL receptor-deficient mice in vivo. In contrast, macrophage VLDL receptor protein was clearly detected in human macrophages in vitro and in atherosclerotic lesions in myocardial infarction-prone Watanabe-heritable hyperlipidemic (WHHLMI) rabbits in vivo. There are species differences in the localization of VLDL receptor protein in vitro and in vivo. Since VLDL receptor is expressed on macrophages in atheromatous plaques of both rabbit and human but not in mouse models, the mechanisms of atherogenesis and/or growth of atherosclerotic lesions in mouse models may be partly different from those of humans and rabbits.  相似文献   

13.
C-reactive protein as a risk factor versus risk marker   总被引:4,自引:0,他引:4  
PURPOSE OF REVIEW: C-reactive protein (CRP) is consistently associated with cardiovascular disease in prospective and cross-sectional clinical and epidemiological studies. Inflammation is an important mechanism in cardiovascular disease, and the plasma level of CRP is considered to reflect the inflammatory condition of the patient and/or the vessel wall. In addition, there are also a number of indications for a causal role of CRP in cardiovascular disease. RECENT FINDINGS: A number of new publications show potential causal effects of CRP on cardiovascular disease, and evidence from human-CRP transgenic animals also indicates a causal contribution of CRP to cardiovascular disease. On the other hand, a new large prospective study and an updated meta-analysis indicate that the contribution of CRP to cardiovascular disease is less impressive than reported earlier (odds ratio, 1.58; 95% confidence interval, 1.48-1.68). SUMMARY: We review here the most recent evidence on mechanisms by which CRP is involved as a causal factor in the precipitation of cardiovascular disease. Evidence for such a role is accumulating.  相似文献   

14.
15.
Recent decades have seen a significant increase in the incidence of diabetes mellitus. The number of individuals with diabetes is projected to reach 300 million by the year 2025. Diabetes is a leading cause of blindness, renal failure, lower limb amputation, and an independent risk factor for atherosclerotic cardiovascular disease (CVD)--a leading cause of death in Western society. Understanding the molecular and cellular mechanisms by which diabetes mellitus promotes atherosclerosis is essential to developing methods to treat and prevent diabetes-associated CVD. This review summarizes our current knowledge of the mechanisms by which diabetes may promote atherogenesis and specifically focuses on a novel pathway linking these 2 conditions. We hypothesize that the accumulation of intracellular glucosamine observed in conditions of chronic hyperglycaemia may promote atherogenesis via a mechanism involving dysregulated protein folding, activation of endoplasmic reticulum (ER) stress, and increased glycogen synthase kinase (GSK)-3 activity. The identification of this novel mechanism provides a promising hypothesis and multiple new targets for potential therapeutic intervention in the treatment of diabetes mellitus and accelerated atherosclerosis.  相似文献   

16.
C-reactive protein (CRP) is a risk marker and a potential modulator of vascular disease. Whether CRP modulates nitric oxide (NO) synthase (NOS) activity and NO metabolism remains unclear. We studied the effect of CRP on NO metabolism in transgenic mice that express human CRP (CRPtg). CRPtg and wild-type mice were subjected to controlled femoral artery wire injury. CRP serum levels at baseline and 6 and 24 h after injury were 12.4 +/- 9, 18.6 +/- 6.9, and 58.4 +/- 13 mg/l, respectively, in CRPtg mice but were undetectable at all time points in wild-type mice. Endothelial NOS protein and mRNA expression were significantly suppressed in the injured arteries of CRPtg mice (n = 5, P < 0.05). A similar reduction in eNOS expression was observed in the distant lung and heart. NO release after injury was significantly lower in CRPtg mice, as measured by nitrate and nitrite breakdown products, with a concomitant suppression of cGMP NO signaling after injury. Endothelial NOS and NO expression after vascular injury are locally and systemically suppressed in mice that express human CRP. These in vivo observations support the hypothesis that CRP modulates NO metabolism and may have implications regarding the mechanisms by which CRP modulates vascular disease.  相似文献   

17.
Polo-like kinase 1 (PLK1) is a serine/threonine kinase involving lipid metabolism and cardiovascular disease. However, its role in atherogenesis has yet to be determined. The aim of this study was to observe the impact of PLK1 on macrophage lipid accumulation and atherosclerosis development and to explore the underlying mechanisms. We found a significant reduction of PLK1 expression in lipid-loaded macrophages and atherosclerosis model mice. Lentivirus-mediated overexpression of PLK1 promoted cholesterol efflux and inhibited lipid accumulation in THP-1 macrophage-derived foam cells. Mechanistic analysis revealed that PLK1 stimulated the phosphorylation of AMP-activated protein kinase (AMPK), leading to activation of the peroxisome proliferator-activated receptor γ (PPARγ)/liver X receptor α (LXRα) pathway and up-regulation of ATP binding cassette transporter A1 (ABCA1) and ABCG1 expression. Injection of lentiviral vector expressing PLK1 increased reverse cholesterol transport, improved plasma lipid profiles and decreased atherosclerotic lesion area in apoE-deficient mice fed a Western diet. PLK1 overexpression also facilitated AMPK and HSL phosphorylation and enhanced the expression of PPARγ, LXRα, ABCA1, ABCG1 and LPL in the aorta. In summary, these data suggest that PLK1 inhibits macrophage lipid accumulation and mitigates atherosclerosis by promoting ABCA1- and ABCG1-dependent cholesterol efflux via the AMPK/PPARγ/LXRα pathway.  相似文献   

18.
Quest for novel cardiovascular biomarkers by proteomic analysis   总被引:2,自引:0,他引:2  
Atherosclerosis, and the resulting coronary heart disease and stroke, is the most common cause of death in developed countries. Atherosclerosis is an inflammatory process that results in the development of complex lesions or plaques that protrude into the arterial lumen. Plaque rupture and thrombosis result in the acute clinical complications of myocardial infarction (MI) and stroke. Although certain risk factors (dyslipidemias, diabetes, hypertension) and humoral markers of plaque vulnerability (C-reactive protein, interleukin-6, 10 and 18, CD40L) have been identified, a highly sensitive and specific biomarker or protein profile, which could provide information on the stability/vulnerability of atherosclerotic lesions, remains to be identified. In this review, we report several proteomic approaches which have been applied to circulating or resident cells, atherosclerotic plaques or plasma, in the search for new proteins that could be used as cardiovascular biomarkers. First, an example using a differential proteomic approach (2-DE and MS) comparing the secretome from control mammary arteries and atherosclerotic plaques is displayed. Among the different proteins identified, we showed that low levels of HSP-27 could be a potential marker of atherosclerosis. Second, we have revised several studies performed in cells involved in the pathogenesis of atherosclerosis (foam cells and smooth muscle cells). Another approach consists of performing proteomic analysis on circulating cells or plasma, which will provide a global view of the whole body response to atherosclerotic aggression. Circulating cells can bear information reflecting directly an inflammatory or pro-coagulant state related to the pathology. As an illustration, we report that circulating monocytes and plasma in patients with acute coronary syndromes has disclosed that mature Cathepsin D is increased both in the plasma and monocytes of these patients. Finally, the problems of applying proteomic approach directly to plasma will be discussed. The purpose of this review is to provide the reader with an overview of different proteomic approaches that can be used to identify new biomarkers in vascular diseases.  相似文献   

19.
PURPOSE OF REVIEW: Atherosclerosis remains the leading cause of death in the developed countries. In addition to lipid-lowering drugs - statins, dietary control, and exercise, new approaches are needed for the treatment and prevention of atherosclerosis. This review will focus on the role(s) of lysosomal acid lipase and its use as an enzyme therapy to reduce atherosclerotic lesions in a mouse model and to examine the molecular basis supporting this novel strategy and its mechanism of effect. RECENT FINDINGS: Administration of human lysosomal acid lipase via tail vein into mice with atherosclerosis eliminates early aortic and coronary ostial lesions and reduces lesional size in advanced disease. The reduction of advanced lesional area is related to decreases in foamy macrophages, collagen positive areas, and necrotic areas. Compared with sham-treated mice, the human lysosomal acid lipase-treated mice also have reduced levels of plasma cholesteryl esters, and reduced levels of hepatic cholesterol and triglycerides. SUMMARY: These studies indicate that administrated lysosomal acid lipase affects the atherogenesis by at least two mechanisms: (1) direct targeting of lesional macrophages with resultant decreases in cholesteryl esters and triglyceride in the lysosomes of macrophages in the lesions; (2) systemic effects that mediate the liver to reduce the hepatic cholesteryl ester and triglyceride release, possibly leading to reduced production of VLDL and LDL.  相似文献   

20.

Background

Phospholipid transfer protein (PLTP) is expressed by various cell types. In plasma, it is associated with high density lipoproteins (HDL). Elevated levels of PLTP in transgenic mice result in decreased HDL and increased atherosclerosis. PLTP is present in human atherosclerotic lesions, where it seems to be macrophage derived. The aim of the present study is to evaluate the atherogenic potential of macrophage derived PLTP.

Methods and Findings

Here we show that macrophages from human PLTP transgenic mice secrete active PLTP. Subsequently, we performed bone marrow transplantations using either wild type mice (PLTPwt/wt), hemizygous PLTP transgenic mice (huPLTPtg/wt) or homozygous PLTP transgenic mice (huPLTPtg/tg) as donors and low density lipoprotein receptor deficient mice (LDLR−/−) as acceptors, in order to establish the role of PLTP expressed by bone marrow derived cells in diet-induced atherogenesis. Atherosclerosis was increased in the huPLTPtg/wt→LDLR−/− mice (2.3-fold) and even further in the huPLTPtg/tg→LDLR−/− mice (4.5-fold) compared with the control PLTPwt/wt→LDLR−/− mice (both P<0.001). Plasma PLTP activity levels and non-HDL cholesterol were increased and HDL cholesterol decreased compared with controls (all P<0.01). PLTP was present in atherosclerotic plaques in the mice as demonstrated by immunohistochemistry and appears to co-localize with macrophages. Isolated macrophages from PLTP transgenic mice do not show differences in cholesterol efflux or in cytokine production. Lipopolysaccharide activation of macrophages results in increased production of PLTP. This effect was strongly amplified in PLTP transgenic macrophages.

Conclusions

We conclude that PLTP expression by bone marrow derived cells results in atherogenic effects on plasma lipids, increased PLTP activity, high local PLTP protein levels in the atherosclerotic lesions and increased atherosclerotic lesion size.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号