首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.

Mannosylphosphorylated glycans are found only in fungi, including yeast, and the elimination of mannosylphosphates from glycans is a prerequisite for yeast glyco-engineering to produce human-compatible glycoproteins. In Saccharomyces cerevisiae, MNN4 and MNN6 genes are known to play roles in mannosylphosphorylation, but disruption of these genes does not completely remove the mannosylphosphates in N-glycans. This study was performed to find unknown key gene(s) involved in N-glycan mannosylphosphorylation in S. cerevisiae. For this purpose, each of one MNN4 and five MNN6 homologous genes were deleted from the och1Δmnn1Δmnn4Δmnn6Δ strain, which lacks yeast-specific hyper-mannosylation and the immunogenic α(1,3)-mannose structure. N-glycan profile analysis of cell wall mannoproteins and a secretory recombinant protein produced in mutants showed that the MNN14 gene, an MNN4 paralog with unknown function, is essential for N-glycan mannosylphosphorylation. Double disruption of MNN4 and MNN14 genes was enough to eliminate N-glycan mannosylphosphorylation. Our results suggest that the S. cerevisiae och1Δmnn1Δmnn4Δmnn14Δ strain, in which all yeast-specific N-glycan structures including mannosylphosphorylation are abolished, may have promise as a useful platform for glyco-engineering to produce therapeutic glycoproteins with human-compatible N-glycans.

  相似文献   

3.
《Gene》1998,206(1):107-116
A novel P-type ATPase gene, Saccharomyces cerevisiae PMR1 homologue (YlPMR1), has been cloned and sequenced in the yeast, Yarrowia lipolytica. The putative gene product has 928 amino acids with a calculated molecular mass of 100 050 Da and a pI of 5.15. The deduced amino-acid sequence analysis demonstrated that the cloned gene product contains all 10 of the conserved regions in P-type ATPases and exhibits 55% amino-acid identity to the S. cerevisiae PMR1 gene product; however, it shows a relatively lower homology to PMCA (24%) and SERCA (33%), confirming the presence of a third class of Ca2+-ATPase (secretory pathway Ca2+-ATPase, SPCA). The YlPMR1-disrupted strain shows defective growth in low Ca2+ or EGTA-containing medium. In fact, a longer lag time (60 h) was observed in YlPMR1-defective mutant cells during cultivation in EGTA-containing YPD medium. These growth defects were overcome by adding Ca2+ and Mn2+ into the medium. Interestingly, whereas Mn2+ inhibits growth of the control strain, it significantly improves the growth of YlPMR1-disrupted cells. These results suggest an involvement of the YlPMR1 gene product in Ca2+ and Mn2+ ion homeostasis in Y. lipolytica.  相似文献   

4.
5.
The gene for the open reading frame YER005w that is homologous to yeast Golgi GDPase encoded by the GDA1 gene was cloned and named YND1. It encodes a 630-amino acid protein that contains a single transmembrane region near the carboxyl terminus. The overexpression of the YND1 gene in the gda1 null mutant caused a significant increase in microsomal membrane-bound nucleoside phosphatase activity with a luminal orientation. The activity was equally high toward ADP/ATP, GDP/GTP, and UDP/UTP and approximately 50% less toward CDP/CTP and thiamine pyrophosphate, but there was no activity toward GMP, indicating that the Ynd1 protein belongs to the apyrase family. This substrate specificity is different from that of yeast GDPase, but similar to that of human Golgi UDPase. The Deltaynd1 mutant cells were defective in O- and N-linked glycosylation in the Golgi compartments. The overexpression of the YND1 gene complemented some glycosylation defects in Deltagda1 disruptants, suggesting a partially redundant function of yeast apyrase and GDPase. From these results and the phenotype of the Deltaynd1Deltagda1 double deletion showing a synthetic effect, we conclude that yeast apyrase is required for Golgi glycosylation and cell wall integrity, providing the first direct evidence for the in vivo function of intracellular apyrase in eukaryotic cells.  相似文献   

6.
Inspection of the complete genome of the yeast Yarrowia lipolytica for the presence of genes encoding homologues of known telomere-binding proteins surprisingly revealed no counterparts of typical yeast Myb domain-containing telomeric factors including Rap1 or Taz1. Instead, we identified a gene, YALIOD10923g, encoding a protein containing two Myb domains, exhibiting a high degree of similarity to the Myb domain of human telomeric proteins TRF1 and TRF2 and homologous to an essential fission yeast protein Mug152 whose expression is elevated during meiosis. The protein, which we named Tay1p (telomere-associated in Yarrowia lipolytica 1), was purified for biochemical studies. Using a model Y. lipolytica telomere, we demonstrate that the protein preferentially binds to Y. lipolytica telomeric tracts. Tay1p binds along the telomeric tract as dimers and larger oligomers, and it is able to remodel the telomeric DNA into both looped structures and synaptic complexes of two model telomere DNAs. The ability of Tay1p to induce dimerization of telomeres in vitro goes in line with its oligomeric nature, where each oligomer can employ several Myb domains to form intermolecular telomere clusters. We also provide experimental evidence that Tay1p may be associated with Y. lipolytica telomeres in vivo. Together with its homologues from Schizosaccharomyces pombe and several basidiomycetous fungi (Sánchez-Alonso, P., and Guzman, P. (2008) Fungal Genet. Biol. 45, S54-S62), Tay1p constitutes a novel family of putative telomeric factors whose analysis may be instrumental in understanding the function and evolution of double-stranded DNA telomeric proteins.  相似文献   

7.
Summary The fatty acid synthetase (FAS) gene FAS1 of the alkane-utilizing yeast Yarrowia lipolytica was cloned and sequenced. The gene is represented by an intron-free reading frame of 6228 by encoding a protein of 2076 amino acids and 229980 Da molecular weight. This protein exhibits a 58% sequence similarity to the corresponding Saccharomyces cerevisiae FAS -subunit. The sequential order of the five FAS1-encoded enzyme domains, acetyl transferase, enoyl reductase, dehydratase and malonyl/palmityl-transferase, is co-linear in both organisms. This finding agrees with available evidence that the functional organization of FAS genes is similar in related organisms but differs considerably between unrelated species. In addition, previously reported conflicting data concerning the 3 end of S. cerevisiae FAS1 were re-examined by genomic and cDNA sequencing of the relevant portion of the gene. Thereby, the translational stop codon was shown to lie considerably downstream of both published termination sites. The S. cerevisiae FAS1 gene thus has a corrected length of 6153 by and encodes a protein of 2051 amino acids and 228667 Da molecular weight.  相似文献   

8.
Yarrowia lipolytica was recently introduced as a new model organism to study peroxisome degradation in yeasts. Transfer of Y. lipolytica cells from oleate/ethylamine to glucose/ammonium chloride medium leads to selective macroautophagy of peroxisomes. To decipher the molecular mechanisms of macropexophagy we isolated mutants of Y. lipolytica defective in the inactivation of peroxisomal enzymes under pexophagy conditions. Through this analysis we identified the gene YlTRS85, the ortholog of Saccharomyces cerevisiae TRS85 that encodes the 85 kDa subunit of transport protein particle (TRAPP). A parallel genetic screen in S. cerevisiae also identified the trs85 mutant. Here, we report that Trs85 is required for nonspecific autophagy, pexophagy and the cytoplasm to vacuole targeting pathway in both yeasts.  相似文献   

9.
The calnexin homologue (Cne1p) of Saccharomyces cerevisiae was expressed in Escherichia coli to evaluate its chaperone function. The chaperone function was examined as to the effects on the suppression of thermal denaturation and the enhancement of refolding, using citrate synthase (CS) as a nonspecific chaperone substrate. Cne1p effectively suppressed the thermal denaturation of CS and enhanced the refolding of thermally or chemically denatured CS in a concentration-dependent manner. In addition, the chaperone function of Cne1p was greatly affected in the presence of monoglucosylated oligosaccharides (G1M9) that specifically bind to the lectin site. These results indicated that Cne1p functions as a molecular chaperone in Saccharomyces cerevisiae.  相似文献   

10.
表面展示酶作为全细胞催化剂具备诸如能提高酶的稳定性、省去纯化过程、节约成本等优点。脂肪酶是应用最为广泛的工业酶之一。本研究利用酿酒酵母细胞壁蛋白Cwp2作为锚定蛋白,将解脂耶氏酵母脂肪酶Lip2展示在酿酒酵母细胞表面,以制备脂肪酶全细胞催化剂。Lip2被融合到Cwp2的N端,Cwp2通过其C端的GPI锚定信号共价结合到细胞壁上。表面展示的Lip2可以水解三丁酸甘油酯及对硝基苯酚辛酸酯(pNPC),其pNPC水解酶活达到4.6U/g干细胞。作为全细胞催化剂,表面展示的Lip2具备良好的催化特征,其最适温度为40°C,最适pH为8.0,同时还具备良好的有机溶剂稳定性。  相似文献   

11.
The Saccharomyces cerevisiae SIS1 gene was identified as a high copy number suppressor of the slow growth phenotype of strains containing mutations in the SIT4 gene, which encodes a predicted serine/threonine protein phosphatase. The SIS1 protein is similar to bacterial dnaJ proteins in the amino-terminal third and carboxyl-terminal third of the proteins. In contrast, the middle third of SIS1 is not similar to dnaJ proteins. This region of SIS1 contains a glycine/methionine-rich region which, along with more amino-terminal sequences, is required for SIS1 to associate with a protein of apparent molecular mass of 40 kD. The SIS1 gene is essential. Strains limited for the SIS1 protein accumulate cells that appear blocked for migration of the nucleus from the mother cell into the daughter cell. In addition, many of the cells become very large and contain a large vacuole. The SIS1 protein is localized throughout the cell but is more concentrated at the nucleus. About one-fourth of the SIS1 protein is released from a nuclear fraction upon treatment with RNase. We also show that overexpression of YDJ1, another yeast protein with similarity to bacterial dnaJ proteins, can not substitute for SIS1.  相似文献   

12.
Journal of Industrial Microbiology & Biotechnology - Ionic liquids show promise for deconstruction of lignocellulosic biomass prior to fermentation. Yet, imidazolium ionic liquids (IILs) can be...  相似文献   

13.
14.
Discovery of an alternative fuel is now an urgent matter because of the impending issue of oil depletion. Lipids synthesized in algal cells called triacylglycerols (TAGs) are thought to be of the most value as a potential biofuel source because they can use transesterification to manufacture biodiesel. Biodiesel is deemed as a good solution to overcoming the problem of oil depletion since it is capable of providing good performance similar to that of petroleum. Expression of several genomic sequences, including glycerol-3-phosphate dehydrogenase, glycerol-3-phosphate acyltransferase, lysophosphatidic acid acyltransferase, phosphatidic acid phosphatase, diacylglycerol acyltransferase, and phospholipid:diacylglycerol acyltransferase, can be useful for manipulating metabolic pathways for biofuel production. In this study, we found this approach indeed increased the storage lipid content of C. minutissima UTEX 2219 up to 2-fold over that of wild type. Thus, we conclude this approach can be used with the biodiesel production platform of C. minutissima UTEX 2219 for high lipid production that will, in turn, enhance productivity.  相似文献   

15.
[目的]将解脂耶氏酵母胞外脂肪酶Lip2展示在酿酒酵母表面,构建全细胞催化剂.[方法]采用PCR方法扩增得到解脂耶氏酵母胞外脂肪酶Lip2成熟肽编码基因LIP2,将其连接到AGA2基因的下游构建表面展示载体pCTLIP2.分别以橄榄油、三丁酸甘油酯和对硝基苯酚棕榈酸酯(pNPP)为底物检测展示的脂肪酶酶活.在此基础上,对野生菌及工程菌的酶学性质进行比较.[结果]展示Lip2的酿酒酵母重组菌株在半乳糖的诱导下,表现出水解橄榄油、三丁酸甘油脂以及pNPP的活性,20℃诱导72h时酶活达到最高,为182 U/g干细胞.对展示的Lip2的酶学性质研究表明,其最适温度为40℃,最适pH为8.0,温度稳定性比自由酶有所提高,50℃温浴4 h后残余酶活为其最大酶活的23.2%.以不同碳链长度的对硝基苯酚酯为底物检测其底物特异性,结果显示其水解C8,C12,C16对硝基苯酚酯活性相近,均远高于对硝基苯酚丁酸酯(C4)的水解酶活.[结论]对于Lip2,a凝集素系统是一个有效的展示系统,利用该系统成功将Lip2展示在酿酒酵母表面,从而构建了酿酒酵母全细胞催化剂,该全细胞催化剂具有良好的潜在应用前景.  相似文献   

16.
利用产油微生物生产特殊功能、高附加值的脂肪酸,具有良好的开发利用前景。以酿酒酵母(S.cerevisiae)和解脂耶氏酵母(Y.lipolytica)为出发菌株,以链长C4-C18的单一自由饱和脂肪酸作为唯一碳源,探究了两类酵母吸收利用、积累脂肪酸情况及胞内脂肪酸组成情况。结果表明:当碳链长C≤10时不能被利用,而且抑制细胞的生长,特别是当碳链长C≤8时,细胞很快被杀死;当碳链长C=11时,对细胞的生长有一定的抑制作用,菌体长势缓慢;碳链长C≥12时,对细胞生长没有影响;脂肪酸利用速度,偶数C脂肪酸奇数C脂肪酸;Nile red全细胞脂类染色显示,S.cerevisiae胞内脂质主要集中于胞内周边膜部位,Y.lipolytica主要以脂质体形式存在胞内,及少部分在胞内周边膜部位;GC/Mass脂类成分分析表明,菌株S.cerevisiae S228C BY4741-pox1和S.cerevisiae S228C BY4741-pox1,3可以积累培养基添加的相应脂肪酸,而其他供试菌积累的脂肪酸链长C≥16,没有检测到培养基含有相应的脂肪酸。这些结果为利用酵母生产特殊功能脂肪酸,及开发特色高附加值油脂提供了有意义的参考。  相似文献   

17.
The TEF4 gene of the non-saccharomyces yeast Yarrowia lipolytica encodes an EF1Bgamma protein with structural similarity to the glutathione transferases (GSTs). This 1203bp gene was cloned, over-expressed in Escherichia coli, and the recombinant protein characterized. DNA sequencing of the cloned gene agreed with the recently completed Y. lipolytica genome and showed 100% identity to a previously reported 30-residue N-terminal sequence for a 110kDa Y. lipolytica GST, except that it encoded two additional N-terminal residues (N-Met-Ser-). The recombinant protein (subunit M(r) 52kDa) was found not to possess GST activity with 1-chloro-2,4-dinitrobenzene. Partial tryptic digestion released two fragments of M(r) 22 and 18kDa, which we interpret as N- and C-terminal domains. Homology modeling confirmed that the N-terminal domain of Y. lipolytica TEF4 encodes a GST-like protein.  相似文献   

18.
19.
Aqueous Teucrium polium extract slightly inhibits the growth of Saccharomyces cerevisiae (Ki=0.029 [g/l]-1) and Yarrovia lipolytica (Ki=0.061 [g/l]-1). However, this extract causes important changes in the unsaturation degree (/mol) of the cellular lipids. It moreover favours the increase of the linolenic acid concentration and the decrease of the oleic one in both species.  相似文献   

20.
1. The presence of soluble proteins with fatty acid binding activity was investigated in cell-free extracts from Saccharomyces cerevisiae and Yarrowia lipolytica cultures. 2. No significant fatty acid binding by proteins was detected in S. cerevisiae, even when grown on a fatty acid-rich medium, thus indicating that such proteins are not essential to fatty acid metabolism. 3. An inducible fatty acid binding protein (K0.5 = 3-4 microM) was found in Y. lipolytica which had grown on a minimal medium with palmitate as the sole source of carbon and energy. 4. The relative molecular mass of this protein was 100,000 as inferred from Sephacryl S-200 gel filtration.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号