首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
Acute lower extremity ischemia (ALEXI) is known worldwide as an urgent condition, occurring when there is an abrupt interruption in blood flow into an extremity. This study aims to investigate whether microRNA-224 (miR-224) affects the ALEXI mice and the underlying mechanism. The miR-224 expression and C/EBP homologous protein (CHOP), mammalian target of rapamycin (mTOR), translation initiation factor 4E-binding protein 1 (4E-BP1), and phosphoprotein 70 ribosomal protein S6 kinase (p70S6K) messenger RNA (mRNA), as well as protein expressions, were determined. The target gene of miR-224 was also verified by using a luciferase reporter gene assay. The vascular endothelial cells from the ALEXI mice were transfected with miR-224 mimics, miR-224 inhibitors, or small-interfering RNA against CHOP. Cell proliferation was assessed using a 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay. The cell cycle distribution along with the cell apoptosis were both evaluated by using a flow cytometry. The muscle fibers of the lower extremities found in the ALEXI mice were evidently swollen and rounded, presenting with a remarkably narrowed gap. The positive CHOP expression increased in ALEXI mice than normal mice, while the miR-224 expression and mTOR, 4E-BP1, and p70S6K mRNA, as well as the protein expression, decreased. Luciferase reporter gene assay validated that the miR-224 gene directly targeted CHOP. MiR-224 facilitated cell proliferation but inhibited cell apoptosis; by contrast, CHOP increased cell apoptosis. Moreover, the cells transfected along with miR-224 mimic exhibited a lower CHOP expression as well as increased mTOR, 4E-BP1, and p70S6K expression. Our study provided evidence that miR-224 could alleviate the occurrence and development of ALEXI in mice through activation of the mTOR signaling pathway by downregulating CHOP.  相似文献   

4.
5.
Oxygen deprivation leads to the accumulation of misfolded proteins in the endoplasmic reticulum (ER), causing ER stress. Under conditions of ER stress, inhibition of protein synthesis and up-regulation of ER chaperone expression reduce the misfolded proteins in the ER. AMP-activated protein kinase (AMPK) is a key regulatory enzyme involved in energy homeostasis during hypoxia. It has been shown that AMPK activation is associated with inhibition of protein synthesis via phosphorylation of elongation factor 2 (eEF2) in cardiomyocytes. We therefore examined whether AMPK attenuates hypoxia-induced ER stress in neonatal rat cardiomyocytes. We found that hypoxia induced ER stress, as assessed by the expression of CHOP and BiP and cleavage of caspase 12. Knockdown of CHOP or caspase 12 through small interfering RNA (siRNA) resulted in decreased expression of cleaved poly(ADP-ribose) polymerase following exposure to hypoxia. We also found that hypoxia-induced CHOP expression and cleavage of caspase 12 were significantly inhibited by pretreatment with 5-aminoimidazole-4-carboxyamide-1-beta-D-ribofuranoside (AICAR), a pharmacological activator of AMPK. In parallel, adenovirus expressing dominant-negative AMPK significantly attenuated the cardioprotective effects of AICAR. Knockdown of eEF2 phosphorylation using eEF2 kinase siRNA abolished these cardioprotective effects of AICAR. Taken together, these findings demonstrate that activation of AMPK contributes to protection of the heart against hypoxic injury through attenuation of ER stress and that attenuation of protein synthesis via eEF2 inactivation may be the mechanism of cardioprotection by AMPK.  相似文献   

6.
7.
8.
9.
The C/EBP-homologous protein (CHOP) acts as a mediator of endoplasmic reticulum (ER) stress-induced pancreatic insulin-producing β cell death, a key element in the pathogenesis of diabetes. Chemicals that inhibit the expression of CHOP might therefore protect β cells from ER stress-induced apoptosis and prevent or ameliorate diabetes. Here, we used high-throughput screening to identify a series of 1,2,3-triazole amide derivatives that inhibit ER stress-induced CHOP-luciferase reporter activity. Our SAR studies indicate that compounds with an N,1-diphenyl-5-methyl-1H-1,2,3-triazole-4-carboxamide backbone potently protect β cell against ER stress. Several representative compounds inhibit ER stress-induced up-regulation of CHOP mRNA and protein, without affecting the basal level of CHOP expression. We further show that a 1,2,3-triazole derivative 4e protects β cell function and survival against ER stress in a CHOP-dependent fashion, as it is inactive in CHOP-deficient β cells. Finally, we show that 4e significantly lowers blood glucose levels and increases concomitant β cell survival and number in a streptozotocin-induced diabetic mouse model. Identification of small molecule inhibitors of CHOP expression that prevent ER stress-induced β cell dysfunction and death may provide a new modality for the treatment of diabetes.  相似文献   

10.
11.
12.
13.
14.
Identification of novel stress-induced genes downstream of chop.   总被引:20,自引:1,他引:19       下载免费PDF全文
  相似文献   

15.
16.
目的:筛选能够抑制在乳腺癌发生中起关键作用的雌激素受体α(ERα)表达的microRNA(miRNA)分子,并在ERα阳性的乳腺癌细胞株中初步检测其生物学功能。方法:在ERα阳性的乳腺癌细胞ZR75-1中转染多种miRNA的表达载体,Western印迹检测ERα的表达水平,找到可以抑制ERα表达的miRNA分子;将该miRNA的表达载体转染ZR75-1后,在雌激素E2的作用下,检测该miRNA分子对细胞生长的影响。结果:经过筛选,得到能够抑制ERα表达的miRNA分子miR-424;生长曲线结果显示,miR-424能够在不依赖于E2的情况下阻抑ZR75-1的生长。结论:该研究为进一步研究miR-424在ERα信号通路中的生物学功能及研究乳腺癌的发生发展机制奠定了基础。  相似文献   

17.
18.
19.
C/EBP homologous protein (CHOP) is a stress-inducible nuclear protein that is crucial for the development of programmed cell death and regeneration; however, the regulation of its function has not been well characterized. Slbo, a Drosophila homolog of C/EBP (CCAAT/enhancer binding protein), was shown to be unstabilized by tribbles. Here, we identified TRB3 as a tribbles ortholog in humans, which associated with CHOP to suppress the CHOP-dependent transactivation. TRB3 is induced by various forms endoplasmic reticulum (ER) stress later than CHOP. Tunicamycin treatment enhanced the TRB3 promoter activity, while dominant-negative forms of CHOP suppressed the tunicamycin-induced activation. In addition, the tunicamycin response region in the TRB3 promoter contains amino-acid response elements overlapping the CHOP-binding site, and CHOP and ATF4 cooperated to activate this promoter activity. Knockdown of endogenous ATF4 or CHOP expression dramatically repressed tunicamycin-induced TRB3 induction. Furthermore, knockdown of TRB3 expression decreased ER stress-dependent cell death. These results indicate that TRB3 is a novel target of CHOP/ATF4 and downregulates its own induction by repression of CHOP/ATF4 functions, and that it is involved in CHOP-dependent cell death during ER stress.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号