首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The commercially available genetically modified plants authorized worldwide and therefore the target sequences for molecular detection of genetically modified organisms (GMOs) are ever-increasing. The European Union has implemented a set of very strict procedures for approval to grow, import and/or utilize GMOs as food or food ingredients. As a result, GMO laboratories and food production industry currently are forced to apply different methods to test raw material and complex processed food products. Three exogenous genes (the 35 s promoter of the cauliflower mosaic virus (35 s), nos terminator from Agrobacterium tumefaciens (nos), and the neomycin phosphotransferase II (nptII) gene) are commonly used in GMO detection. In this paper, a multiplex quantitative real-time PCR (qPCR) system was developed which allows simultaneously detection of the three exogenous genes in one reaction tube. The determined limits for the multiplex qPCR assays were 4 copies/reaction in maize samples. The specificity of the assays was demonstrated to be 100% according to the detection results of 23 genetically modified (GM) crops and 97 complex processed food products. The validation data show the individual PCR efficiency was accredited with negligible impacts between three detection channels in 7500 fluorescence quantitative PCR machine. These results indicate that this high-throughput multiplex qPCR method which combined with a reference gene is feasible for screening of GMOs, even for the processed food.  相似文献   

2.
Chytridiomycosis, caused by the amphibian chytrid fungus Batrachochytrium dendrobatidis (Bd), is an emerging infectious disease responsible for amphibian declines on several continents. In laboratory conditions, optimal temperatures for Bd growth and survivorship are between 17 and 25 degrees C. We investigated the effect of different storage temperatures, both in field and laboratory conditions, on detection of Bd from swabs stored for 7 d. We sampled 52 wild Litoria wilcoxii males for Bd by simultaneously running 2 cotton swabs along the skin of the frog. One group of swabs was stored in a freezer within 2 h of sampling and the other was kept in a car in an exposed environment for 7 d before being stored in the freezer. In the laboratory experiment, swabs were inoculated with zoospores of Bd and underwent one of 4 treatments: immediate DNA extraction, or storage at 27, 38 or 45 degrees C for 7 d prior to DNA extraction. Swabs from all treatments were analyzed by quantitative (real-time) PCR test. Though prevalence of Bd did not differ significantly between swabs that were frozen and those that remained in a car for 7 d (19.2 vs. 17.3%, respectively), the number of Bd zoospores detected on car swabs taken from infected frogs was, on average, 67% less than that detected on the corresponding frozen swab. In the laboratory experiment, the number of zoospore equivalents varied significantly with treatment (F(3,35) = 4.769, p = 0.007), indicating that there was reduced recovery of Bd DNA from swabs stored at higher temperatures compared with those stored at lower temperatures or processed immediately. We conclude that failure to store swabs in cool conditions can result in a significant reduction in the amount of Bd DNA detected using the PCR assay. Our results have important implications for researchers conducting field sampling of amphibians for Bd.  相似文献   

3.
The ability to perform DNA amplification on a microfluidic device is very appealing. In this study, a compact continuous-flow polymerase chain reaction (PCR) microfluidics was developed for rapid analysis of genetically modified organisms (GMOs) in genetically modified soybeans. The device consists of three pieces of copper and a transparent polytetrafluoroethylene capillary tube embedded in the spiral channel fabricated on the copper. On this device, the P35S and Tnos sequences were successfully amplified within 9 min, and the limit of detection of the DNA sample was estimated to be 0.005 ng μl−1. Furthermore, a duplex continuous-flow PCR was also reported for the detection of the P35S and Tnos sequences in GMOs simultaneously. This method was coupled with the intercalating dye SYBR Green I and the melting curve analysis of the amplified products. Using this method, temperature differences were identified by the specific melting temperature values of two sequences, and the limit of detection of the DNA sample was assessed to be 0.01 ng μl−1. Therefore, our results demonstrated that the continuous-flow PCR assay could discriminate the GMOs in a cost-saving and less time-consuming way.  相似文献   

4.
A multiplex DNA microarray chip was developed for simultaneous identification of nine genetically modified organisms (GMOs), five plant species and three GMO screening elements, i.e. the 35S promoter, the nos terminator and the nptII gene. The chips also include several controls, such as that for the possible presence of CaMV. The on-chip detection was performed directly with PCR amplified products. Particular emphasis was placed on the reduction of the number of PCR reactions required and on the number of primers present per amplification tube. The targets were biotin labelled and the arrays were detected using a colorimetric methodology. Specificity was provided by specific capture probes designed for each GMO and for the common screening elements. The sensitivity of the assay was tested by experiments carried out in five different laboratories. The limit of detection was lower than 0.3% GMO for all tests and in general around 0.1% for most GMOs. The chip detection system complies with the requirements of current EU regulations and other countries where thresholds are established for the labelling of GMO. Serge Leimanis, Marta Hernández, Sophie Fernández: These authors contributed equally to this paper.  相似文献   

5.

Background  

Real-time PCR is the technique of choice for nucleic acid quantification. In the field of detection of genetically modified organisms (GMOs) quantification of biotech products may be required to fulfil legislative requirements. However, successful quantification depends crucially on the quality of the sample DNA analyzed. Methods for GMO detection are generally validated on certified reference materials that are in the form of powdered grain material, while detection in routine laboratories must be performed on a wide variety of sample matrixes. Due to food processing, the DNA in sample matrixes can be present in low amounts and also degraded. In addition, molecules of plant origin or from other sources that affect PCR amplification of samples will influence the reliability of the quantification. Further, the wide variety of sample matrixes presents a challenge for detection laboratories. The extraction method must ensure high yield and quality of the DNA obtained and must be carefully selected, since even components of DNA extraction solutions can influence PCR reactions. GMO quantification is based on a standard curve, therefore similarity of PCR efficiency for the sample and standard reference material is a prerequisite for exact quantification. Little information on the performance of real-time PCR on samples of different matrixes is available.  相似文献   

6.
Conjunctival swabs were taken from 60 healthy pet cats and tested for Chlamydophila felis by PCR assays to amplify the ompA, omp2 and groEL genes. Chlamydial DNA was detected in 2 (3.3%) cats, one of which had been vaccinated against C. felis eight months before sample collection. The nucleotide and predicted amino acid sequences of three genes from two cats showed 100% identity with the same regions amplified from conjunctival swabs of cats in the same geographic area.  相似文献   

7.
The safety of genetically modified organisms (GMOs) has attracted much attention recently. Polymerase chain reaction (PCR) amplification is a common method used in the identification of GMOs. However, a major disadvantage of PCR is the potential amplification of non-target DNA, causing false-positive identification. Thus, there remains a need for a simple, reliable and ultrasensitive method to identify and quantify GMO in crops. This report is to introduce a magnetic bead-based PCR-free method for rapid detection of GMOs using dual-color fluorescence cross-correlation spectroscopy (FCCS). The cauliflower mosaic virus 35S (CaMV35S) promoter commonly used in transgenic products was targeted. CaMV35S target was captured by a biotin-labeled nucleic acid probe and then purified using streptavidin-coated magnetic beads through biotin-streptavidin linkage. The purified target DNA fragment was hybridized with two nucleic acid probes labeled respectively by Rhodamine Green and Cy5 dyes. Finally, FCCS was used to detect and quantify the target DNA fragment through simultaneously detecting the fluorescence emissions from the two dyes. In our study, GMOs in genetically engineered soybeans and tomatoes were detected, using the magnetic bead-based PCR-free FCCS method. A detection limit of 50 pM GMOs target was achieved and PCR-free detection of GMOs from 5 µg genomic DNA with magnetic capture technology was accomplished. Also, the accuracy of GMO determination by the FCCS method is verified by spectrophotometry at 260 nm using PCR amplified target DNA fragment from GM tomato. The new method is rapid and effective as demonstrated in our experiments and can be easily extended to high-throughput and automatic screening format. We believe that the new magnetic bead-assisted FCCS detection technique will be a useful tool for PCR-free GMOs identification and other specific nucleic acids.  相似文献   

8.
9.
10.
Infectious diseases, such as infectious hepatitis, may be transmitted from patients to staff in clinical laboratories and dialysis units during the performance of necessary procedures. This prompted us to examine the propensity of several items of commonly used apparatus to produce aerosols of infected blood. These were a microhaematocrit centrifuge, an AutoAnalyzer stirrer, and a microtonometer. We also compared some blood sample tubes with two types of lid. The results showed that all of these are potential sources of infection for laboratory staff.  相似文献   

11.
Advances in the diagnosis of Mycobacterium bovis infection in wildlife hosts may benefit the development of sustainable approaches to the management of bovine tuberculosis in cattle. In the present study, three laboratories from two different countries participated in a validation trial to evaluate the reliability and reproducibility of a real time PCR assay in the detection and quantification of M. bovis from environmental samples. The sample panels consisted of negative badger faeces spiked with a dilution series of M. bovis BCG Pasteur and of field samples of faeces from badgers of unknown infection status taken from badger latrines in areas with high and low incidence of bovine TB (bTB) in cattle. Samples were tested with a previously optimised methodology. The experimental design involved rigorous testing which highlighted a number of potential pitfalls in the analysis of environmental samples using real time PCR. Despite minor variation between operators and laboratories, the validation study demonstrated good concordance between the three laboratories: on the spiked panels, the test showed high levels of agreement in terms of positive/negative detection, with high specificity (100%) and high sensitivity (97%) at levels of 10(5) cells g(-1) and above. Quantitative analysis of the data revealed low variability in recovery of BCG cells between laboratories and operators. On the field samples, the test showed high reproducibility both in terms of positive/negative detection and in the number of cells detected, despite low numbers of samples identified as positive by any laboratory. Use of a parallel PCR inhibition control assay revealed negligible PCR-interfering chemicals co-extracted with the DNA. This is the first example of a multi-laboratory validation of a real time PCR assay for the detection of mycobacteria in environmental samples. Field studies are now required to determine how best to apply the assay for population-level bTB surveillance in wildlife.  相似文献   

12.
We have screened 91 migratory birds representing 32 species during the autumn of 2003 for the presence of the zoonotic pathogens Borrelia and Chlamydophila. Using polymerase chain reaction (PCR), B. burgdorferi sensu stricto was detected in cloacal swabs and, in two causes, also in throat swabs in 8 individuals (8.7 %) representing 7 birds species; B. garinii and B. afzelii were not detected. C. psittaci was detected only in cloacal swabs; 6 birds (6.6 %) from four species were found to be positive. The PCR products were sequenced and the sequences were compared phylogenetically with the gene sequences of 14 Chlamydophila strains retrieved from nucleotide databases; although the sequenced DNA was only 110 bp long, all obtained sequences created a new cluster with sublines branching from a position close to the periphery of the genus. All tested samples appear distinct within the known species and were most similar to C. felis or C. abortis.  相似文献   

13.
Aims:  To facilitate efficient identification of commonly encountered mycobacteria species ( Mycobacterium tuberculosis , Mycobacterium avium , Mycobacterium intracellulare , Mycobacterium fortuitum complex , Mycobacterium chelonae/abscessus , Mycobacterium kansasii , Mycobacterium gordonae ) in high throughput laboratories, a 16s rDNA sequence based real-time PCR assay was developed and evaluated.
Methods and Results:  Oligonucleotide primers and hybridization probes were designed based on sequence differences of the mycobacterial 16S rDNA gene. This assay was evaluated with 1649 suspected non-tuberculosis mycobacterial isolates. Apart from 3 out of 40  M. avium isolates that showed false signal with M. intracellulare specific probe, 100% specificity was obtained for all tested probes. Assay sensitivity varied from 88·9 to 100% depending on species. Average cost for obtaining a definite identification was only USD 1·1 with an average turn around time of less than 3 days.
Conclusions:  A rapid, simple and inexpensive real-time PCR assay was developed for the identification of common encountered mycobacteria in a high throughput laboratory setting.
Significance and Impact of the Study:  With this assay, more than 80% of the clinically isolated nontuberculous mycobacteria could be identified in a highly cost effective manner. This helped to save resources for other laboratory activities especially in high throughput mycobacterial laboratories.  相似文献   

14.
Detection of nonauthorized genetically modified organisms (GMOs) has always presented an analytical challenge because the complete sequence data needed to detect them are generally unavailable although sequence similarity to known GMOs can be expected. A new approach, differential quantitative polymerase chain reaction (PCR), for detection of nonauthorized GMOs is presented here. This method is based on the presence of several common elements (e.g., promoter, genes of interest) in different GMOs. A statistical model was developed to study the difference between the number of molecules of such a common sequence and the number of molecules identifying the approved GMO (as determined by border-fragment-based PCR) and the donor organism of the common sequence. When this difference differs statistically from zero, the presence of a nonauthorized GMO can be inferred. The interest and scope of such an approach were tested on a case study of different proportions of genetically modified maize events, with the P35S promoter as the Cauliflower Mosaic Virus common sequence. The presence of a nonauthorized GMO was successfully detected in the mixtures analyzed and in the presence of (donor organism of P35S promoter). This method could be easily transposed to other common GMO sequences and other species and is applicable to other detection areas such as microbiology.  相似文献   

15.
Commercialization of several genetically modified crops has been approved worldwide to date. Uniplex polymerase chain reaction (PCR)-based methods to identify these different insertion events have been developed, but their use in the analysis of all commercially available genetically modified organisms (GMOs) is becoming progressively insufficient. These methods require a large number of assays to detect all possible GMOs present in the sample and thereby the development of multiplex PCR systems using combined probes and primers targeted to sequences specific to various GMOs is needed for detection of this increasing number of GMOs. Here we report on the development of a multiplex real-time PCR suitable for multiple GMO identification, based on the intercalating dye SYBR Green I and the analysis of the melting curves of the amplified products. Using this method, different amplification products specific for Maximizer 176, Bt11, MON810, and GA21 maize and for GTS 40-3-2 soybean were obtained and identified by their specific Tm. We have combined amplification of these products in a number of multiplex reactions and show the suitability of the methods for identification of GMOs with a sensitivity of 0.1% in duplex reactions. The described methods offer an economic and simple alternative to real-time PCR systems based on sequence-specific probes (i.e., TaqMan chemistry). These methods can be used as selection tests and further optimized for uniplex GMO quantification.  相似文献   

16.
AIMS: Microelectrophoresis allows the detection of DNA bands using minimal amounts of sample in a short time, but commonly requires the use of special equipment which is not available in all laboratories. This fact has limited the application of this technique in microbiology despite its advantages. In this work, we describe a new approach to perform gel microelectrophoresis, named high-speed gel microelectrophoresis (HSGME), and its application for rapid detection of bacteria, protozoa and viruses in clinical, vegetal and environmental samples. METHODS AND RESULTS: Aliquots of 0.4-1 microl of PCR product were loaded in 2 cm 1% agarose microgels and electrophoresed at high voltage (125 V cm(-1)) in conventional submarine horizontal mini-slabs. By using HSGME, single-DNA bands obtained after specific-PCR useful in diagnosis of different diseases caused by micro-organisms were detected in 5 min. CONCLUSIONS: HSGME is a rapid and easy procedure applicable to detection of microbial genes, which is carried out using conventional equipment and thus can be performed in any research and diagnostic laboratory. SIGNIFICANCE AND IMPACT OF THE STUDY: The performance of HSGME saves up to 90% time, material and energy costs, as well as laboratory hazardous wastes including carcinogenic agents used for visualizing DNA bands.  相似文献   

17.
Aim: As a biosafety laboratory, we take samples from surfaces in microbiological laboratories to survey the handling of micro‐organisms. Whereas contaminations with other micro‐organisms were rare, Staphylococcus aureus was found in the working environment of many laboratories. As 20–60% of the healthy population are carriers of S. aureus we wanted to asses the effect of carriers on our sampling results. Methods and Results: Nasal swabs of staff members in nonmicrobiological laboratories and offices as well as surface samples from their personal work environment were taken and analysed for S. aureus DNA. In addition S. aureus strains were isolated using S. aureus‐specific agar plates and analysed by randomly amplified polymorphic DNA (RAPD)–PCR and multilocus sequence typing (MLST). Our data show that contaminations with S. aureus in nonmicrobiological environments are common with 29% of the surface samples containing S. aureus DNA. In the working environment of carriers, the number of contaminations was significantly increased compared to the environment of noncarriers. Conclusion: The carrier status of staff members significantly affects the number of contaminations on laboratory surfaces. Therefore, even in the absence of intentional handling of S. aureus, contaminations can be detected on a substantial amount of surfaces. Significance and Impact of the Study: Sampling procedures need to be adapted based on these results with respect to the locations where samples are taken and the threshold for significant contaminations. Because of its wide distribution, S. aureus can serve as a marker for hygienic standards in laboratories.  相似文献   

18.
We developed molecular diagnostic assays for the detection of Streptococcus pyogenes (GAS) and Streptococcus dysgalactiae subsp. equisimilis (SDSE), two streptococcal pathogens known to cause both pharyngitis and more invasive forms of disease in humans. Two real-time PCR assays coupled with an internal control were designed to be performed in parallel. One assay utilizes a gene target specific to GAS, and the other utilizes a gene target common to the two species. Both assays showed 2–3 orders of magnitude improved analytical sensitivity when compared to a commercially available rapid antigen test. In addition, when compared to standard culture in an analysis of 96 throat swabs, the real-time PCR assays resulted in clinical sensitivity and specificity of 91.7 and 100%, respectively. As capital equipment costs for real-time PCR can be prohibitive in smaller laboratories, the real-time PCR assays were converted to a low-density microarray format designed to function with an inexpensive photopolymerization-based non-enzymatic signal amplification (NESA™) method. S. pyogenes was successfully detected on the low-density microarray in less than 4 h from sample extraction through detection.  相似文献   

19.
A method of collecting pharyngeal and oral swabs from humans and laboratory rats, to be examined later for Pneumocystis infection with simple and nested PCR, was developed. The swabs were obtained from 15 HIV-infected patients, including 5 suffering from PCP, and from 10 immunocompetent children aged 2 to 6 years. Furthermore, the swabs were taken from 30 healthy laboratory rats and 23 animals subjected to immunosuppressive treatment. DNA of Pneumocystis was detected in all the examined rats with nPCR method, but only in 47% of healthy animals when simple PCR was used. Nested PCR examination of swabs collected from human subjects revealed the infection with Pneumocystis in all HIV-infected patients with PCP, and in 8 out of 10 symptomless carriers of Pneumocystis; moreover, the examination was positive in 2 out of 10 immunocompetent children. It was concluded, that noninvasive method of collecting pharyngeal and oral swabs in conjunction with very sensitive method of amplification DNA by nPCR is suitable for measuring the prevalence of Pneumocystis infection in the populations of humans and laboratory animals. The developed method offers a possibility of safe diagnosis of pneumocystosis in patients whose clinical status precludes collection of BAL through bronchoscopy.  相似文献   

20.
Aims: As a biosafety laboratory, we survey the handling of adenovirus type 5 (Ad5) and HIV1‐derived lentivirus in contained‐use facilities in Switzerland to identify insufficiencies of the safety precautions taken by the laboratories. Methods and Results: In the past 9 years, we took 430 swab samples from various types of surfaces in research laboratories. Samples were examined for Ad5 contaminations by real‐time PCR and infectivity assay or for the presence of lentivirus (HIV1) nucleic acids by real‐time (RT) PCR. Samples collected from centrifuges did not only contain Ad5 DNA more frequently but also exhibited higher numbers of Ad5 and lentiviral (HIV1) DNA copies than swabs from any other area of sampling. Five of ten samples containing infectious Ad5 particles or lentivirus (HIV1) RNA were found in samples taken from centrifuges. Ad5 contamination rates were higher in the tube holder and lower on the inner wall of the rotor chamber in centrifuges that were fitted with aerosol tight covers compared to centrifuges without covers. Conclusions: Our results allowed the comparison of hygiene standards of different laboratories and lead to the identification of centrifuges as hotspots for contaminations. Significance and Impact of the Study: Based on our results, we propose to use the collected data as a tool for rating future swab results. Furthermore, the amount of Ad5 and HIV1‐derived lentivirus DNA could serve as an indicator of the level of good laboratory practice in contained‐use laboratories handling these viral vectors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号