首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The microbial polymer poly-3-hydroxybutyrate (PHB) and related poly-hydroxyalkanoates, such as poly-3-hydroxyvalerate and poly-3-hydroxyoctanoate, are unique biodegradable thermoplastics of considerable commercial importance. The structure, properties and regulation of synthesis and degradation of PHB are reviewed and the microbial production of copolymers of 3-hydroxybutyrate and 3-hydroxyvalerate, with properties varying according to copolymer composition, is discussed.  相似文献   

2.
Polyhydroxyalkanoates (PHAs) are polyoxoesters that are produced by diverse bacteria and that accumulate as intracellular granules. Phasins are granule-associated proteins that accumulate to high levels in strains that are producing PHAs. The accumulation of phasins has been proposed to be dependent on PHA production, a model which is now rigorously tested for the phasin PhaP of Ralstonia eutropha. R. eutropha phaC PHA synthase and phaP phasin gene replacement strains were constructed. The strains were engineered to express heterologous and/or mutant PHA synthase alleles and a phaP-gfp translational fusion in place of the wild-type alleles of phaC and phaP. The strains were analyzed with respect to production of polyhydroxybutyrate (PHB), accumulation of PhaP, and expression of the phaP-gfp fusion. The results suggest that accumulation of PhaP is strictly dependent on the genetic capacity of strains to produce PHB, that PhaP accumulation is regulated at the level of both PhaP synthesis and PhaP degradation, and that, within mixed populations of cells, PhaP accumulation within cells of a given strain is not influenced by PHB production in cells of other strains. Interestingly, either the synthesis of PHB or the presence of relatively large amounts of PHB in cells (>50% of cell dry weight) is sufficient to enable PhaP synthesis. The results suggest that R. eutropha has evolved a regulatory mechanism that can detect the synthesis and presence of PHB in cells and that PhaP expression can be used as a marker for the production of PHB in individual cells.  相似文献   

3.
Polyhydroxyalkanoates (PHAs) are microbial polyesters that can be used as completely biodegradable polymers, but the high production cost prevents their use in a wide range of applications. Recombinant Escherichia coli strains harboring the Ralstonia eutropha PHA biosynthesis genes have been reported to have several advantages as PHA producers compared with wild-type PHA-producing bacteria. However, the PHA productivity (amount of PHA produced per unit volume per unit time) obtained with these recombinant E. coli strains has been lower than that obtained with the wild-type bacterium Alcaligenes latus. To endow the potentially superior PHA biosynthetic machinery to E. coli, we cloned the PHA biosynthesis genes from A. latus. The three PHA biosynthesis genes formed an operon with the order PHA synthase, β-ketothiolase, and reductase genes and were constitutively expressed from the natural promoter in E. coli. Recombinant E. coli strains harboring the A. latus PHA biosynthesis genes accumulated poly(3-hydroxybutyrate) (PHB), a model PHA product, more efficiently than those harboring the R. eutropha genes. With a pH-stat fed-batch culture of recombinant E. coli harboring a stable plasmid containing the A. latus PHA biosynthesis genes, final cell and PHB concentrations of 194.1 and 141.6 g/liter, respectively, were obtained, resulting in a high productivity of 4.63 g of PHB/liter/h. This improvement should allow recombinant E. coli to be used for the production of PHB with a high level of economic competitiveness.  相似文献   

4.
Aside from their importance to the survival and general welfare of mankind, agriculture and its related industries produce large quantities of feedstocks and coproducts that can be used as inexpensive substrates for fermentative processes. Successful adoption of these materials into commercial processes could further the realization of a biorefinery industry based on agriculturally derived feedstocks. One potential concept is the production of poly(hydroxyalkanoate) (PHA) polymers, a family of microbial biopolyesters with a myriad of possible monomeric compositions and performance properties. The economics for the fermentative production of PHA could benefit from the use of low-cost agricultural feedstocks and coproducts. This mini-review provides a brief survey of research performed in this area, with specific emphasis on studies describing the utilization of intact triacylglycerols (vegetable oils and animal fats), dairy whey, molasses, and meat-and-bone meal as substrates in the microbial synthesis of PHA polymers.Mention of trade names or commercial products in this article is solely for the purpose of providing specific information and does not imply recommendation or endorsement by the U.S. Department of Agriculture.  相似文献   

5.
Aims: To develop an Aeromonas strain able to utilize inexpensive carbon sources such as starch for the synthesis of polyhydroxyalkanoates (PHA). Methods and Results: A recombinant Aeromonas sp. (strain KC007‐1) was constructed by introducing the PHB synthesis genes (phaCAB) into the bacterium. Strain KC001‐R1 can not only use carbohydrate (including starch) for growth but also accumulate significant amounts of polyhydroxybutyrate (PHB) in the cells. Conclusions: One of the present focuses on PHA production has been on lowering the production costs. Starch is an example of an inexpensive carbohydrate for use in industrial production of PHA. We have demonstrated that by introducing the phaCAB operon into Aeromonas sp. allowed the bacterium able to accumulated PHB using this substrate. Significance and Impact of the Study: Aeromonas spp. are able to synthesize PHA using fatty acids as carbon source. Although good robust growth results with use of starch as sole carbon source for Aeromonas, PHA synthesis does not occur. Strain KC007‐R1 showed the ability to accumulate PHA in relative high amount with both carbohydrates and fatty acids as carbon source, and can be cultivated to a significant amount of cell mass and hence is a potential strain for further development for industrial applications.  相似文献   

6.
This work describes a method for on-line monitoring of biomass production, acetate consumption and intracellular polyhydroxybutyrate (PHB) storage by mixed microbial cultures (MMC). The method is based on reliable and easily available on-line measurements, namely pH, dissolved oxygen, dissolved carbon dioxide, on-line respirometry and on-line titrimetric analysis. Biomass production refers to active biomass growth and also to the synthesis of extracellular polymeric substances (EPS). The composition and kinetics of EPS synthesis has high variability depending on the culture enrichment protocol. Since the metabolism for EPS production is rather difficult to define, it was not possible to develop a reliable estimation model based on metabolic principles only. Instead, projection of latent structures (PLS) linear regression constrained by steady state carbon balance was employed. PHB concentration and biomass production rate were directly estimated by the PLS model, whereas acetate concentration was indirectly estimated through the carbon balance. The method was validated experimentally with data of four experiments carried out in a SBR. Accurate on-line estimations were obtained with regression coefficients (r2) of 0.986 and 0.980 for biomass concentration, 0.976 and 0.999 for PHB and 0.992 and 0.999 for acetate concentration in calibration and validation, respectively. These results confirm the ability of the proposed methodology for on-line monitoring of the state variables in PHB production process by MMC.  相似文献   

7.
Polyhydroxyalkanoates (PHAs) are bacterial carbon storage polymers with diverse plastic‐like properties. PHA biosynthesis in transgenic plants is being developed as a way to reduce the cost and increase the sustainability of industrial PHA production. The homopolymer polyhydroxybutyrate (PHB) is the simplest form of these biodegradable polyesters. Plant peroxisomes contain the substrate molecules and necessary reducing power for PHB biosynthesis, but peroxisomal PHB production has not been explored in whole soil‐grown transgenic plants to date. We generated transgenic sugarcane (Saccharum sp.) with the three‐enzyme Ralstonia eutropha PHA biosynthetic pathway targeted to peroxisomes. We also introduced the pathway into Arabidopsis thaliana, as a model system for studying and manipulating peroxisomal PHB production. PHB, at levels up to 1.6%–1.8% dry weight, accumulated in sugarcane leaves and A. thaliana seedlings, respectively. In sugarcane, PHB accumulated throughout most leaf cell types in both peroxisomes and vacuoles. A small percentage of total polymer was also identified as the copolymer poly (3‐hydroxybutyrate‐co‐3‐hydroxyvalerate) in both plant species. No obvious deleterious effect was observed on plant growth because of peroxisomal PHA biosynthesis at these levels. This study highlights how using peroxisomal metabolism for PHA biosynthesis could significantly contribute to reaching commercial production levels of PHAs in crop plants.  相似文献   

8.
Polyhydroxyalkanoates (PHAs) are bacterial carbon storage polymers used as renewable, biodegradable plastics. PHA production in plants may be a way to reduce industrial PHA production costs. We recently demonstrated a promising level of peroxisomal PHA production in the high biomass crop species sugarcane. However, further production strategies are needed to boost PHA accumulation closer to commercial targets. Through exogenous fatty acid feeding of Arabidopsis thaliana plants that contain peroxisome‐targeted PhaA, PhaB and PhaC enzymes from Cupriavidus necator, we show here that the availability of substrates derived from the β‐oxidation cycle limits peroxisomal polyhydroxybutyrate (PHB) biosynthesis. Knockdown of peroxisomal citrate synthase activity using artificial microRNA increased PHB production levels approximately threefold. This work demonstrates that reduction of peroxisomal citrate synthase activity may be a valid metabolic engineering strategy for increasing PHA production in other plant species.  相似文献   

9.
Polyhydroxyalkanoates (PHAs) are biodegradable polymers produced by microbes to overcome environmental stress. Commercial production of PHAs is limited by the high cost of production compared to conventional plastics. Another hindrance is the brittle nature and low strength of polyhydroxybutyrate (PHB), the most widely studied PHA. The needs are to produce PHAs, which have better elastomeric properties suitable for biomedical applications, preferably from inexpensive renewable sources to reduce cost. Certain unique properties of Bacillus subtilis such as lack of the toxic lipo-polysaccharides, expression of self-lysing genes on completion of PHA biosynthetic process – for easy and timely recovery, usage of biowastes as feed enable it to compete as potential candidate for commercial production of PHA.  相似文献   

10.
Review Degradation of microbial polyesters   总被引:1,自引:0,他引:1  
Microbial polyhydroxyalkanoates (PHAs), one of the largest groups of thermoplastic polyesters are receiving much attention as biodegradable substitutes for non-degradable plastics. Poly(D-3-hydroxybutyrate) (PHB) is the most ubiquitous and most intensively studied PHA. Microorganisms degrading these polyesters are widely distributed in various environments. Although various PHB-degrading microorganisms and PHB depolymerases have been studied and characterized, there are still many groups of microorganisms and enzymes with varying properties awaiting various applications. Distributions of PHB-degrading microorganisms, factors affecting the biodegradability of PHB, and microbial and enzymatic degradation of PHB are discussed in this review. We also propose an application of a new isolated, thermophilic PHB-degrading microorganism, Streptomyces strain MG, for producing pure monomers of PHA and useful chemicals, including D-3-hydroxycarboxylic acids such as D-3-hydroxybutyric acid, by enzymatic degradation of PHB.  相似文献   

11.
12.
Polyhydroxyalkanoate production in recombinant Escherichia coli.   总被引:3,自引:0,他引:3  
The bacterial species Escherichia coli has proven to be a powerful tool in the molecular analysis of polyhydroxyalkanoate (PHA) biosynthesis. In addition, E. coli holds promise as a source for economical PHA production. Using this microorganism, clones have been developed in our laboratory which direct the synthesis of poly-beta-hydroxybutyrate (PHB) to levels as high as 95% of the cell dry weight. These clones have been further enhanced by the addition of a genetically mediated lysis system that allows the PHB granules to be released gently and efficiently. This paper describes these developments, as well as the use of an E. coli strain to produce the copolymer poly-(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHB-co-3HV).  相似文献   

13.
The microbial production of polyhydroxybutyrate (PHB) is a complex process in which the final quantity and quality of the PHB depend on a large number of process operating variables. Consequently, the design and optimal dynamic operation of a microbial process for the efficient production of PHB with tailor-made molecular properties is an extremely interesting problem. The present study investigates how key process operating variables (i.e., nutritional and aeration conditions) affect the biomass production rate and the PHB accumulation in the cells and its associated molecular weight distribution. A combined metabolic/polymerization/macroscopic modelling approach, relating the process performance and product quality with the process variables, was developed and validated using an extensive series of experiments and measurements. The model predicts the dynamic evolution of the biomass growth, the polymer accumulation, the consumption of carbon and nitrogen sources and the average molecular weights of the PHB in a bioreactor, under batch and fed-batch operating conditions. The proposed integrated model was used for the model-based optimization of the production of PHB with tailor-made molecular properties in Azohydromonas lata bacteria. The process optimization led to a high intracellular PHB accumulation (up to 95% g of PHB per g of DCW) and the production of different grades (i.e., different molecular weight distributions) of PHB.  相似文献   

14.
Polyhydroxyalkanoates (PHAs) production from low value substrates and/or byproducts represents an economical and environmental promising alternative to established industrial manufacture methods. Bio-oil resulting from the fast-pyrolysis of chicken beds was used as substrate to select a mixed microbial culture (MMC) able to produce PHA under feast/famine conditions. In this study a maximum PHA content of 9.2% (g/g cell dry weight) was achieved in a sequencing batch reactor (SBR) operated for culture selection. The PHA obtained with bio-oil as a carbon source was a copolymer composed by 70% of hydroxybutyrate (HB) and 30% of hydroxyvalerate (HV) monomers. Similar results have been reported by other studies that use real complex substrates for culture selection indicating that bio-oil can be a promising feedstock to produce PHAs using MMC. To the best of our knowledge this is the first study that demonstrated the use of bio-oil resulting from fast pyrolysis as a possibly feedstock to produce short chain length polyhydroxyalkanoates.  相似文献   

15.
Polyhydroxyalkanoate (PHA) is a biodegradable plastic synthesised by bacteria as energy and carbon storage material. PHA production is mostly based on pure cultures operated under sterile conditions, which increase the costs of this biopolymer. The use of inexpensive mixed culture biomass, such as activated sludge, to produce biodegradable plastics from renewable waste streams has been proposed as an alternative.The effect of carbon sources (acetate, propionate, butyrate and glucose) on the type and quantity of PHA synthesis obtained with different enhanced biological phosphorus removal (EBPR) microbial communities enriched with acetate and propionate are reported in this work. Two sequencing batch reactors (SBRs) were seeded with biomass withdrawn from a non-EBPR wastewater treatment plant (WWTP). The same operational conditions were kept, but using acetate or propionate as the sole carbon source of each reactor. These conditions produced two microbial communities with different P-removal capacity. The results presented in this study show the effect of the carbon source on the PHA composition (amount of polyhydroxybutyrate (PHB), polyhydroxyvalerate (PHV) and polyhydroxy-2-methylvalerate (PH2MV)), which differed not just between substrates but also between the two EBPR communities used. In addition, some monomers not always analysed contribute significantly to the total amount of PHA, especially when using butyrate, showing that if they are not considered this can lead to erroneous calculated yields.  相似文献   

16.
Microlunatus phosphovorus is an activated-sludge bacterium with high levels of phosphorus-accumulating activity and phosphate uptake and release activities. Thus, it is an interesting model organism to study biological phosphorus removal. However, there are no studies demonstrating the polyhydroxyalkanoate (PHA) storage capability of M. phosphovorus, which is surprising for a polyphosphate-accumulating organism. This study investigates in detail the PHA storage behavior of M. phosphovorus under different growth conditions and using different carbon sources. Pure culture studies in batch-growth systems were conducted in shake-flasks and in a bioreactor, using chemically defined growth media with glucose as the sole carbon source. A batch-growth system with anaerobic–aerobic cycles and varying concentrations of glucose or acetate as the sole carbon source, similar to enhanced biological phosphorus removal processes, was also employed. The results of this study demonstrate for the first time that M. phosphovorus produces significant amounts of PHAs under various growth conditions and with different carbon sources. When the PHA productions of all cultivations were compared, poly(3-hydroxybutyrate) (PHB), the major PHA polymer, was produced at about 20–30% of the cellular dry weight. The highest PHB production was observed as 1,421 mg/l in batch-growth systems with anaerobic–aerobic cycles and at 4 g/l initial glucose concentration. In light of these key results regarding the growth physiology and PHA-production capability of M. phosphovorus, it can be concluded that this organism could be a good candidate for microbial PHA production because of its advantages of easy growth, high biomass and PHB yield on substrate and no significant production of fermentative byproducts.  相似文献   

17.
Polyhydroxyalkanoate (PHA) synthase PhaC plays a very important role in biosynthesis of microbial polyesters PHA. Compared to the extensively analyzed C-terminus of PhaC, N-terminus of PhaC was less studied. In this paper, the N-terminus of two class I PHA synthases PhaCRe and PhaCAh from Ralstonia eutropha and Aeromonas hydrophila, respectively, and one class II synthase PhaC2Ps of Pseudomonas stutzeri strain 1317, were investigated for their effect on PHA synthesis. For PhaCRe, deletion of 2–65 amino acid residues on the N-terminus led to enhanced PHB production with high PHB molecular weight of 2.50 × 106 Da. For PhaCAh, the deletion of the N-terminal residues resulted in increasing molecular weights and widening polydispersity accompanied by a decreased PHA production. It was found that 3-hydroxybutyrate (3HB) monomer content in copolyesters of 3-hydroxybutyrate and 3-hydroxyhexanoate (3HHx) increased when the first 2–9 and 2–13 amino acid residues in the N-terminus of PhaC2Ps were deleted. However, deletion up to the 40th amino acid disrupted the PHA synthesis. This study confirmed that N-terminus in different types of PHA synthases showed significant roles in the PHA productivity and elongation activity. It was also indicated that N-terminal mutation was very effective for the location of functional regions at N-terminus.  相似文献   

18.
Abstract The bacterial species Escherichia coli has proven to be a powerful tool in the molecular analysis of polyhydroxyalkanoate (PHA) biosynthesis. In addition, E. coli holds promise as a source for economical PHA production. Using this microorganism, clones have been developed in our laboratory which direct the synthesis of poly-β-hydroxybutyrate (PHB) to levels as high as 95% of the cell dry weight. These clones have been further enhanced by the addition of a genetically mediated lysis system that allows the PHB granules to be released gently and efficiently. This paper describes these developments, as well as the use of an E. coli strain to produce the copolymer poly-(3-hydroxybutyrate- co -3-hydroxyvalerate (PHB- co -3-).  相似文献   

19.
Several processes for the production and recovery of poly(3-hydroxybutyrate) (PHB) by Alcaligenes eutrophus, Alcaligenes latus, Methylobacterium organophilum, and recombinant Escherichia coli were designed based on the previously reported data and analyzed by computer-aided bioprocess design. PHB productivity, content, and yield significantly affected the final price of PHB. For the annual production of 2,850 tonnes of purified PHB, the process employing A. eutrophus with the recovery method of surfactant-hypochlorite digestion resulted in lowest price of PHB, $ 5.58/kg. As the production scale increased to one million tonnes per year, the price of PHB dropped to $ 4.75/kg. The cost of carbon substrate significantly affected the overall economics in large production scale. Therefore, the production cost can be considerably lowered when agricultural wastes, such as whey and molasses, are used.  相似文献   

20.
Poly-β-hydroxybutyrate (PHB) is synthesized by some microorganisms under stressful conditions. Despite its properties being comparable to those of synthetic polymers, and its biocompatibility and biodegradability, low productivities have dampened commercial interest in microbial PHB production. To increase production efficiency, a fed-batch fermentation with Ralstonia eutropha was optimized recently through a neural-cum-dispersion model (D-model) incorporating incomplete dispersion and noise in the feed streams. The approach described in the work has been improved in two ways: first by a model comprising neural networks only (N-model) and then by a hybrid neural model (H-model) with a mathematical component. At optimum dispersion, PHB production through the N-model optimization was 35% more than by the D-model, and this was enhanced by a further 58% using hybrid optimization. Recognizing that the D-model itself more than doubled the PHB production compared to a noise-free fully dispersed bioreactor, the present results establish hybrid neural optimization as a viable method for PHB production improvement under realistic conditions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号