首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 281 毫秒
1.
We demonstrate a role for protein kinase casein kinase 2 (CK2) in the phosphorylation and regulation of the M3-muscarinic receptor in transfected cells and cerebellar granule neurons. On agonist occupation, specific subsets of receptor phosphoacceptor sites (which include the SASSDEED motif in the third intracellular loop) are phosphorylated by CK2. Receptor phosphorylation mediated by CK2 specifically regulates receptor coupling to the Jun-kinase pathway. Importantly, other phosphorylation-dependent receptor processes are regulated by kinases distinct from CK2. We conclude that G protein-coupled receptors (GPCRs) can be phosphorylated in an agonist-dependent fashion by protein kinases from a diverse range of kinase families, not just the GPCR kinases, and that receptor phosphorylation by a defined kinase determines a specific signalling outcome. Furthermore, we demonstrate that the M3-muscarinic receptor can be differentially phosphorylated in different cell types, indicating that phosphorylation is a flexible regulatory process where the sites that are phosphorylated, and hence the signalling outcome, are dependent on the cell type in which the receptor is expressed.  相似文献   

2.
This study investigates the mechanisms by which the muscarinic receptor gene family can protect against apoptosis. Chinese hamster ovary cells transfected with human muscarinic receptor subtypes underwent apoptotic cell death following treatment with the DNA-damaging agent etoposide. Apoptosis was significantly reduced following muscarinic receptor stimulation of cells that were transfected with receptor subtypes that couple to the Gq/11/phospholipase C pathway, namely M1, M3, and M5. No protection was detected in cells transfected with the Gi-coupled M2 and M4 receptors. Further analysis of the Gq/11-coupled M3 receptor revealed that truncation of the carboxyl-tail (Delta 565-M3 mutant) removed the ability of the receptor to protect against etoposide-induced cell death. This mutation did not affect the ability of the receptor to signal through the phospholipase C pathway. Furthermore, activation of the Delta 565-M3 receptor resulted in robust activation of the extracellular-regulated kinase (ERK) and c-Jun kinase (JNK). The Delta 565-M3 receptor mutant also underwent agonist-driven phosphorylation in a similar manner to the wild-type receptor indicating that the anti-apoptotic effect of the M3 receptor is independent of receptor phosphorylation. Consistent with this was the fact that two M3-muscarinic receptor mutants deficient in agonist-induced receptor phosphorylation were capable of producing a full anti-apoptotic response. We conclude that the anti-apoptotic response of the muscarinic receptor family was confined to the Gq/11-coupled members of this family. The direct involvement of Gq/11/phospholipase C signaling and the ERK-1/2 and JNK pathways together with receptor phosphorylation in the anti-apoptotic response were eliminated. Mutation of a poly-basic region within the short C-terminal tail of the M3-muscarinic receptor inhibited the ability of the receptor to induce an anti-apoptotic response. We conclude that the conserved poly-basic region in the C-terminal tail of the M1, M3, and M5 receptors contributes to the ability of these receptors to mediate protection against apoptotic cell death.  相似文献   

3.
We investigated the role played by agonist-mediated phosphorylation of the G(q/11)-coupled M(3)-muscarinic receptor in the mechanism of activation of the mitogen-activated protein kinase pathway, ERK-1/2, in transfected Chinese hamster ovary cells. A mutant of the M(3)-muscarinic receptor, where residues Lys(370)-Ser(425) of the third intracellular loop had been deleted, showed a reduced ability to activate the ERK-1/2 pathway. This reduction was evident despite the fact that the receptor was able to couple efficiently to the phospholipase C second messenger pathway. Importantly, the ERK-1/2 responses to both the wild-type M(3)-muscarinic receptor and DeltaLys(370)-Ser(425) receptor mutant were dependent on the activity of protein kinase C. Our results, therefore, indicate the existence of two mechanistic components to the ERK-1/2 response, which appear to act in concert. First, the activation of protein kinase C through the diacylglycerol arm of the phospholipase C signaling pathway and a second component, absent in the DeltaLys(370)-Ser(425) receptor mutant, that is independent of the phospholipase C signaling pathway. The reduced ability of the DeltaLys(370)-Ser(425) receptor mutant to activate the ERK-1/2 pathway correlated with an approximately 80% decrease in the ability of the receptor to undergo agonist-mediated phosphorylation. Furthermore, we have previously shown that M(3)-muscarinic receptor phosphorylation can be inhibited by a dominant negative mutant of casein kinase 1alpha and by expression of a peptide corresponding to the third intracellular loop of the M(3)-muscarinic receptor. Expression of these inhibitors of receptor phosphorylation reduced the wild-type M(3)-muscarinic receptor ERK-1/2 response. We conclude that phosphorylation of the M(3)-muscarinic receptor on sites in the third intracellular loop by casein kinase 1alpha contributes to the mechanism of receptor activation of ERK-1/2 by working in concert with the diacylglycerol/PKC arm of the phospholipase C signaling pathway.  相似文献   

4.
The angiotensin II peptide analog [Sar(1),Ile(4),Ile(8)]AngII (SII) is a biased AT(1A) receptor agonist that stimulates receptor phosphorylation, β-arrestin recruitment, receptor internalization, and β-arrestin-dependent ERK1/2 activation without activating heterotrimeric G-proteins. To determine the scope of G-protein-independent AT(1A) receptor signaling, we performed a gel-based phosphoproteomic analysis of AngII and SII-induced signaling in HEK cells stably expressing AT(1A) receptors. A total of 34 differentially phosphorylated proteins were detected, of which 16 were unique to SII and eight to AngII stimulation. MALDI-TOF/TOF mass fingerprinting was employed to identify 24 SII-sensitive phosphoprotein spots, of which three (two peptide inhibitors of protein phosphatase 2A (I1PP2A and I2PP2A) and prostaglandin E synthase 3 (PGES3)) were selected for validation and further study. We found that phosphorylation of I2PP2A was associated with rapid and transient inhibition of a β-arrestin 2-associated pool of protein phosphatase 2A, leading to activation of Akt and increased phosphorylation of glycogen synthase kinase 3β in an arrestin signalsome complex. SII-stimulated PGES3 phosphorylation coincided with an increase in β-arrestin 1-associated PGES3 and an arrestin-dependent increase in cyclooxygenase 1-dependent prostaglandin E(2) synthesis. These findings suggest that AT(1A) receptors regulate a robust G protein-independent signaling network that affects protein phosphorylation and autocrine/paracrine prostaglandin production and that these pathways can be selectively modulated by biased ligands that antagonize G protein activation.  相似文献   

5.
A key characteristic of G protein-coupled receptors (GPCRs) is that they activate a plethora of signaling pathways. It is now clear that a GPCR coupling to these pathways can be regulated selectively by ligands that differentially drive signaling down one pathway in preference to another. This concept, termed stimulus bias, is revolutionizing receptor biology and drug discovery by providing a means of selectively targeting receptor signaling pathways that have therapeutic impact. Herein, we utilized a novel quantitative method that determines stimulus bias of synthetic GPCR ligands in a manner that nullifies the impact of both the cellular background and the “natural bias” of the endogenous ligand. By applying this method to the M2 muscarinic acetylcholine receptor, a prototypical GPCR, we found that mutation of key residues (Tyr-802.61 and Trp-993.28) in an allosteric binding pocket introduces stimulus bias in response to the atypical ligands AC-42 (4-n-butyl-1-(4-(2-methylphenyl)-4-oxo-1-butyl)piperidine HCl) and 77-LH-28-1 (1-(3-(4-butyl-1-piperidinyl)propyl)- 3,3-dihydro-2(1H)-quinolinone). By comparing stimulus bias factors among receptor internalization, G protein activation, extracellular-regulated protein kinase 1/2 (ERK1/2) signaling, and receptor phosphorylation, we provide evidence that Tyr-802.61 and Trp-993.28 act either as molecular switches or as gatekeeper residues that introduce constraints limiting the active conformation of the M2 muscarinic acetylcholine receptor and thereby regulate stimulus bias. Furthermore, we provide evidence that downstream signaling pathways previously considered to be related to each other (i.e. receptor phosphorylation, internalization, and activation of ERK1/2) can act independently.  相似文献   

6.
7.
The ErbB family of receptor tyrosine kinases regulates cell growth, differentiation and survival. Activation of the receptors is induced by specific growth factors in an autocrine, paracrine or juxtacrine manner. The activated ErbB receptors turn on a large variety of signaling cascades, including the prominent Ras-dependent signaling pathways. The activated Ras can induce secretion of growth factors such as EGF and neuregulin, which activate their respective receptors. In the present study, we demonstrate for the first time that activated Ras can activate ErbB4 receptor in a ligand-independent manner. Expression of constitutively active H-Ras(12V), K-Ras(12V) or N-Ras(13V) in PC12-ErbB4 cells induced ErbB4-receptor phosphorylation, indicating that each of the most abundant Ras isoforms can induce receptor activation. NRG-induced phosphorylation of ErbB4 receptor was blocked by the soluble ErbB4 receptor, which had no effect on the Ras-induced receptor phosphorylation. Moreover, conditioned medium from H-Ras(12V)-transfected PC12-ErbB4 cells had no effect on receptor phosphorylation. It thus indicates that Ras induces ErbB4 phosphorylation in a ligand-independent manner. Each of the Ras effector domain mutants, H-Ras(12V)S35, H-Ras(12V)C40, and H-Ras(12V)G37, which respectively activate Raf1, PI3K, and RalGEF, induced a small but significant receptor phosphorylation. The PI3K inhibitor LY294002 and the MEK inhibitor PD98059 caused a partial inhibition of the Ras-induced ErbB4 receptor phosphorylation. Using a mutant ErbB4 receptor, which lacks kinase activity, we demonstrated that the Ras-mediated ErbB4 phosphorylation depends on the kinase activity of the receptor and facilitates ligand-independent neurite outgrowth in PC12-ErbB4 cells. These experiments demonstrate a novel mechanism controlling ErbB receptor activation. Ras induces ErbB4 receptor phosphorylation in a non-autocrine manner and this activation depends on multiple Ras effector pathways and on ErbB4 kinase activity.  相似文献   

8.
FLJ00018/PLEKHG2 is a guanine nucleotide exchange factor for the small GTPases Rac and Cdc42 and has been shown to mediate the signaling pathways leading to actin cytoskeleton reorganization. The function of FLJ00018 is regulated by the interaction of heterotrimeric GTP-binding protein Gβγ subunits or cytosolic actin. However, the details underlying the molecular mechanisms of FLJ00018 activation have yet to be elucidated. In the present study we show that FLJ00018 is phosphorylated and activated by β1-adrenergic receptor stimulation-induced EGF receptor (EGFR) transactivation in addition to Gβγ signaling. FLJ00018 is also phosphorylated and activated by direct EGFR stimulation. The phosphorylation of FLJ00018 by EGFR stimulation is mediated by the Ras/mitogen-activated protein kinase (MAPK) pathway. Through deletion and site-directed mutagenesis studies, we have identified Thr-680 as the major site of phosphorylation by EGFR stimulation. FLJ00018 T680A, in which the phosphorylation site is replaced by alanine, showed a limited response of the Neuro-2a cell morphology to EGF stimulation. Our results provide evidence that stimulation of the Ras/MAPK pathway by EGFR results in FLJ00018 phosphorylation at Thr-680, which in turn controls changes in cell shape.  相似文献   

9.
A number of recent studies have demonstrated an essential role for receptor endocytosis in the activation of the mitogen-activated protein (MAP) kinases, Erk-1 and Erk-2 (extracellular activated protein kinases 1 and 2), by growth factor receptors and the G-protein coupled beta2-adrenergic receptor. Because ligand-mediated receptor endocytosis and activation of the MAP kinase pathway are common phenomena among G-protein coupled receptors, it has been suggested that the essential role of endocytosis in MAP kinase activation identified for the beta2-adrenergic receptor may be universal for all G-protein coupled receptors (Daaka,Y., Luttrell, L. M., Ahn, S., Della Rocca, G. J., Ferguson, S. S. G., Caron, M. G., and Lefkowitz, R. J. (1998) J. Biol. Chem. 273, 685-688). We tested this hypothesis using the Gq/11-coupled m3-muscarinic receptor expressed in Chinese hamster ovary cells and an m3-muscarinic receptor mutant that does not undergo endocytosis. We demonstrate that inhibition of endocytosis by concanavalin A and cytochalasin D does not affect the ability of the wild type m3-muscarinic receptor to activate Erk-1/2. Furthermore, the mutant m3-muscarinic receptor that is unable to undergo endocytosis, activates the MAP kinase pathway in an identical manner to the wild type receptor. We conclude that receptor endocytosis is not universally essential for MAP kinase activation by G-protein coupled receptors. We discuss the possibility that the differential roles played by endocytosis in MAP kinase activation between various receptor subtypes may be linked to the mechanism of upstream activation of Raf-1.  相似文献   

10.
Activation of the high affinity neurotrophin receptor tropomyosin-related kinase A (TrkA) by nerve growth factor (NGF) leads to phosphorylation of intracellular tyrosine residues of the receptor with subsequent activation of signaling pathways involved in neuronal survival such as the phosphoinositide-3-kinase (PI3-K)/protein kinase B (PKB/Akt) pathway and the mitogen-activated protein kinase (MAPK) cascade. In the present study, we tested whether inhibition of protein-tyrosine phosphatases (PTP) by orthovanadate could enhance tyrosine phosphorylation of TrkA thereby stimulating NGF-like survival signaling in embryonic hippocampal neurons. We found that the PTP inhibitor orthovanadate (1 microM) enhanced TrkA phosphorylation and protected neurons against staurosporine (STS)-induced apoptosis in a time-and concentration-dependent manner. Inhibition of PTP enhanced TrkA phosphorylation also in the presence of NGF antibodies indicating that NGF binding to TrkA was not required for the effects of orthovanadate. Moreover, orthovanadate enhanced phosphorylation of Akt and the MAPK Erk1/2 suggesting that the signaling pathways involved in the protective effect were similar to those activated by NGF. Accordingly, inhibition of PI3-K by wortmannin and MAPK-kinase (MEK) inhibition by UO126 abolished the neuroprotective effects. In conclusion, the results indicate that orthovanadate mimics the effect of NGF on survival signaling pathways in hippocampal neurons. Thus, PTP inhibition appears to be an appropriate strategy to trigger neuroprotective signaling pathways downstream of neurotrophin receptors.  相似文献   

11.
Agonist-mediated receptor phosphorylation by one or more of the members of the G-protein receptor kinase (GRK) family is an established model for G-protein-coupled receptor (GPCR) phosphorylation resulting in receptor desensitization. Our recent studies have, however, suggested that an alternative route to GPCR phosphorylation may be an operation involving casein kinase 1alpha (CK1alpha). In the current study we investigate the involvement of CK1alpha in the phosphorylation of the human m3-muscarinic receptor in intact cells. We show that expression of a catalytically inactive mutant of CK1alpha, designed to act in a dominant negative manner, inhibits agonist-mediated receptor phosphorylation by approximately 40% in COS-7 and HEK-293 cells. Furthermore, we present evidence that a peptide corresponding to the third intracellular loop of the m3-muscarinic receptor (Ser(345)-Leu(463)) is an inhibitor of CK1alpha due to its ability to both act as a pseudo-substrate for CK1alpha and form a high affinity complex with CK1alpha. Expression of this peptide was able to reduce both basal and agonist-mediated m3-muscarinic receptor phosphorylation in intact cells. These results support the notion that CK1alpha is able to mediate GPCR phosphorylation in an agonist-dependent manner and that this may provide a novel mechanism for GPCR phosphorylation. The functional role of phosphorylation was investigated using a mutant of the m3-muscarinic receptor that showed an approximately 80% reduction in agonist-mediated phosphorylation. Surprisingly, this mutant underwent agonist-mediated desensitization suggesting that, unlike many GPCRs, desensitization of the m3-muscarinic receptor is not mediated by receptor phosphorylation. The inositol (1,4, 5)-trisphosphate response did, however, appear to be dramatically potentiated in the phosphorylation-deficient mutant indicating that phosphorylation may instead control the magnitude of the initial inositol phosphate response.  相似文献   

12.
PhosphoSite is a curated, web-based bioinformatics resource dedicated to physiologic sites of protein phosphorylation in human and mouse. PhosphoSite is populated with information derived from published literature as well as high-throughput discovery programs. PhosphoSite provides information about the phosphorylated residue and its surrounding sequence, orthologous sites in other species, location of the site within known domains and motifs, and relevant literature references. Links are also provided to a number of external resources for protein sequences, structure, post-translational modifications and signaling pathways, as well as sources of phospho-specific antibodies and probes. As the amount of information in the underlying knowledgebase expands, users will be able to systematically search for the kinases, phosphatases, ligands, treatments, and receptors that have been shown to regulate the phosphorylation status of the sites, and pathways in which the phosphorylation sites function. As it develops into a comprehensive resource of known in vivo phosphorylation sites, we expect that PhosphoSite will be a valuable tool for researchers seeking to understand the role of intracellular signaling pathways in a wide variety of biological processes.  相似文献   

13.
Arrestins bind active phosphorylated forms of G protein-coupled receptors, terminating G protein activation, orchestrating receptor trafficking, and redirecting signaling to alternative pathways. Visual arrestin-1 preferentially binds rhodopsin, whereas the two non-visual arrestins interact with hundreds of G protein-coupled receptor subtypes. Here we show that an extensive surface on the concave side of both arrestin-2 domains is involved in receptor binding. We also identified a small number of residues on the receptor binding surface of the N- and C-domains that largely determine the receptor specificity of arrestins. We show that alanine substitution of these residues blocks the binding of arrestin-1 to rhodopsin in vitro and of arrestin-2 and -3 to β2-adrenergic, M2 muscarinic cholinergic, and D2 dopamine receptors in intact cells, suggesting that these elements critically contribute to the energy of the interaction. Thus, in contrast to arrestin-1, where direct phosphate binding is crucial, the interaction of non-visual arrestins with their cognate receptors depends to a lesser extent on phosphate binding and more on the binding to non-phosphorylated receptor elements.  相似文献   

14.
G protein-coupled receptor (GPCR) kinases (GRKs) play a key role in homologous desensitization of GPCRs. It is widely assumed that most GRKs selectively phosphorylate only active GPCRs. Here, we show that although this seems to be the case for the GRK2/3 subfamily, GRK5/6 effectively phosphorylate inactive forms of several GPCRs, including β2-adrenergic and M2 muscarinic receptors, which are commonly used as representative models for GPCRs. Agonist-independent GPCR phosphorylation cannot be explained by constitutive activity of the receptor or membrane association of the GRK, suggesting that it is an inherent ability of GRK5/6. Importantly, phosphorylation of the inactive β2-adrenergic receptor enhanced its interactions with arrestins. Arrestin-3 was able to discriminate between phosphorylation of the same receptor by GRK2 and GRK5, demonstrating preference for the latter. Arrestin recruitment to inactive phosphorylated GPCRs suggests that not only agonist activation but also the complement of GRKs in the cell regulate formation of the arrestin-receptor complex and thereby G protein-independent signaling.  相似文献   

15.
The FGF receptors (FGFRs) control a multitude of cellular processes both during development and in the adult through the initiation of signaling cascades that regulate proliferation, survival, and differentiation. Although FGFR tyrosine phosphorylation and the recruitment of Src homology 2 domain proteins have been widely described, we have previously shown that FGFR is also phosphorylated on Ser779 in response to ligand and binds the 14-3-3 family of phosphoserine/threonine-binding adaptor/scaffold proteins. However, whether this receptor phosphoserine mode of signaling is able to regulate specific signaling pathways and biological responses is unclear. Using PC12 pheochromocytoma cells and primary mouse bone marrow stromal cells as models for growth factor-regulated neuronal differentiation, we show that Ser779 in the cytoplasmic domains of FGFR1 and FGFR2 is required for the sustained activation of Ras and ERK but not for other FGFR phosphotyrosine pathways. The regulation of Ras and ERK signaling by Ser779 was critical not only for neuronal differentiation but also for cell survival under limiting growth factor concentrations. PKCϵ can phosphorylate Ser779 in vitro, whereas overexpression of PKCϵ results in constitutive Ser779 phosphorylation and enhanced PC12 cell differentiation. Furthermore, siRNA knockdown of PKCϵ reduces both growth factor-induced Ser779 phosphorylation and neuronal differentiation. Our findings show that in addition to FGFR tyrosine phosphorylation, the phosphorylation of a conserved serine residue, Ser779, can quantitatively control Ras/MAPK signaling to promote specific cellular responses.  相似文献   

16.
R M Richardson  M M Hosey 《Biochemistry》1990,29(37):8555-8561
The results of several studies have suggested that muscarinic cholinergic receptors (mAChR) may be regulated by multiple pathways involving phosphorylation of the receptors. Previous studies have demonstrated that chick heart mAChR are phosphorylated by the beta-adrenergic receptor kinase (beta-AR kinase) in an agonist-dependent manner, and it has been suggested that this process may be linked to receptor desensitization. In this work, we present evidence that protein kinase C can phosphorylate the purified, reconstituted chick heart mAChR and can modify the interaction of the receptors with GTP binding proteins (G-proteins) that couple the receptors to effectors. Phosphorylation of the mAChR with protein kinase C occurred to an extent of approximately 5 mol of P/mol of receptor. Neither the rate nor the extent of the protein kinase C mediated phosphorylation of mAChR was agonist-dependent. Under the conditions tested, the initial rate of phosphorylation of the mAChR by protein kinase C was significantly more rapid than that obtained with the beta-AR kinase. At equilibrium, phosphorylation of mAChR by protein kinase C and beta-AR kinase was partially additive. The functional effects of protein kinase C mediated phosphorylation of the mAChR were assessed by comparing the abilities of purified G-proteins (Gi and Go) to reconstitute high-affinity agonist binding to phosphorylated and nonphosphorylated receptors. A significantly larger percentage of the receptors phosphorylated with protein kinase C exhibited G-protein-dependent high-affinity agonist binding, suggesting that phosphorylation of the receptors by protein kinase C modulates receptor function in a positive manner.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

17.
Metabotropic (slow) and ionotropic (fast) neurotransmission are integrated by intracellular signal transduction mechanisms involving protein phosphorylation/dephosphorylation to achieve experience-dependent alterations in brain circuitry. ERK is an important effector of both slow and fast forms of neurotransmission and has been implicated in normal brain function and CNS diseases. Here we characterize phosphorylation of the ERK-activating protein kinase MEK1 by Cdk5, ERK, and Cdk1 in vitro in intact mouse brain tissue and in the context of an animal behavioral paradigm of stress. Cdk5 only phosphorylates Thr-292, whereas ERK and Cdk1 phosphorylate both Thr-292 and Thr-286 MEK1. These sites interact in a kinase-specific manner and inhibit the ability of MEK1 to activate ERK. Thr-292 and Thr-286 MEK1 are phosphorylated in most mouse brain regions to stoichiometries of ∼5% or less. Phosphorylation of Thr-292 MEK1 is regulated by cAMP-dependent signaling in mouse striatum in a manner consistent with negative feedback inhibition in response to ERK activation. Protein phosphatase 1 and 2A contribute to the maintenance of the basal phosphorylation state of both Thr-292 and Thr-286 MEK1 and that of ERK. Activation of the NMDA class of ionotropic glutamate receptors reduces inhibitory MEK1 phosphorylation, whereas forced swim, a paradigm of acute stress, attenuates Thr-292 MEK1 phosphorylation. Together, the data indicate that these inhibitory MEK1 sites phosphorylated by Cdk5 and ERK1 serve as mechanistic points of convergence for the regulation of ERK signaling by both slow and fast neurotransmission.  相似文献   

18.
The chemokine receptor CXCR4 is a widely expressed G protein-coupled receptor that has been implicated in a number of diseases including human immunodeficiency virus, cancer, and WHIM syndrome, with the latter two involving dysregulation of CXCR4 signaling. To better understand the role of phosphorylation in regulating CXCR4 signaling, tandem mass spectrometry and phospho-specific antibodies were used to identify sites of agonist-promoted phosphorylation. These studies demonstrated that Ser-321, Ser-324, Ser-325, Ser-330, Ser-339, and two sites between Ser-346 and Ser-352 were phosphorylated in HEK293 cells. We show that Ser-324/5 was rapidly phosphorylated by protein kinase C and G protein-coupled receptor kinase 6 (GRK6) upon CXCL12 treatment, whereas Ser-339 was specifically and rapidly phosphorylated by GRK6. Ser-330 was also phosphorylated by GRK6, albeit with slower kinetics. Similar results were observed in human astroglia cells, where endogenous CXCR4 was rapidly phosphorylated on Ser-324/5 by protein kinase C after CXCL12 treatment, whereas Ser-330 was slowly phosphorylated. Analysis of CXCR4 signaling in HEK293 cells revealed that calcium mobilization was primarily negatively regulated by GRK2, GRK6, and arrestin3, whereas GRK3, GRK6, and arrestin2 played a primary role in positively regulating ERK1/2 activation. In contrast, GRK2 appeared to play a negative role in ERK1/2 activation. Finally, we show that arrestin association with CXCR4 is primarily driven by the phosphorylation of far C-terminal residues on the receptor. These studies reveal that site-specific phosphorylation of CXCR4 is dynamically regulated by multiple kinases resulting in both positive and negative modulation of CXCR4 signaling.  相似文献   

19.
Agonists induce phosphorylation of m2 muscarinic receptors (mAChR) in several cell types. This phosphorylation correlates with desensitization. The mechanisms underlying mAChR phosphorylation have been investigated using several in vitro approaches. Protein kinase C phosphorylated the purified and reconstituted m2 mAChR to a stoichiometry of approximately 5 mols P/mol receptor; this phosphorylation resulted in the decreased ability of receptors to activate G-proteins. Although the phosphorylation by PKC was not modulated by agonist binding to the mAChR, heterotrimeric G-proteins were able to completely block the PKC-mediated effects. If significant receptor/G-protein coupling occurs in vivo, agonists would be required to promote dissociation of the G-proteins from the receptors and reveal the phosphorylation sites for PKC. Members of the G-protein coupled receptor kinase (GRK) family also phosphorylated the purified and reconstituted m2 mAChR. In contrast to PKC, the GRKs phosphorylated the m2 mAChR strictly in an agonist-dependent manner. GRK mediated phosphorylation perturbed receptor/G-protein coupling. In addition, phosphorylation allowed for arrestin binding to the m2 mAChR which should further contribute to desensitization. Using a new strategy that does not require purification and reconstitution of receptors for GRK studies, the m3 mAChR were revealed as substrates for the GRKs. For both the m2 and m3 receptor subtypes, the most effective kinases were GRK 2 and 3. Phosphorylation of the receptors by these enzymes was stimulated by low concentrations of G-proteins and by membrane phospholipids. Thus, multiple mechanisms involving protein phosphorylation appear to contribute to the overall process of mAChR desensitization.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号