首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Sarcoplasmic/endoplasmic reticulum (ER) Ca2+ is the most abundant store of intracellular Ca2+, and its release is an important trigger of physiological and cell death pathways. Previous work in our laboratory revealed the importance of ER Ca2+ in toxicant-induced renal proximal tubular cell (RPTC) death. The purpose of this study was to evaluate the use of confocal microscopy and Fluo5F, a low affinity Ca2+ indicator, to directly monitor changes in RPTC ER Ca2+. Fluo5F staining reflected ER Ca2+, resolved ER structure, and showed no colocalization with tetramethyl rhodamine methyl ester (TMRM), a marker of mitochondrial membrane potential. Thapsigargin, an ER Ca2+ pump inhibitor, decreased ER fluorescence by 30% and 55% at 5 and 15 min, respectively, whereas A23187, a Ca2+ ionophore caused more rapid ER Ca2+ release (55% and 75% decrease in fluorescence at 5 and 15 min).Carbonylcyanide-p-trifluoromethoxyphenylhydrazone (FCCP), a mitochondrial uncoupler, added at the end of the experiment, further decreased ER fluorescence after thapsigargin treatment, revealing that thapsigargin did not release all ER Ca2+. In contrast, FCCP did not decrease ER fluorescence after A23187 treatment, suggesting complete ER Ca2+ release. ER Ca2+ release in response to A23187 or thapsigargin resulted in a modest but significant decrease in mitochondrial membrane potential. These data provide evidence that confocal microscopy and Fluo5F are useful and effective tools for directly monitoring ER Ca2+ in live cells.  相似文献   

2.
A cold/warm loading protocol was used to ester-load Rhod 2 into mitochondria and other organelles and Fluo 3 into the cytosol of adult rabbit cardiac myocytes for confocal fluorescence imaging. Transient increases in both cytosolic Fluo 3 and mitochondrial Rhod 2 fluorescence occurred after electrical stimulation. Ruthenium red, a blocker of the mitochondrial Ca(2+) uniporter, inhibited mitochondrial Rhod 2 fluorescence transients but not cytosolic Fluo 3 transients. Thus the ruthenium red-sensitive mitochondrial Ca(2+) uniporter catalyzes Ca(2+) uptake during beat-to-beat transients of mitochondrial free Ca(2+), which in turn may help match mitochondrial ATP production to myocardial ATP demand. After ester loading, substantial amounts of Ca(2+)-indicating fluorophores localized into an acidic lysosomal/endosomal compartment. This lysosomal fluorescence did not respond to electrical stimulation. Because fluorescence arose predominantly from lysosomes after the cold loading/warm incubation procedure, total cellular fluorescence failed to track beat-to-beat changes of mitochondrial fluorescence. Only three-dimensionally resolved confocal imaging distinguished the relatively weak mitochondrial signal from the bright lysosomal fluorescence.  相似文献   

3.
Endoplasmic reticulum Ca(2+) signaling and calpains mediate renal cell death   总被引:17,自引:0,他引:17  
The goal of the current study was to determine the roles of ATP content, endoplasmic reticulum (ER) Ca(2+) stores, cytosolic free Ca(2+) (Ca(2+)(f)) and calpain activity in the signaling of rabbit renal proximal tubular (RPT) cell death (oncosis). Increasing concentrations (0.3-10 microM) of the mitochondrial inhibitor antimycin A produced rapid ATP depletion that correlated to a rapid and sustained increase in Ca(2+)(f), but not phospholipase C activation. The ER Ca(2+)-ATPase inhibitors thapsigargin (5 microM) or cyclopiazonic acid (100 microM) alone produced similar but transient increases in Ca(2+)(f). Pretreatment with thapsigargin prevented antimycin A-induced increases in Ca(2+)(f) and antimycin A pretreatment prevented thapsigargin-induced increases in Ca(2+)(f). Calpain activity increased in conjunction with ER Ca(2+) release. Pretreatment, but not post-treatment, with thapsigargin or cyclopiazonic acid prevented antimycin A-induced cell death. These data demonstrate that extensive ATP depletion signals oncosis through ER Ca(2+) release, a sustained increase in Ca(2+)(f) and calpain activation. Depletion of ER Ca(2+) stores prior to toxicant exposure prevents increases in Ca(2+)(f) and oncosis.  相似文献   

4.
K(ATP) channel activity influences beta cell Ca(2+) homeostasis by regulating Ca(2+) influx through L-type Ca(2+) channels. The present paper demonstrates that loss of K(ATP) channel activity due to pharmacologic or genetic ablation affects Ca(2+) storage in intracellular organelles. ATP depletion, by the mitochondrial inhibitor FCCP, led to Ca(2+) release from the endoplasmic reticulum (ER) of wildtype beta cells. Blockade of ER Ca(2+) ATPases by cyclopiazonic acid abolished the FCCP-induced Ca(2+) transient. In beta cells treated with K(ATP) channel inhibitors FCCP elicited a significantly larger Ca(2+) transient. Cyclopiazonic acid did not abolish this Ca(2+) transient suggesting that non-ER compartments are recruited as additional Ca(2+) stores in beta cells lacking K(ATP) channel activity. Genetic ablation of K(ATP) channels in SUR1KO mice produced identical results. In INS-1 cells transfected with a mitochondrial-targeted Ca(2+)-sensitive fluorescence dye (ratiometric pericam) the increase in mitochondrial Ca(2+) evoked by tolbutamide was 5-fold larger compared to 15 mM glucose. These data show that genetic or pharmacologic ablation of K(ATP) channel activity conveys Ca(2+) release from a non-ER store. Based on the sensitivity to FCCP and the property of tolbutamide to increase mitochondrial Ca(2+) it is suggested that mitochondria are the recruited store. The change in Ca(2+) sequestration in beta cells treated with insulinotropic antidiabetics may have implications for beta cell survival and the therapeutic use of these drugs.  相似文献   

5.
Isolated rat hepatocytes treated with mitochondrial inhibitors FCCP or antimycin A release discrete amounts of Ca2+ in a Ca(2+)-free extracellular medium as revealed by changes in the absorbance of the Ca2+ indicator arsenazo III. The process is completed in 2 min and the amount of Ca2+ released is not affected by the type of the mitochondrial poison employed. The subsequent treatment with the cation ionophore A23187 causes a further release of Ca2+ that does not appear related to the specificity of the previous treatment with FCCP or antimycin A. Both FCCP and antimycin A cause a progressive loss of cellular ATP associated with a decrease in the ATP/ADP ratio from 6 to 2-1.5. However, this decrease does not significantly prevent 45Ca2+ accumulation in isolated liver microsomes. Moreover, the decrease of the ATP/ADP ratio to 1, does not promote a significant release of 45Ca2+ from 45Ca(2+)-preloaded microsomes. Finally, experiments with Fura-2-loaded hepatocytes reveal that agents specifically releasing Ca2+ from non-mitochondrial stores (vasopressin and 2,5-di-tert-butyl-1-4-benzohydroquinone) are still able to increase the cytosolic Ca2+ concentration in FCCP-treated cells. Taken together, these findings demonstrate that, in freshly isolated hepatocytes, FCCP specifically releases Ca2+ from mitochondrial stores without significantly affecting active Ca2+ sequestration in other cellular pools. For these reasons, FCCP can be used to release and quantitate mitochondrial Ca2+ in liver cells.  相似文献   

6.
Calcium is an important regulator of mitochondrial function. Since there can be tight coupling between inositol 1,4, 5-trisphosphate-sensitive Ca(2+) release and elevation of mitochondrial calcium concentration, we have investigated whether a similar relationship exists between the release of Ca(2+) from the ryanodine receptor and the elevation of mitochondrial Ca(2+). Perfusion of permeabilized A10 cells with inositol 1,4, 5-trisphosphate resulted in a large transient elevation of mitochondrial Ca(2+) to about 8 microm. The response was inhibited by heparin but not ryanodine. Perfusion of the cells with Ca(2+) buffers in excess of 1 microm leads to large increases in mitochondrial Ca(2+) that are much greater than the perfused Ca(2+). These increases, which average around 10 microm, are enhanced by caffeine and inhibited by ryanodine and depletion of the intracellular stores with either orthovanadate or thapsigargin. We conclude that Ca(2+)-induced Ca(2+) release at the ryanodine receptor generates microdomains of elevated Ca(2+) that are sensed by adjacent mitochondria. In addition to ryanodine-sensitive stores acting as a source of Ca(2+), Ca(2+)-induced Ca(2+) release is required to generate efficient elevation of mitochondrial Ca(2+).  相似文献   

7.
To study Ca(2+) fluxes between mitochondria and the endoplasmic reticulum (ER), we used "cameleon" indicators targeted to the cytosol, the ER lumen, and the mitochondrial matrix. High affinity mitochondrial probes saturated in approximately 20% of mitochondria during histamine stimulation of HeLa cells, whereas a low affinity probe reported averaged peak values of 106 +/- 5 microm, indicating that Ca(2+) transients reach high levels in a fraction of mitochondria. In concurrent ER measurements, [Ca(2+)](ER) averaged 371 +/- 21 microm at rest and decreased to 133 +/- 14 microm and 59 +/- 5 microm upon stimulation with histamine and thapsigargin, respectively, indicating that substantial ER refilling occur during agonist stimulation. A larger ER depletion was observed when mitochondrial Ca(2+) uptake was prevented by oligomycin and rotenone or when Ca(2+) efflux from mitochondria was blocked by CGP 37157, indicating that some of the Ca(2+) taken up by mitochondria is re-used for ER refilling. Accordingly, ER regions close to mitochondria released less Ca(2+) than ER regions lacking mitochondria. The ER heterogeneity was abolished by thapsigargin, oligomycin/rotenone, or CGP 37157, indicating that mitochondrial Ca(2+) uptake locally modulate ER refilling. These observations indicate that some mitochondria are very close to the sites of Ca(2+) release and recycle a substantial portion of the captured Ca(2+) back to vicinal ER domains. The distance between the two organelles thus determines both the amplitude of mitochondrial Ca(2+) signals and the filling state of neighboring ER regions.  相似文献   

8.
PON2 (paraoxonase-2) is a ubiquitously expressed antioxidative protein which is largely found in the ER (endoplasmic reticulum). Addressing the cytoprotective functions of PON2, we observed that PON2 overexpression provided significant resistance to ER-stress-induced caspase 3 activation when the ER stress was induced by interference with protein modification (by tunicamycin or dithiothreitol), but not when ER stress was induced by disturbance of Ca(2+) homoeostasis (by thapsigargin or A23187). When analysing the underlying molecular events, we found an activation of the PON2 promoter in response to all tested ER-stress-inducing stimuli. However, only tunicamycin and dithiothreitol resulted in increased PON2 mRNA and protein levels. In contrast, when ER stress was caused by thapsigargin or A23187, we observed a Ca(2+)-dependent active degradation of PON2 mRNA, elicited by its 5'-untranslated region. In addition, thapsigargin and A23187 also induced PON2 protein degradation by a Ca(2+)-dependent calpain-mediated mechanism. Thus we provide evidence that independent mechanisms mediate the degradation of PON2 mRNA and protein after disturbance of Ca(2+) homoeostasis. Furthermore, because Ca(2+)-disturbance induces ER stress, but abrogates the otherwise protective function of PON2 against ER-stress-induced apoptosis, we propose that the underlying cause of ER stress determines the efficacy of putative cellular defence mechanisms.  相似文献   

9.
We studied the effects of the divalent cation ionophore A23187 on apoptotic signaling in MH1C1 cells. Addition of A23187 caused a fast rise of cytosolic Ca(2+) ([Ca(2+)](c)), which returned close to the resting level within about 40 s. The [Ca(2+)](c) rise was immediately followed by phospholipid hydrolysis, which could be inhibited by aristolochic acid or by pretreatment with thapsigargin in Ca(2+)-free medium, indicating that the Ca(2+)-dependent cytosolic phospholipase A(2) (cPLA(2)) was involved. These early events were followed by opening of the mitochondrial permeability transition pore (PTP) and by apoptosis in about 30% of the cell population. In keeping with a cause-effect relationship between addition of A23187, activation of cPLA(2), PTP opening, and cell death, all events but the [Ca(2+)](c) rise were prevented by aristolochic acid. The number of cells killed by A23187 was doubled by treatment with 0.5 microm MK886 and 5 microm indomethacin, which inhibit arachidonic acid metabolism through the 5-lipoxygenase and cyclooxygenase pathway, respectively. Consistent with the key role of free arachidonic acid, its levels increased within minutes of treatment with A23187; the increase being more pronounced in the presence of MK886 plus indomethacin. Cell death was preceded by cytochrome c release and cleavage of caspase 9 and 3, but not of caspase 8. All these events were prevented by aristolochic acid and by the PTP inhibitor cyclosporin A. Thus, A23187 triggers the apoptotic cascade through the release of arachidonic acid by cPLA(2) in a process that is amplified when transformation of arachidonic acid into prostaglandins and leukotrienes is inhibited. These findings identify arachidonic acid as the causal link between A23187-dependent perturbation of Ca(2+) homeostasis and the effector mechanisms of cell death.  相似文献   

10.
Agonist stimulation of exocrine cells leads to the generation of intracellular Ca(2+) signals driven by inositol 1,4,5-trisphosphate receptors (IP(3)Rs) that rapidly become global due to propagation throughout the cell. In many types of excitable cells the intracellular Ca(2+) signal is propagated by a mechanism of Ca(2+)-induced Ca(2+) release (CICR), mediated by ryanodine receptors (RyRs). Expression of RyRs in salivary gland cells has been demonstrated immunocytochemically although their functional role is not clear. We used microfluorimetry to measure Ca(2+) signals in the cytoplasm, in the endoplasmic reticulum (ER) and in mitochondria. In permeabilized acinar cells caffeine induced a dose-dependent, transient decrease of Ca(2+) concentration in the endoplasmic reticulum ([Ca(2+)](ER)). This decrease was inhibited by ryanodine but was insensitive to heparin. Application of caffeine, however, did not elevate cytosolic Ca(2+) concentration ([Ca(2+)](i)) suggesting fast local buffering of Ca(2+) released through RyRs. Indeed, activation of RyRs produced a robust mitochondrial Ca(2+) transient that was prevented by addition of Ca(2+) chelator BAPTA but not EGTA. When mitochondrial Ca(2+) uptake was blocked, activation of RyRs evoked only a non-transient increase in [Ca(2+)](i) and substantially smaller Ca(2+) release from the ER. Upon simultaneous inhibition of mitochondrial Ca(2+) uptake and either plasmalemmal or ER Ca(2+) ATPase, activation of RyRs caused a transient rise in [Ca(2+)](i). Collectively, our data suggest that Ca(2+) released through RyRs is mostly "tunnelled" to mitochondria, while Ca(2+) ATPases are responsible for the fast initial sequestration of Ca(2+). Ca(2+) uptake by mitochondria is critical for maintaining continuous CICR. A complex interplay between RyRs, mitochondria and Ca(2+) ATPases is accomplished through strategic positioning of mitochondria close to both Ca(2+) release sites in the ER and Ca(2+) pumping sites of the plasmalemma and the ER.  相似文献   

11.
Depletion of Ca(2+) from the endoplasmic reticulum (ER) induces large increases in cytoplasmic Ca(2+), mitochondrial Ca(2+) loading, protein synthesis inhibition, and cell death. To clarify the connections among these events, we have evaluated the effect of Ca(2+) mobilizing agents thapsigargin (Tg), econazole (Ec), and the growth factor Steel Factor (SLF) on bone marrow-derived mast cells (BMMCs). BMMC Ca(2+) stores were found to consist of a Tg-sensitive ER compartment, the Tg-insensitive SIC store, and mitochondrial stores. Low levels of Ec interfered with Tg-stimulated mitochondrial loading while promoting progressive leakage of Ca(2+) from the ER. Low levels of Ec completely reversed Tg toxicity while higher levels blocked store-operated influx and induced cell death in a SLF-enhanced manner. Both Ec and Tg inhibited protein synthesis, however, only SLF plus Tg or very high levels of Ec were able to significantly stimulate EIF-2alpha phosphorylation. Cycloheximide only partially protected BMMCs from Tg toxicity yet strongly synergized with Ec to induce cell death. These results therefore indicate that although both Tg and Ec deplete ER Ca(2+) levels, Ec-induced cell death results from sustained protein synthesis inhibition while Tg toxicity results primarily from mitochondrial Ca(2+) overload and secondarily from ER stress associated with Ca(2+) depletion.  相似文献   

12.
Calcium signal transmission between endoplasmic reticulum (ER) and mitochondria is supported by a local [Ca(2+)] control that operates between IP(3)receptor Ca(2+)release channels (IP(3)R) and mitochondrial Ca(2+)uptake sites, and displays functional similarities to synaptic transmission. Activation of IP(3)R by IP(3)is known to evoke quantal Ca(2+)mobilization that is associated with incremental elevations of mitochondrial matrix [Ca(2+)] ([Ca(2+)](m)). Here we report that activation of IP(3)R by adenophostin-A (AP) yields non-quantal Ca(2+)mobilization in mast cells. We also show that the AP-induced continuous Ca(2+)release causes relatively small [Ca(2+)](m)responses, in particular, the sustained phase of Ca(2+)release is not sensed by the mitochondria. Inhibition of ER Ca(2+)pumps by thapsigargin slightly increases IP(3)-induced [Ca(2+)](m)responses, but augments AP-induced [Ca(2+)](m)responses in a large extent. In adherent permeabilized cells exposed to elevated [Ca(2+)], ER Ca(2+)uptake fails to affect global cytosolic [Ca(2+)], but attenuates [Ca(2+)](m)responses. Moreover, almost every mitochondrion exhibits a region very close to ER Ca(2+)pumps visualized by BODIPY-FL-thapsigargin or SERCA antibody. Thus, at the ER-mitochondrial junctions, localized ER Ca(2+)uptake provides a mechanism to attenuate the mitochondrial response during continuous Ca(2+)release through the IP(3)R or during gradual Ca(2+)influx to the junction between ER and mitochondria.  相似文献   

13.
Ishii K  Hirose K  Iino M 《EMBO reports》2006,7(4):390-396
Although many cell functions are regulated by Ca(2+) oscillations induced by a cyclic release of Ca(2+) from intracellular Ca(2+) stores, the pacemaker mechanism of Ca(2+) oscillations remains to be explained. Using green fluorescent protein-based Ca(2+) indicators that are targeted to intracellular Ca(2+) stores, the endoplasmic reticulum (ER) and mitochondria, we found that Ca(2+) shuttles between the ER and mitochondria in phase with Ca(2+) oscillations. Following agonist stimulation, Ca(2+) release from the ER generated the first Ca(2+) oscillation and loaded mitochondria with Ca(2+). Before the second Ca(2+) oscillation, Ca(2+) release from the mitochondria by means of the Na(+)/Ca(2+) exchanger caused a gradual increase in cytoplasmic Ca(2+) concentration, inducing a regenerative ER Ca(2+) release, which generated the peak of Ca(2+) oscillation and partially reloaded the mitochondria. This sequence of events was repeated until mitochondrial Ca(2+) was depleted. Thus, Ca(2+) shuttling between the ER and mitochondria may have a pacemaker role in the generation of Ca(2+) oscillations.  相似文献   

14.
Stimulation of T cell receptor in lymphocytes enhances Ca(2+) signaling and accelerates membrane trafficking. The relationships between these processes are not well understood. We employed membrane-impermeable lipid marker FM1-43 to explore membrane trafficking upon mobilization of intracellular Ca(2+) in Jurkat T cells. We established that liberation of intracellular Ca(2+) with T cell receptor agonist phytohemagglutinin P or with Ca(2+)-mobilizing agents ionomycin or thapsigargin induced accumulation of FM1-43 within the lumen of the endoplasmic reticulum (ER), nuclear envelope (NE), and Golgi. FM1-43 loading into ER-NE and Golgi was not mediated via the cytosol because other organelles such as mitochondria and multivesicular bodies located in close proximity to the FM1-43-containing ER were free of dye. Intralumenal FM1-43 accumulation was observed even when Ca(2+) signaling in the cytosol was abolished by the removal of extracellular Ca(2+). Our findings strongly suggest that release of intracellular Ca(2+) may create continuity between the extracellular leaflet of the plasma membrane and the lumenal membrane leaflet of the ER by a mechanism that does not require global cytosolic Ca(2+) elevation.  相似文献   

15.
Quercetin is known to protect the cells suffering from oxidative stress. The oxidative stress elevates intracellular Ca(2+) concentration, one of the phenomena responsible for cell death. Therefore, we hypothesized that quercetin would protect the cells suffering from overload of intracellular Ca(2+). To test the hypothesis, the effects of quercetin on the cells suffering from oxidative stress and intracellular Ca(2+) overload were examined by using a flow cytometer with appropriate fluorescence probes (propidium iodide, fluo-3-AM, and annexin V-FITC) and rat thymocytes. The concentrations (1-30 microM) of quercetin to protect the cells suffering from intracellular Ca(2+) overload by A23187, a calcium ionophore, were similar to those for the cells suffering from oxidative stress by H(2)O(2). The cell death respectively induced by H(2)O(2) and A23187 was significantly suppressed by removal of external Ca(2+). Furthermore, quercetin greatly delayed the process of Ca(2+)-dependent cell death although it did not significantly affect the elevation of intracellular Ca(2+) concentration by H(2)O(2) and A23187, respectively. It is concluded that quercetin can protect the cells from oxidative injury in spite of increased concentration of intracellular Ca(2+). Results suggest that quercetin is also used for protection of cells suffering from overload of intracellular Ca(2+).  相似文献   

16.
Previous studies have demonstrated that Ca(2+) is released from the endoplasmic reticulum (ER) in some models of apoptosis, but the mechanisms involved and the functional significance remain obscure. We confirmed that apoptosis induced by some (but not all) proapoptotic stimuli was associated with caspase-independent, BCL-2-sensitive emptying of the ER Ca(2+) pool in human PC-3 prostate cancer cells. This mobilization of ER Ca(2+) was associated with a concomitant increase in mitochondrial Ca(2+) levels, and neither ER Ca(2+) mobilization nor mitochondrial Ca(2+) uptake occurred in Bax-null DU-145 cells. Importantly, restoration of DU-145 Bax expression via adenoviral gene transfer restored ER Ca(2+) release and mitochondrial Ca(2+) uptake and dramatically accelerated the kinetics of staurosporine-induced cytochrome c release, demonstrating a requirement for Bax expression in this model system. In addition, an inhibitor of the mitochondrial Ca(2+) uniporter (RU-360) attenuated mitochondrial Ca(2+) uptake, cytochrome c release, and DNA fragmentation, directly implicating the mitochondrial Ca(2+) changes in cell death. Together, our data demonstrate that Bax-mediated alterations in ER and mitochondrial Ca(2+) levels serve as important upstream signals for cytochrome c release in some examples of apoptosis.  相似文献   

17.
Regulation of cytosolic free calcium in rabbit proximal renal tubules   总被引:3,自引:0,他引:3  
The relative role of various Ca2+ transport systems in the regulation of Ca2+ cytosolic free Ca2+ concentration was evaluated using rabbit renal proximal tubules. Intracellular compartmentation was evaluated through Ca2+ releases induced by carbonyl cyanide p-trifluoromethoxyphenylhydrazone (FCCP), A23187, and ruthenium red (RR) alone and in combination. In a Ca2+-free solution after 1 h of incubation, FCCP released 43 +/- 4%, A23187 54 +/- 3%, and RR 29 +/- 5% of total cellular Ca2+; in addition, RR inhibited the rate of FCCP-induced release, confirming its mitochondrial origin. In 1 mM Ca2+, the releases were 57 +/- 9%, 70 +/- 5%, and 34 +/- 10%, respectively. Therefore, the mitochondrial Ca2+ content is 20-60 nmol/mg of mitochondrial protein, sufficiently large to effectively buffer cell Ca2+. To evaluate the role of the plasma membrane Na:Ca exchanger, 10(-4) M ouabain was added and caused a slight decline in total cell Ca2+ content and no change in ionized Ca2+ measured by the null-point method, suggesting that the plasmalemmal Na+:Ca2+ exchanger does not play an important role in Ca2+ extrusion. Cytosolic free Ca2+ increased when 100 mM sodium was replaced with equimolar choline or tetramethylammonium. However, tetramethylammonium replacement released 55% of the mitochondrial Ca2+ content by increasing mitochondrial Ca2+ efflux without affecting the Ca2+ influx pathway. These results suggest that Na+ replacements in this tissue increase ionized Ca2+ by increasing mitochondrial Ca2+ efflux and not by inhibition of Na+:Ca2+ exchange at the plasma membrane.  相似文献   

18.
The immunosuppressant cyclosporin A (CsA) markedly inhibits collagen degradation by an intracellular phagocytic pathway in fibroblasts, an effect that can lead to massive gingival overgrowth. We used a collagen bead model of collagen phagocytosis to determine whether CsA inhibits internalization by blocking efflux of calcium from endoplasmic reticulum (ER) and mitochondrial calcium stores. CsA caused dose-dependent inhibition of phagocytosis of collagen-coated (but not bovine serum albumin-coated) beads. Chelation of intracellular Ca(2+) with BAPTA/AM or inhibition of Ca(2+)-ATPase of ER stores with thapsigargin reduced collagen bead phagocytosis. Measurement of intracellular calcium by ratio fluorometry showed increases in response to collagen-coated beads. Preincubation with CsA or thapsigargin caused a >3-fold decrease in intracellular calcium elevations in response to stimulation with collagen beads. Direct measurements of Ca(2+) in mitochondrial and ER stores showed that CsA only slightly inhibited collagen bead-induced discharge of calcium from mitochondria, but almost completely blocked discharge from ER stores. We reduced the numbers of mitochondria with chronic ethidium bromide treatment to test for the importance of ER/mitochondrial interactions. In these cells, CsA delayed collagen bead-induced calcium discharge from mitochondria. Collectively, these data indicate that CsA inhibits collagen phagocytosis by blocking calcium release from ER stores and may perturb functional interactions between the ER and mitochondria that regulate calcium stores.  相似文献   

19.
To study the role of calreticulin in Ca(2+) homeostasis and apoptosis, we generated cells inducible for full-length or truncated calreticulin and measured Ca(2+) signals within the cytosol, the endoplasmic reticulum (ER), and mitochondria with "cameleon" indicators. Induction of calreticulin increased the free Ca(2+) concentration within the ER lumen, [Ca(2+)](ER), from 306 +/- 31 to 595 +/- 53 microm, and doubled the rate of ER refilling. [Ca(2+)](ER) remained elevated in the presence of thapsigargin, an inhibitor of SERCA-type Ca(2+) ATPases. Under these conditions, store-operated Ca(2+) influx appeared inhibited but could be reactivated by decreasing [Ca(2+)](ER) with the low affinity Ca(2+) chelator N,N,N',N'-tetrakis(2-pyridylmethyl)ethylenediamine. In contrast, [Ca(2+)](ER) decreased much faster during stimulation with carbachol. The larger ER release was associated with a larger cytosolic Ca(2+) response and, surprisingly, with a shorter mitochondrial Ca(2+) response. The reduced mitochondrial signal was not associated with visible morphological alterations of mitochondria or with disruption of the contacts between mitochondria and the ER but correlated with a reduced mitochondrial membrane potential. Altered ER and mitochondrial Ca(2+) responses were also observed in cells expressing an N-truncated calreticulin but not in cells overexpressing calnexin, a P-domain containing chaperone, indicating that the effects were mediated by the unique C-domain of calreticulin. In conclusion, calreticulin overexpression increases Ca(2+) fluxes across the ER but decreases mitochondrial Ca(2+) and membrane potential. The increased Ca(2+) turnover between the two organelles might damage mitochondria, accounting for the increased susceptibility of cells expressing high levels of calreticulin to apoptotic stimuli.  相似文献   

20.
In response to endoplasmic reticulum (ER) stress, cells launch homeostatic and protective responses, but can also activate cell death cascades. A 54 kDa integral ER membrane protein called Herp was identified as a stress-responsive protein in non-neuronal cells. We report that Herp is present in neurons in the developing and adult brain, and that it is regulated in neurons by ER stress; sublethal levels of ER stress increase Herp levels, whereas higher doses decrease Herp levels and induce apoptosis. The decrease in Herp protein levels following a lethal ER stress occurs prior to mitochondrial dysfunction and cell death, and is mediated by caspases which generate a 30-kDa proteolytic Herp fragment. Mutagenesis of the caspase cleavage site in Herp enhances its neuroprotective function during ER stress. While suppression of Herp induction by RNA interference sensitizes neural cells to apoptosis induced by ER stress, overexpression of Herp promotes survival by a mechanism involving stabilization of ER Ca(2+) levels, preservation of mitochondrial function and suppression of caspase 3 activation. ER stress-induced activation of JNK/c-Jun and caspase 12 are reduced by Herp, whereas induction of major ER chaperones is unaffected. Herp prevents ER Ca(2+) overload under conditions of ER stress and agonist-induced ER Ca(2+) release is attenuated by Herp suggesting a role for Herp in regulating neuronal Ca(2+) signaling. By stabilizing ER Ca(2+) homeostasis and mitochondrial functions, Herp serves a neuroprotective function under conditions of ER stress.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号