首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
We report the solution NMR structures of the N-domain of the Menkes protein (ATP7A) in the ATP-free and ATP-bound forms. The structures consist of a twisted antiparallel six-stranded β-sheet flanked by two pairs of α-helices. A protein loop of 50 amino acids located between β3 and β4 is disordered and mobile on the subnanosecond time scale. ATP binds with an affinity constant of (1.2 ± 0.1) × 104 m−1 and exchanges with a rate of the order of 1 × 103 s−1. The ATP-binding cavity is considerably affected by the presence of the ligand, resulting in a more compact conformation in the ATP-bound than in the ATP-free form. This structural variation is due to the movement of the α1-α2 and β2-β3 loops, both of which are highly conserved in copper(I)-transporting PIB-type ATPases. The present structure reveals a characteristic binding mode of ATP within the protein scaffold of the copper(I)-transporting PIB-type ATPases with respect to the other P-type ATPases. In particular, the binding cavity contains mainly hydrophobic aliphatic residues, which are involved in van der Waal''s interactions with the adenine ring of ATP, and a Glu side chain, which forms a crucial hydrogen bond to the amino group of ATP.  相似文献   

3.
The parvulin-type peptidyl-prolyl cis/trans isomerases (PPIases) have been shown to be involved in tumor progression and the pathogenesis of Alzheimer's disease and were therefore a subject of intense research. Here, we describe a role for parvulin 17 in microtubule assembly. Co-precipitation experiments and sedimentation assays demonstrated that parvulin 17 interacts with tubulin in a GTP-dependent manner and thereby promotes the formation of microtubules, as shown by transmission electron microscopy and a microtubule polymerization assay. The microtubule-assembly-promoting properties of parvulin 17 seem to depend on its PPIase activity. Thus, catalytic deficient variants of parvulin 17 were not able to promote microtubule formation. Accordingly, inhibitors of parvulin 17 activity also prevent parvulin-catalyzed tubulin polymerization. The analysis of tubulin interaction sites on parvulin using peptide microarrays revealed that tubulin interacts with the substrate binding pocket of parvulin. Additionally, β-tubulin peptide scan on microarrays demonstrates interaction of parvulin 17 with an Arg-Pro-Asp motif corresponding to proline residue 87 of β-tubulin. Confocal laser scanning microscopy points to a function of parvulin 17 in microtubule dynamics as well. Parvulin 17 is predominantly found in the cytosol and colocalizes with microtubules.  相似文献   

4.
Plant biomass is central to the carbon cycle and to environmentally sustainable industries exemplified by the biofuel sector. Plant cell wall degrading enzymes generally contain noncatalytic carbohydrate binding modules (CBMs) that fulfil a targeting function, which enhances catalysis. CBMs that bind β-glucan chains often display broad specificity recognizing β1,4-glucans (cellulose), β1,3-β1,4-mixed linked glucans and xyloglucan, a β1,4-glucan decorated with α1,6-xylose residues, by targeting structures common to the three polysaccharides. Thus, CBMs that recognize xyloglucan target the β1,4-glucan backbone and only accommodate the xylose decorations. Here we show that two closely related CBMs, CBM65A and CBM65B, derived from EcCel5A, a Eubacterium cellulosolvens endoglucanase, bind to a range of β-glucans but, uniquely, display significant preference for xyloglucan. The structures of the two CBMs reveal a β-sandwich fold. The ligand binding site comprises the β-sheet that forms the concave surface of the proteins. Binding to the backbone chains of β-glucans is mediated primarily by five aromatic residues that also make hydrophobic interactions with the xylose side chains of xyloglucan, conferring the distinctive specificity of the CBMs for the decorated polysaccharide. Significantly, and in contrast to other CBMs that recognize β-glucans, CBM65A utilizes different polar residues to bind cellulose and mixed linked glucans. Thus, Gln106 is central to cellulose recognition, but is not required for binding to mixed linked glucans. This report reveals the mechanism by which β-glucan-specific CBMs can distinguish between linear and mixed linked glucans, and show how these CBMs can exploit an extensive hydrophobic platform to target the side chains of decorated β-glucans.  相似文献   

5.
Peptidyl-prolyl isomerases (PPIases) are emerging as key regulators of many diverse biological processes. Elucidating the role of PPIase activity in vivo has been challenging because mutagenesis of active-site residues not only reduces the catalytic activity of these enzymes but also dramatically affects substrate binding. Employing the cyclophilin A PPIase together with its biologically relevant and natively folded substrate, the N-terminal domain of the human immunodeficiency virus type 1 capsid (CAN) protein, we demonstrate here how to dissect residue-specific contributions to PPIase catalysis versus substrate binding utilizing NMR spectroscopy. Surprisingly, a number of cyclophilin A active-site mutants previously assumed to be strongly diminished in activity toward biological substrates based only on a peptide assay catalyze the human immunodeficiency virus capsid with wild-type activity but with a change in the rate-limiting step of the enzymatic cycle. The results illustrate that a quantitative analysis of catalysis using the biological substrates is critical when interpreting the effects of PPIase mutations in biological assays.  相似文献   

6.
PrsA is a peptidyl-prolyl isomerase (PPIase) from Bacillus subtilis belonging to the parvulin family of PPIases. It is a membrane bound lipoprotein at the membrane-wall interface, involved in folding of exported proteins. We present the NMR solution structure of the PPIase domain of PrsA, the first from a Gram-positive bacterium. In addition we mapped out the active site with NMR titration experiments. A high degree of conservation with other members of the parvulin family was revealed in the structure and binding site. Interactions with substrate peptides were also characterized by mutated domains revealing that H122 is indispensable for overall correct folding.  相似文献   

7.
Clostridium perfringens enterotoxin (CPE) is a cause of food poisoning and is considered a pore-forming toxin, which damages target cells by disrupting the selective permeability of the plasma membrane. However, the pore-forming mechanism and the structural characteristics of the pores are not well documented. Here, we present the structure of CPE determined by x-ray crystallography at 2.0 Å. The overall structure of CPE displays an elongated shape, composed of three distinct domains, I, II, and III. Domain I corresponds to the region that was formerly referred to as C-CPE, which is responsible for binding to the specific receptor claudin. Domains II and III comprise a characteristic module, which resembles those of β-pore-forming toxins such as aerolysin, C. perfringens ϵ-toxin, and Laetiporus sulfureus hemolytic pore-forming lectin. The module is mainly made up of β-strands, two of which span its entire length. Domain II and domain III have three short β-strands each, by which they are distinguished. In addition, domain II has an α-helix lying on the β-strands. The sequence of amino acids composing the α-helix and preceding β-strand demonstrates an alternating pattern of hydrophobic residues that is characteristic of transmembrane domains forming β-barrel-made pores. These structural features imply that CPE is a β-pore-forming toxin. We also hypothesize that the transmembrane domain is inserted into the membrane upon the buckling of the two long β-strands spanning the module, a mechanism analogous to that of the cholesterol-dependent cytolysins.  相似文献   

8.
The calnexin cycle is a process by which glycosylated proteins are subjected to folding cycles in the endoplasmic reticulum lumen via binding to the membrane protein calnexin (CNX) or to its soluble homolog calreticulin (CRT). CNX and CRT specifically recognize monoglucosylated Glc1Man9GlcNAc2 glycans, but the structural determinants underlying this specificity are unknown. Here, we report a 1.95-Å crystal structure of the CRT lectin domain in complex with the tetrasaccharide α-Glc-(1→3)-α-Man-(1→2)-α-Man-(1→2)-Man. The tetrasaccharide binds to a long channel on CRT formed by a concave β-sheet. All four sugar moieties are engaged in the protein binding via an extensive network of hydrogen bonds and hydrophobic contacts. The structure explains the requirement for glucose at the nonreducing end of the carbohydrate; the oxygen O2 of glucose perfectly fits to a pocket formed by CRT side chains while forming direct hydrogen bonds with the carbonyl of Gly124 and the side chain of Lys111. The structure also explains a requirement for the Cys105–Cys137 disulfide bond in CRT/CNX for efficient carbohydrate binding. The Cys105–Cys137 disulfide bond is involved in intimate contacts with the third and fourth sugar moieties of the Glc1Man3 tetrasaccharide. Finally, the structure rationalizes previous mutagenesis of CRT and lays a structural groundwork for future studies of the role of CNX/CRT in diverse biological pathways.  相似文献   

9.
PTPA, an essential and specific activator of protein phosphatase 2A (PP2A), functions as a peptidyl prolyl isomerase (PPIase). We present here the crystal structures of human PTPA and of the two yeast orthologs (Ypa1 and Ypa2), revealing an all alpha-helical protein fold that is radically different from other PPIases. The protein is organized into two domains separated by a groove lined by highly conserved residues. To understand the molecular mechanism of PTPA activity, Ypa1 was cocrystallized with a proline-containing PPIase peptide substrate. In the complex, the peptide binds at the interface of a peptide-induced dimer interface. Conserved residues of the interdomain groove contribute to the peptide binding site and dimer interface. Structure-guided mutational studies showed that in vivo PTPA activity is influenced by mutations on the surface of the peptide binding pocket, the same mutations that also influenced the in vitro activation of PP2Ai and PPIase activity.  相似文献   

10.
The cytosolic (group IV) phospholipase A2 (cPLA2s) family contains six members. We have prepared recombinant proteins for human α, mouse β, human γ, human δ, human ϵ, and mouse ζ cPLA2s and have studied their interfacial kinetic and binding properties in vitro. Mouse cPLA2β action on phosphatidylcholine vesicles is activated by anionic phosphoinositides and cardiolipin but displays a requirement for Ca2+ only in the presence of cardiolipin. This activation pattern is explained by the effects of anionic phospholipids and Ca2+ on the interfacial binding of mouse cPLA2β and its C2 domain to vesicles. Ca2+-dependent binding of mouse cPLA2β to cardiolipin-containing vesicles requires a patch of basic residues near the Ca2+-binding surface loops of the C2 domain, but binding to phosphoinositide-containing vesicles does not depend on any specific cluster of basic residues. Human cPLA2δ also displays Ca2+- and cardiolipin-enhanced interfacial binding and activity. The lysophospholipase, phospholipase A1, and phospholipase A2 activities of the full set of mammalian cPLA2s were quantified. The relative level of these activities is very different among the isoforms, and human cPLA2δ stands out as having relatively high phospholipase A1 activity. We also tested the susceptibility of all cPLA2 family members to a panel of previously reported inhibitors of human cPLA2α and analogs of these compounds. This led to the discovery of a potent and selective inhibitor of mouse cPLA2β. These in vitro studies help determine the regulation and function of the cPLA2 family members.  相似文献   

11.
The human prostacyclin receptor (hIP) undergoes agonist-induced internalization and subsequent recyclization in slowly recycling endosomes involving its direct physical interaction with Rab11a. Moreover, interaction with Rab11a localizes to a 22-residue putative Rab11 binding domain (RBD) within the carboxyl-terminal tail of the hIP, proximal to the transmembrane 7 (TM7) domain. Because the proposed RBD contains Cys308 and Cys311, in addition to Cys309, that are known to undergo palmitoylation, we sought to identify the structure/function determinants of the RBD, including the influence of palmitoylation, on agonist-induced trafficking of the hIP. Through complementary approaches in yeast and mammalian cells along with computational structural studies, the RBD was localized to a 14-residue domain, between Val299 and Leu312, and proposed to be organized into an eighth α-helical domain (α-helix 8), comprising Val299–Val307, adjacent to the palmitoylated residues at Cys308–Cys311. From mutational and [3H]palmitate metabolic labeling studies, it is proposed that palmitoylation at Cys311 in addition to agonist-regulated deacylation at Cys309 > Cys308 may dynamically position α-helix 8 in proximity to Rab11a, to regulate agonist-induced intracellular trafficking of the hIP. Moreover, Ala-scanning mutagenesis identified several hydrophobic residues within α-helix 8 as necessary for the interaction with Rab11a. Given the diverse membership of the G protein-coupled receptor superfamily, of which many members are also predicted to contain an α-helical 8 domain proximal to TM7 and, often, adjacent to palmitoylable cysteine(s), the identification of a functional role for α-helix 8, as exemplified as an RBD for the hIP, is likely to have broader significance for certain members of the superfamily.  相似文献   

12.
Murine desnutrin/human ATGL is a triacylglycerol (TAG) hydrolase with a predicted catalytic dyad within an α-β hydrolase fold in the N-terminal region. In humans, mutations resulting in C-terminal truncation cause neutral lipid storage disease with myopathy. To identify critical functional domains, we measured TAG breakdown in cultured cells by mutated or truncated desnutrin. In vitro, C-terminally truncated desnutrin displayed an even higher apparent Vmax than the full-length form without changes in Km, which may be explained by our finding of an interaction between the C- and N-terminal domains. In live cells, however, C-terminally truncated adenoviral desnutrin had lower TAG hydrolase activity. We investigated a role for the phosphorylation of C-terminal S406 and S430 residues but found that these were not necessary for TAG breakdown or lipid droplet localization in cells. The predicted N-terminal active sites, S47 and D166, were both critical for TAG hydrolysis in live cells and in vitro. We also identified two overlapping N-terminal motifs that predict lipid substrate binding domains, a glycine-rich motif (underlined) and an amphipathic α-helix (bold) within amino acid residues 10–24 (ISFAGCGFLGVYHIG). G14, F17, L18, and V20, but not G16 and G19, were important for TAG hydrolysis, suggesting a potential role for the amphipathic α-helix in TAG binding. This study identifies for the first time critical sites in the N-terminal region of desnutrin and reveals the requirement of the C-terminal region for TAG hydrolysis in cultured cells.  相似文献   

13.
Enhancement of γ-aminobutyric acid type A receptor (GABAAR)-mediated inhibition is a property of most general anesthetics and a candidate for a molecular mechanism of anesthesia. Intravenous anesthetics, including etomidate, propofol, barbiturates, and neuroactive steroids, as well as volatile anesthetics and long-chain alcohols, all enhance GABAAR function at anesthetic concentrations. The implied existence of a receptor site for anesthetics on the GABAAR protein was supported by identification, using photoaffinity labeling, of a binding site for etomidate within the GABAAR transmembrane domain at the β-α subunit interface; the etomidate analog [3H]azietomidate photolabeled in a pharmacologically specific manner two amino acids, α1Met-236 in the M1 helix and βMet-286 in the M3 helix (Li, G. D., Chiara, D. C., Sawyer, G. W., Husain, S. S., Olsen, R. W., and Cohen, J. B. (2006) J. Neurosci. 26, 11599–11605). Here, we use [3H]azietomidate photolabeling of bovine brain GABAARs to determine whether other structural classes of anesthetics interact with the etomidate binding site. Photolabeling was inhibited by anesthetic concentrations of propofol, barbiturates, and the volatile agent isoflurane, at low millimolar concentrations, but not by octanol or ethanol. Inhibition by barbiturates, which was pharmacologically specific and stereospecific, and by propofol was only partial, consistent with allosteric interactions, whereas isoflurane inhibition was nearly complete, apparently competitive. Protein sequencing showed that propofol inhibited to the same extent the photolabeling of α1Met-236 and βMet-286. These results indicate that several classes of general anesthetics modulate etomidate binding to the GABAAR: isoflurane binds directly to the site with millimolar affinity, whereas propofol and barbiturates inhibit binding but do not bind in a mutually exclusive manner with etomidate.  相似文献   

14.
Although parvulin (Par14/eukaryotic parvulin homolog), a peptidyl-prolyl cis-trans isomerase, is found associated with the preribosomal ribonucleoprotein (pre-rRNP) complexes, its roles in ribosome biogenesis remain undetermined. In this study, we describe a comprehensive proteomics analysis of the Par14-associated pre-rRNP complexes using LC-MS/MS and a knockdown analysis of Par14. Together with our previous results, we finally identified 115 protein components of the complexes, including 39 ribosomal proteins and 54 potential trans-acting factors whose yeast homologs are found in the pre-rRNP complexes formed at various stages of ribosome biogenesis. We give evidence that, although Par14 exists in both the phosphorylated and unphosphorylated forms in the cell, only the latter form is associated with the pre-40 S and pre-60 S ribosomal complexes. We also show that Par14 co-localizes with the nucleolar protein B23 during the interphase and in the spindle apparatus during mitosis and that actinomycin D treatment results in the exclusion of Par14 from the nucleolus. Finally we demonstrate that knockdown of Par14 mRNA decelerates the processing of pre-rRNA to 18 and 28 S rRNAs. We propose that Par14 is a component of the pre-rRNA complexes and functions as an rRNA processing factor in ribosome biogenesis. As the amino acid sequence of Par14 including that in the amino-terminal pre-rRNP binding region is conserved only in metazoan homologs, we suggest that its roles in ribosome biogenesis have evolved in the metazoan lineage.Peptidyl-prolyl cis-trans isomerases (PPIases)1 catalyze the rotation about the peptide bond on the amino-terminal side of proline, a step that can be rate-limiting for the folding of newly synthesized proteins (1). PPIases also have the ability to bind many proteins, thereby acting as chaperones; thus, they are believed to control the activity of proteins by regulating their folding, assembly, and intracellular trafficking (24). There are three families of PPIases, namely the cyclophilin (CyP), FK506-binding protein, and parvulin families. The CyP and FK506-binding protein families have been well established as targets of the immunosuppressants cyclosporin A and FK506, respectively (57).Together with Pin1, human parvulin (Par14, EPVH) constitutes the parvulin family and has been identified in all hitherto examined human tissues (8, 9). Par14 comprises 131 amino acid residues and has a 35-residue amino-terminal region that does not have sequence similarity to the WW domain (known to bind to phosphorylated serine/threonine-proline bonds in proteins and peptides) of Pin1. Phosphorylation at Ser-19 in this region regulates the subcellular localization and DNA binding activity of Par14; the phosphorylation is required for nuclear localization, and the dephosphorylation is a prerequisite for the binding of the first 25 residues to nuclear DNA (10). The 96-residue carboxyl-terminal domain has a 34.2% sequence identity with the PPIase domain of Pin1. Par14 reportedly has a substrate preference for positively charged residues preceding proline but not for phosphorylated Thr or Ser as is the case with Pin1; however, its rate constant for the prolyl cis to trans isomerization reaction is at least 1,000-fold lower than that of CyPs (9). NMR solution structural analysis has shown that Par14 folds into a βα3βαβ2 structure, which is essentially identical to that of Pin1 (11). The unstructured 35-residue amino-terminal region contains several basic residues and replaces the WW domain of Pin1 (11). This structural model explains the molecular basis for the preferential substrate specificity of Par14 for positively charged residues preceding proline as well as the putative role of the amino-terminal region as a DNA-binding domain. However, the physiological function of Par14 remains unknown.We previously reported that Par14 associates with the preribosomal ribonucleoprotein (pre-rRNP) complexes as well as with many proteins that are implicated in the regulation of microtubule assembly or nucleolar reformation during mitosis (12, 13). We have proposed that Par14 is involved in ribosome biogenesis and/or nucleolar reassembly in mammalian cells during the pre- or postmitotic phases of the cell cycle. In the present study, we describe the comprehensive identification of protein components of the Par14-associated pre-rRNP complexes and establish Par14 as a de facto component of the pre-rRNP complexes in vivo. We also demonstrate that Par14 functions as a ribosomal RNA processing factor in mammalian ribosome biogenesis.  相似文献   

15.
A fundamental question in protein science is what is the intrinsic propensity for an amino acid to be in an α-helix, β-sheet, or other backbone dihedral angle (-ψ) conformation. This question has been hotly debated for many years because including all protein crystal structures from the protein database, increases the probabilities for α-helical structures, while experiments on small peptides observe that β-sheet-like conformations predominate. We perform molecular dynamics (MD) simulations of a hard-sphere model for Ala dipeptide mimetics that includes steric interactions between nonbonded atoms and bond length and angle constraints with the goal of evaluating the role of steric interactions in determining protein backbone conformational preferences. We find four key results. For the hard-sphere MD simulations, we show that (1) β-sheet structures are roughly three and half times more probable than α-helical structures, (2) transitions between α-helix and β-sheet structures only occur when the backbone bond angle τ (N–Cα–C) is greater than 110°, and (3) the probability distribution of τ for Ala conformations in the “bridge” region of-ψ space is shifted to larger angles compared to other regions. In contrast, (4) the distributions obtained from Amber and CHARMM MD simulations in the bridge regions are broader and have increased τ compared to those for hard sphere simulations and from high-resolution protein crystal structures. Our results emphasize the importance of hard-sphere interactions and local stereochemical constraints that yield strong correlations between -ψ conformations and τ.  相似文献   

16.
Proteins that pass through the periplasm in an unfolded state are highly sensitive to proteolysis and aggregation and, therefore, often require protection by chaperone-like proteins. The periplasm of Gram-negative bacteria is well equipped with ATP-independent chaperones and folding catalysts, including peptidyl-prolyl isomerases (PPIases). The filamentous hemagglutinin of Bordetella pertussis, which is secreted by the two-partner secretion pathway, crosses the periplasm in an unfolded conformation. By affinity chromatography, we identified a new periplasmic PPIase of the parvulin family, Par27, which binds to an unfolded filamentous hemagglutinin fragment. Par27 differs from previously characterized bacterial and eukaryotic parvulins. Its central parvulin-like domain is flanked by atypical N- and C-terminal extensions that are found in a number of putative PPIases present mostly in β proteobacteria. Par27 displays both PPIase and chaperone activities in vitro. In vivo, Par27 might function as a general periplasmic chaperone in B. pertussis.  相似文献   

17.
Conantokins are ∼20-amino acid peptides present in predatory marine snail venoms that function as allosteric antagonists of ion channels of the N-methyl-d-aspartate receptor (NMDAR). These peptides possess a high percentage of post-/co-translationally modified amino acids, particularly γ-carboxyglutamate (Gla). Appropriately spaced Gla residues allow binding of functional divalent cations, which induces end-to-end α-helices in many conantokins. A smaller number of these peptides additionally contain 4-hydroxyproline (Hyp). Hyp should prevent adoption of the metal ion-induced full α-helix, with unknown functional consequences. To address this disparity, as well as the role of Hyp in conantokins, we have solved the high resolution three-dimensional solution structure of a Gla/Hyp-containing 18-residue conantokin, conRl-B, by high field NMR spectroscopy. We show that Hyp10 disrupts only a small region of the α-helix of the Mn2+·peptide complex, which displays cation-induced α-helices on each terminus of the peptide. The function of conRl-B was examined by measuring its inhibition of NMDA/Gly-mediated current through NMDAR ion channels in mouse cortical neurons. The conRl-B displays high inhibitory selectivity for subclasses of NMDARs that contain the functionally important GluN2B subunit. Replacement of Hyp10 with N8Q results in a Mg2+-complexed end-to-end α-helix, accompanied by attenuation of NMDAR inhibitory activity. However, replacement of Hyp10 with Pro10 allowed the resulting peptide to retain its inhibitory property but diminished its GluN2B specificity. Thus, these modified amino acids, in specific peptide backbones, play critical roles in their subunit-selective inhibition of NMDAR ion channels, a finding that can be employed to design NMDAR antagonists that function at ion channels of distinct NMDAR subclasses.  相似文献   

18.
The design and synthesis of a water-soluble 14-residue peptide, in which a quinoline intercalator is attached to the peptide backbone via alkylation of a central cysteine residue, is reported. 600 MHz 1H NMR spectroscopy and circular dichroism indicate that the peptide forms a nascent helix in aqueous solution, ie. an ensemble of turn-like structures over several adjacent residues in the peptide. A large number of sequential dNN(i, i+1) connectivities were observed in NOESY spectra, and titration of trifluoroethanol into a solution of the peptide resulted in the characteristic CD spectrum expected for an α-helix. At low DNA concentrations, CD spectroscopy indicates that this helical conformation is stabilized, presumably due to folding of the peptide in the major groove of DNA.  相似文献   

19.
The dominant paradigm for spectrin function is that (αβ)2-spectrin tetramers or higher order oligomers form membrane-associated two-dimensional networks in association with F-actin to reinforce the plasma membrane. Tetramerization is an essential event in such structures. We characterize the tetramerization interaction between α-spectrin and β-spectrins in Drosophila. Wild-type α-spectrin binds to both β- and βH-chains with high affinity, resembling other non-erythroid spectrins. However, α-specR22S, a tetramerization site mutant homologous to the pathological α-specR28S allele in humans, eliminates detectable binding to β-spectrin and reduces binding to βH-spectrin ∼1000-fold. Even though spectrins are essential proteins, α-spectrinR22S rescues α-spectrin mutants to adulthood with only minor phenotypes indicating that tetramerization, and thus conventional network formation, is not the essential function of non-erythroid spectrin. Our data provide the first rigorous test for the general requirement for tetramer-based non-erythroid spectrin networks throughout an organism and find that they have very limited roles, in direct contrast to the current paradigm.  相似文献   

20.
Reactive oxygen species are known to participate in the regulation of intracellular signaling pathways, including activation of NF-κB. Recent studies have indicated that increases in intracellular concentrations of hydrogen peroxide (H2O2) have anti-inflammatory effects in neutrophils, including inhibition of the degradation of IκBα after TLR4 engagement. In the present experiments, we found that culture of lipopolysaccharide-stimulated neutrophils and HEK 293 cells with H2O2 resulted in diminished ubiquitination of IκBα and decreased SCFβ-TrCP ubiquitin ligase activity. Exposure of neutrophils or HEK 293 cells to H2O2 was associated with reduced binding between phosphorylated IκBα and SCFβ-TrCP but no change in the composition of the SCFβ-TrCP complex. Lipopolysaccharide-induced SCFβ-TrCP ubiquitin ligase activity as well as binding of β-TrCP to phosphorylated IκBα was decreased in the lungs of acatalasemic mice and mice treated with the catalase inhibitor aminotriazole, situations in which intracellular concentrations of H2O2 are increased. Exposure to H2O2 resulted in oxidative modification of cysteine residues in β-TrCP. Cysteine 308 in Blade 1 of the β-TrCP β-propeller region was found to be required for maximal binding between β-TrCP and phosphorylated IκBα. These findings suggest that the anti-inflammatory effects of H2O2 may result from its ability to decrease ubiquitination as well as subsequent degradation of IκBα through inhibiting the association between IκBα and SCFβ-TrCP.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号