首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Three Tsukamurella phages, TIN2, TIN3, and TIN4, were isolated from activated sludge treatment plants located in Victoria, Australia, using conventional enrichment techniques. Illumina and 454 whole-genome sequencing of these Siphoviridae viruses revealed that they had similar genome sequences, ranging in size between 76,268 bp and 76,964 bp. All three phages shared 74% nucleotide sequence identity to the previously described Gordonia phage GTE7. Genome sequencing suggested that phage TIN3 had suffered a mutation in one of its lysis genes compared to the sequence of phage TIN4, to which it is genetically very similar. Mass spectroscopy data showed the unusual presence of a virion structural gene in the DNA replication module of phage TIN4, disrupting the characteristic modular genome architecture of Siphoviridae phages. All three phages appeared highly virulent on strains of Tsukamurella inchonensis and Tsukamurella paurometabola.  相似文献   

2.
Hydrophobic Actinobacteria are commonly associated with the stabilization of foams in activated sludge systems. One possible attractive approach to control these foam-stabilizing organisms is the use of specific bacteriophages. We describe the genome characterization of a novel polyvalent DNA phage, GTE2, isolated from activated sludge. This phage is lytic for Gordonia terrae, Rhodococcus globerulus, Rhodococcus erythropolis, Rhodococcus erythropolis, Nocardia otitidiscaviarum, and Nocardia brasiliensis. Phage GTE2 belongs to the family Siphoviridae, possessing a characteristic icosahedral head encapsulating a double-stranded DNA linear genome (45,530 bp) having 10-bp 3'-protruding cohesive ends. The genome sequence is 98% unique at the DNA level and contains 57 putative genes. The genome can be divided into two components, where the first is modular and encodes phage structural proteins and lysis genes. The second is not modular, and the genes harbored there are involved in DNA replication, repair, and metabolism. Some have no known function. GTE2 shows promising results in controlling stable foam production by its host bacteria under laboratory conditions, suggesting that it may prove useful in the field as a biocontrol agent.  相似文献   

3.
Bacteriophages are considered to be the most abundant biological entities on the planet. The Siphoviridae are the most commonly encountered tailed phages and contain double-stranded DNA with an average genome size of ~50 kb. This paper describes the isolation from four different activated sludge plants of the phage RRH1, which is polyvalent, lysing five Rhodococcus species. It has a capsid diameter of only ~43 nm. Whole-genome sequencing of RRH1 revealed a novel circularly permuted DNA sequence (14,270 bp) carrying 20 putative open reading frames. The genome has a modular arrangement, as reported for those of most Siphoviridae phages, but appears to encode only structural proteins and carry a single lysis gene. All genes are transcribed in the same direction. RRH1 has the smallest genome yet of any described functional Siphoviridae phage. We demonstrate that lytic phage can be recovered from transforming naked DNA into its host bacterium, thus making it a potentially useful model for studying gene function in phages.  相似文献   

4.
A draft genome sequence of Tsukamurella sp., an aerobic bacterium isolated from a human sputum specimen, is described here. A new virus or provirus, TPA4, was characterized.  相似文献   

5.
Tsukamurella paurometabola corrig. (Steinhaus 1941) Collins et al. 1988 is the type species of the genus Tsukamurella, which is the type genus to the family Tsukamurellaceae. The species is not only of interest because of its isolated phylogenetic location, but also because it is a human opportunistic pathogen with some strains of the species reported to cause lung infection, lethal meningitis, and necrotizing tenosynovitis. This is the first completed genome sequence of a member of the genus Tsukamurella and the first genome sequence of a member of the family Tsukamurellaceae. The 4,479,724 bp long genome contains a 99,806 bp long plasmid and a total of 4,335 protein-coding and 56 RNA genes, and is a part of the Genomic Encyclopedia of Bacteria and Archaea project.  相似文献   

6.
Bacteriophage K1F specifically infects Escherichia coli strains that produce the K1 polysaccharide capsule. Like several other K1 capsule-specific phages, K1F encodes an endo-neuraminidase (endosialidase) that is part of the tail structure which allows the phage to recognize and degrade the polysaccharide capsule. The complete nucleotide sequence of the K1F genome reveals that it is closely related to bacteriophage T7 in both genome organization and sequence similarity. The most striking difference between the two phages is that K1F encodes the endosialidase in the analogous position to the T7 tail fiber gene. This is in contrast with bacteriophage K1-5, another K1-specific phage, which encodes a very similar endosialidase which is part of a tail gene "module" at the end of the phage genome. It appears that diverse phages have acquired endosialidase genes by horizontal gene transfer and that these genes or gene products have adapted to different genome and virion architectures.  相似文献   

7.
The generalized transducing double-stranded DNA bacteriophage ES18 has an icosahedral head and a long noncontractile tail, and it infects both rough and smooth Salmonella enterica strains. We report here the complete 46,900-bp genome nucleotide sequence and provide an analysis of the sequence. Its 79 genes and their organization clearly show that ES18 is a member of the lambda-like (lambdoid) phage group; however, it contains a novel set of genes that program assembly of the virion head. Most of its integration-excision, immunity, Nin region, and lysis genes are nearly identical to those of the short-tailed Salmonella phage P22, while other early genes are nearly identical to Escherichia coli phages lambda and HK97, S. enterica phage ST64T, or a Shigella flexneri prophage. Some of the ES18 late genes are novel, while others are most closely related to phages HK97, lambda, or N15. Thus, the ES18 genome is mosaically related to other lambdoid phages, as is typical for all group members. Analysis of virion DNA showed that it is circularly permuted and about 10% terminally redundant and that initiation of DNA packaging series occurs across an approximately 1-kbp region rather than at a precise location on the genome. This supports a model in which ES18 terminase can move substantial distances along the DNA between recognition and cleavage of DNA destined to be packaged. Bioinformatic analysis of large terminase subunits shows that the different functional classes of phage-encoded terminases can usually be predicted from their amino acid sequence.  相似文献   

8.
Pediococcus damnosus (P. damnosus) bacteriophage (phage) clP1 is a novel virulent phage isolated from a municipal sewage sample collected in Southern Ireland. This phage infects the beer spoilage strain P. damnosus P82 which was isolated from German breweries. Sequencing of the phage has revealed a linear double stranded DNA genome of 38,013 base pairs (bp) with an overall GC content of 47.6%. Fifty seven open reading frames (ORFs) were identified of which 30 showed homology to previously sequenced proteins, and as a consequence 20 of these were assigned predicted functions. The majority of genes displayed homology with genes from the Lactobacillus plantarum phage phiJL-1. All genes were located on the same coding strand and in the same orientation. Morphological characterisation placed phage clP1 as a member of the Siphoviridae family with an isometric head (59 nm diameter) and non-contractile tail (length 175 nm; diameter 10nm. Interestingly, the phage clP1 genome was found to share very limited identity with other phage genome sequences in the database, and was hence considered unique. This was highlighted by the genome organisation which differed slightly to the consensus pattern of genomic organisation usually found in Siphoviridae phages. With the genetic machinery present for a lytic lifecycle and the absence of potential endotoxin factors, this phage may have applications in the biocontrol of beer spoilage bacteria. To our knowledge, this study represents the first reported P. damnosus phage genome sequence.  相似文献   

9.
10.
Most activated sludge treatment plants suffer from the presence of foams on the surfaces of their aeration reactors. These are often stabilized by hydrophobic mycolic acid-synthesizing actinobacterial species. A polyvalent Siphoviridae phage, GTE7, which lysed several Gordonia and Nocardia species, is described here. Its genome has a modular structure similar to that described for Rhodococcus phage ReqiDocB7. In laboratory-scale experiments, we showed that GTE7 prevents stabilization of foams by these Gordonia and Nocardia species.  相似文献   

11.
BACKGROUND: Thrombin is a serine protease that elicits a variety of cellular responses. Molecular cloning of a thrombin receptor revealed a G protein-coupled receptor that is activated by a novel proteolytic mechanism. Recently, a second protease-activated receptor was discovered and dubbed PAR2. PAR2 is highly related to the thrombin receptor by sequence and, like the thrombin receptor, is activated by cleavage of its amino terminal exodomain. Also like the thrombin receptor, PAR2 can be activated by the hexapeptide corresponding to its tethered ligand sequence independent of receptor cleavage. Thus, functionally, the thrombin receptor and PAR2 constitute a fledgling receptor family that shares a novel proteolytic activation mechanism. To further explore the relatedness of the two known protease-activated receptors and to examine the possibility that a protease-activated gene cluster might exist, we have compared the structure and chromosomal locations of the thrombin receptor and PAR2 genes. MATERIALS AND METHODS: The genomic structures of the two protease-activated receptor genes were determined by analysis of lambda phage, P1 bacteriophage, and bacterial artificial chromosome (BAC) genomic clones. Chromosomal location was determined with fluorescent in situ hybridization (FISH) on metaphase chromosomes, and the relative distance separating the two genes was evaluated both by means of two-color FISH and analysis of YACs and BACs containing both genes. RESULTS: Analysis of genomic clones revealed that the two protease-activated receptor genes share a two-exon genomic structure in which the first exon encodes 5'-untranslated sequence and signal peptide, and the second exon encodes the mature receptor protein and 3'-untranslated sequence. The two receptor genes also share a common locus with the two human genes located at 5q13 and the two mouse genes at 13D2, a syntenic region of the mouse genome. These techniques also suggest that the physical distance separating these two genes is less than 100 kb. CONCLUSIONS: The fact that the thrombin receptor and PAR2 genes share an identical structure and are located within approximately 100 kb of each other in the genome demonstrates that these genes arose from a gene duplication event. These results define a new protease-activated receptor gene cluster in which new family members may be found.  相似文献   

12.
The complete genome sequences of two dairy phages, Streptococcus thermophilus phage 7201 and Lactobacillus casei phage A2, are reported. Comparative genomics reveals that both phages are members of the recently proposed Sfi21-like genus of Siphoviridae, a widely distributed phage type in low-GC-content gram-positive bacteria. Graded relatedness, the hallmark of evolving biological systems, was observed when different Sfi21-like phages were compared. Across the structural module, the graded relatedness was represented by a high level of DNA sequence similarity or protein sequence similarity, or a shared gene map in the absence of sequence relatedness. This varying range of relatedness was found within Sfi21-like phages from a single species as demonstrated by the different prophages harbored by Lactococcus lactis strain IL1403. A systematic dot plot analysis with 11 complete L. lactis phage genome sequences revealed a clear separation of all temperate phages from two classes of virulent phages. The temperate lactococcal phages share DNA sequence homology in a patchwise fashion over the nonstructural gene cluster. With respect to structural genes, four DNA homology groups could be defined within temperate L. lactis phages. Closely related structural modules for all four DNA homology groups were detected in phages from Streptococcus or Listeria, suggesting that they represent distinct evolutionary lineages that have not uniquely evolved in L. lactis. It seems reasonable to base phage taxonomy on data from comparative genomics. However, the peculiar modular nature of phage evolution creates ambiguities in the definition of phage taxa by comparative genomics. For example, depending on the module on which the classification is based, temperate lactococcal phages can be classified as a single phage species, as four distinct phage species, or as two if not three different phage genera. We propose to base phage taxonomy on comparative genomics of a single structural gene module (head or tail genes). This partially phylogeny-based taxonomical system still mirrors some aspects of the current International Committee on Taxonomy in Virology classification system. In this system the currently sequenced lactococcal phages would be grouped into five genera: c2-, sk1, Sfi11-, r1t-, and Sfi21-like phages.  相似文献   

13.
A polyphasic taxonomic study was undertaken to establish the taxonomic position of six representative strains isolated from activated sewage sludge foam. The organisms were found to have chemical and morphological properties consistent with their assignment to the genus Tsukamurella. DNA:DNA relatedness studies showed that five out of the six isolates formed a distinct genomic species, the remaining strain was most closely associated with this taxon. The five isolates had a unique phenotypic profile that served to distinguish them from representatives of the validly described species of Tsukamurella. The combination of the genotypic and phenotypic data indicated that the five strains should be classified as a new species in the genus Tsukamurella. The name proposed for this taxon is Tsukamurella spumae, the type strain is N1171T (= DSM 44.113T = NCIMB 13947T). It was also shown that some of the reference strains were misclassified as Tsukamurella paurometabola.  相似文献   

14.
Li K  Wang S  Shi Y  Qu J  Zhai Y  Xu L  Xu Y  Song J  Liu L  Rahman MA  Yan Y 《Journal of bacteriology》2011,193(7):1786-1787
Paracoccus sp. strain TRP, isolated from activated sludge, could completely biodegrade chlorpyrifos and 3,5,6-trichloro-2-pyridinol. Here we report the draft genome sequence of Paracoccus sp. strain TRP, which could be used to predict genes for xenobiotic biodegradation and metabolism.  相似文献   

15.
The complete nucleotide sequence of the genome of the circular single-stranded DNA (isometric) phage alpha 3 has been determined and compared with that of the related phages phi X174 and G4. The alpha 3 genome consists of 6087 nucleotides, which is 701 nucleotides longer than the nucleotide sequence of the phi X174 genome and 510 nucleotides more than that of the G4 genome. The results demonstrated that the three phage species have 11 homologous genes (A, A*, B, C, K, D, E, J, F, G and H), the order of which is fundamentally identical, suggesting that they have evolved from a common ancestor. The sequence of some genes and untranslated intergenic regions, however, differs significantly from phage to phage: for example, the degree of amino acid sequence homology of the gene product is averaged at 47.7% between alpha 3 and phi X174 and 46.9% between alpha 3 and G4, and alpha 3 has a remarkable longer intergenic region composed of 758 nucleotides between the genes H and A compared with the counterparts of phi X174 and G4. Meanwhile, in vivo experiments of genetic complementation showed that alpha 3 can use none of the gene products of phi X174 and G4, whereas the related phage phi K can rescue alpha 3 nonsense mutants of the genes B, C, D and J. These sequencing and in vivo rescue results indicated that alpha 3 is closely related to phi K, but distantly remote from phi X174 or G4, and supported an evolutional hypothesis which has been so far proposed that the isometric phages are classified into three main groups: the generic representatives are phi X174, G4 and alpha 3.  相似文献   

16.
The complete sequence of the double-stranded DNA (dsDNA) genome of the Salmonella enterica serovar Typhimurium ST64B bacteriophage was determined. The 40,149-bp genomic sequence of ST64B has an overall G+C content of 51.3% and is distinct from that of P22. The genome architecture is similar to that of the lambdoid phages, particularly that of coliphage lambda. Most of the putative tail genes showed sequence similarity to tail genes of Mu, a nonlambdoid phage. In addition, it is likely that these tail genes are not expressed due to insertions of fragments of genes related to virulence within some of the open reading frames. This, together with the inability of ST64B to produce plaques on a wide range of isolates, suggests that ST64B is a defective phage. In contrast to the tail genes, most of the head genes showed similarity to those of the lambdoid phages HK97 and HK022, but these head genes also have significant sequence similarities to those of several other dsDNA phages infecting diverse bacterial hosts, including Escherichia, Pseudomonas, Agrobacterium, Caulobacter, Mesorhizobium, and Streptomyces: This suggests that ST64B is a genetic mosaic that has acquired significant portions of its genome from sources outside the genus Salmonella.  相似文献   

17.
18.

Background

Treponema pallidum ssp. pallidum (TPA), the causative agent of syphilis, and Treponema pallidum ssp. pertenue (TPE), the causative agent of yaws, are closely related spirochetes causing diseases with distinct clinical manifestations. The TPA Mexico A strain was isolated in 1953 from male, with primary syphilis, living in Mexico. Attempts to cultivate TPA Mexico A strain under in vitro conditions have revealed lower growth potential compared to other tested TPA strains.

Methodology/Principal Findings

The complete genome sequence of the TPA Mexico A strain was determined using the Illumina sequencing technique. The genome sequence assembly was verified using the whole genome fingerprinting technique and the final sequence was annotated. The genome size of the Mexico A strain was determined to be 1,140,038 bp with 1,035 predicted ORFs. The Mexico A genome sequence was compared to the whole genome sequences of three TPA (Nichols, SS14 and Chicago) and three TPE (CDC-2, Samoa D and Gauthier) strains. No large rearrangements in the Mexico A genome were found and the identified nucleotide changes occurred most frequently in genes encoding putative virulence factors. Nevertheless, the genome of the Mexico A strain, revealed two genes (TPAMA_0326 (tp92) and TPAMA_0488 (mcp2-1)) which combine TPA- and TPE- specific nucleotide sequences. Both genes were found to be under positive selection within TPA strains and also between TPA and TPE strains.

Conclusions/Significance

The observed mosaic character of the TPAMA_0326 and TPAMA_0488 loci is likely a result of inter-strain recombination between TPA and TPE strains during simultaneous infection of a single host suggesting horizontal gene transfer between treponemal subspecies.  相似文献   

19.
20.
Summary The nucleotide sequence of the circular single-stranded genome of the filamentous Escherichia coli phage I2-2 has been determined and compared with those of the filamentous E. coli phages Ff(M13, fl, or fd) and IKe. The I2-2 DNA sequence comprises 6744 nucleotides; 139 nucleotides less than that of the N- and I2-plasmid-specific phage IKe, and 337 (336) nucleotides more than that of the F-plasmid-specific phage Ff. Nucleotide sequence comparisons have indicated that I2-2, IKe, and Ff have a similar genetic organization, and that the genomes of I2-2 and IKe are evolutionarily more closely related than those of I2-2 and Ff. The studies have further demonstrated that the I2-2 genome is a composite replicon, composed of only two-thirds of the ancestral genome of IKe. Only a contiguous I2-2 DNA sequence of 4615 nucleotides encompassing not only the coat protein and phage assembly genes, but also the signal required for efficient phage morphogenesis, was found to be significantly homologous to sequences in the genomes of IKe and Ff. No homology was observed between the consecutive DNA sequence that contains the origins for viral and complementary strand replication and the replication genes. Although other explanations cannot be ruled out, our data strongly suggest that the ancestor filamentous phage genome of phages I2-2 and IKe has exchanged its replication module during evolution with that of another replicon, e.g., a plasmid that also replicates via the so-called rolling circle mechanism. Offprint requests to: R.N.H. Konings  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号