首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The classic isoforms of myelin basic protein (MBP) are essential for the formation and maintenance of myelin in the central nervous system of higher vertebrates. The protein is involved in all facets of the development, compaction, and stabilization of the multilamellar myelin sheath, and also interacts with cytoskeletal and signaling proteins. The predominant 18.5-kDa isoform of MBP is an intrinsically-disordered protein that is a candidate auto-antigen in the human demyelinating disease multiple sclerosis. A highly-conserved central segment within classic MBP consists of a proline-rich region (murine 18.5-kDa sequence –T92-P93-R94-T95-P96-P97-P98-S99–) containing a putative SH3-ligand, adjacent to a region that forms an amphipathic α-helix (P82-I90) upon interaction with membranes, or under membrane-mimetic conditions. The T92 and T95 residues within the proline-rich region can be post-translationally modified through phosphorylation by mitogen-activated protein (MAP) kinases. Here, we have investigated the structure of the α-helical and proline-rich regions in dilute aqueous buffer, and have evaluated the effects of phosphorylation at T92 and T95 on the stability and dynamics of the α-helical region, by utilizing four 36-residue peptides (S72–S107) with differing phosphorylation status. Nuclear magnetic resonance spectroscopy reveals that both the α-helical as well as the proline-rich regions are disordered in aqueous buffer, whereas they are both structured in a lipid environment (cf., Ahmed et al., Biochemistry 51, 7475-9487, 2012). Thermodynamic analysis of trifluoroethanol-titration curves monitored by circular dichroism spectroscopy reveals that phosphorylation, especially at residue T92, impedes formation of the amphipathic α-helix. This conclusion is supported by molecular dynamics simulations, which further illustrate that phosphorylation reduces the folding reversibility of the α-helix upon temperature perturbation and affect the global structure of the peptides through altered electrostatic interactions. The results support the hypothesis that the central conserved segment of MBP constitutes a molecular switch in which the conformation and/or intermolecular interactions are mediated by phosphorylation/dephosphorylation at T92 and T95.  相似文献   

2.
Myelin basic protein (MBP) is a multifunctional protein involved in maintaining the stability and integrity of the myelin sheath by a variety of interactions with membranes and with cytoskeletal and other proteins. A central segment of MBP is highly conserved in mammals and consists of a membrane surface-associated amphipathic alpha-helix, immediately followed by a proline-rich segment that we hypothesize is an SH3 ligand. We show by circular dichroic spectroscopy that this proline-rich segment forms a polyproline type II helix in vitro under physiological conditions and that phosphorylation at a constituent threonyl residue has a stabilizing effect on its conformation. Using SH3 domain microarrays, we observe that the unmodified recombinant murine 18.5 kDa MBP isoform (rmC1 component) binds the following SH3 domains: Yes1 > PSD95 > cortactin = PexD = Abl = Fyn = c-Src = Itk in order of decreasing affinity. A quasi-deiminated form of the protein (rmC8) binds the SH3 domains Yes1 > Fyn > cortactin = c-Src > PexD = Abl. Phosphorylation of rmC1 at 1-2 threonines within the proline-rich segment by mitogen-activated protein kinase in vitro has no effect on the binding specificity to the SH3 domains on the array. An SH3 domain of chicken Fyn is also demonstrated to bind to lipid membrane-associated C1, phosphorylated C1, and rmC8. Molecular docking simulations of the interaction of the putative SH3 ligand of classic MBP with the human Fyn SH3 domain indicate that the strength of the interaction is of the same order of magnitude as with calmodulin and that the molecular recognition and association is mediated by some weak CH...pi interactions between the ligand prolyl residues and the aromatic ones of the SH3 binding site. One such interaction is well-conserved and involves the stacking of an MBP-peptide prolyl and an SH3 domain tryptophanyl residue, as in most other SH3-ligand complexes. Lysyl and arginyl residues in the peptide canonically interact via salt bridges and cation-pi interactions with negatively charged and aromatic residues in the SH3 domain binding site. Posttranslational modifications (phosphorylation or methylation) of the ligand cause noticeable shifts in the conformation of the flexible peptide and its side chains but do not predict any major inhibition of the binding beyond somewhat less favorable interactions for peptides with phosphorylated seryl or threonyl residues.  相似文献   

3.
《朊病毒》2013,7(1):31-43
The structural organization of the amyloidogenic β-proteins containing 40 amino acid residues (Aβ40) was studied by the high temperature molecular dynamics simulations in the acidic (pH~3) and basic (pH~8) pH regions. The obtained data suggest that the central Ala21-Gly29 segment of Aβ40, can adopt folded and partially unfolded structures. At the basic pH, this segment forms folded structures, stabilized by electrostatic interactions and hydrogen bonds. At the acidic pH, it forms partially unfolded structures. Two other segments flanking to the central segment exhibit the propensity to adopt unstable inter-converting α-helical, 310-helical and turn-like structures. One of these segments is comprised of the Ala30-Val36 residues at both of the considered pHs. The second segment is comprised of the Glu11-Phe20 at the basic pH and of the Glu11-Val24 residues at the acidic pHs. The revealed pH-dependent structuration of the Aβ40 allowed us to suggest a possible scenario for initial Aβ aggregation. According to this scenario, the occurrence of the partially unfolded states of the Ala21-Gly29 segment plays main role in the Aβ oligomerization process.  相似文献   

4.
The aim of the present investigation is to determine the effect of α-helical propensity and sidechain hydrophobicity on the stability of amphipathic α-helices. Accordingly, a series of 18-residue amphipathic α-helical peptides has been synthesized as a model system where all 20 amino acid residues were substituted on the hydrophobic face of the amphipathic α-helix. In these experiments, all three parameters (sidechain hydrophobicity, α-helical propensity and helix stability) were measured on the same set of peptide analogues. For these peptide analogues that differ by only one amino acid residue, there was a 0.96 kcal/mole difference in α-helical propensity between the most (Ala) and the least (Gly) α-helical analogue, a 12.1-minute difference between the most (Phe) and the least (Asp) retentive analogue on the reversed-phase column, and a 32.3°C difference in melting temperatures between the most (Leu) and the least (Asp) stable analogue. The results show that the hydrophobicity and α-helical propensity of an amino acid sidechain are not correlated with each other, but each contributes to the stability of the amphipathic α-helix. More importantly, the combined effects of α-helical propensity and sidechain hydrophobicity at a ratio of about 2:1 had optimal correlation with α-helix stability. These results suggest that both α-helical propensity and sidechain hydrophobicity should be taken into consideration in the design of α-helical proteins with the desired stability.  相似文献   

5.
Abstract

The central domain of smooth muscle caldesmon contains a highly charged region consisting of ten 13-residue repeats. Experimental evidence obtained from the intact protein and fragments thereof suggests that this entire region forms a single stretch of stable α-helix. We have carried out molecular dynamics simulations on peptides consisting of one, two and three repeats to examine the mechanism of α-helical stability of the central domain at the atomic level. All three peptides show high helical stability on the timescale of the MD simulations. Deviations from α-helical structure in all the simulations arise mainly from the formation of long stretches of π-helix. Interconversion between α-helical and π-helical conformations occurs through insertion of water molecules into α-helical hydrogen bonds and subsequent formation of reverse turns. The α-helical structure is stabilized by electrostatic interactions (salt bridges) between oppositely charged sidechains with i,i+4 spacings, while the π-helix is stabilized by i,i+5 salt bridge interactions. Possible i,i+3 salt bridges are of minor importance. There is a strong preference for salt bridges with a Glu residue N-terminal to a basic sidechain as compared to the opposite orientation. In the double and triple repeat peptides, strong i,i+4 salt bridges exist between the last Glu residue of one repeat and the first Lys residue of the next. This demonstrates a relationship between the repetitive nature of the central domain sequence and its ability to form very long stretches of α-helical structure.  相似文献   

6.
The structural organization of the amyloidogenic β-protein containing 40 amino acid residues (Aβ40) was studied by the high temperature molecular dynamics simulations in the acidic (pH ∼ 3) and basic (pH ∼ 8) pH regions. The obtained data suggest that the central Ala21-Gly29 segment of Aβ40 can adopt folded and partially unfolded structures. At the basic pH, this segment forms folded structures stabilized by electrostatic interactions and hydrogen bonds. At the acidic pH, it forms partially unfolded structures. Two other segments flanking to the central segment exhibit the propensity to adopt unstable interconverting α-helical, 310-helical and turn-like structures. One of these segments is comprised of the Ala30-Val36 residues at both of the considered pHs. The second segment is comprised of the Glu11-Phe20 at the basic pH and of the Glu11-Val24 residues at the acidic pHs. The revealed pH-dependent structuration of the Aβ40 allowed us to suggest a possible scenario for initial Aβ aggregation. According to this scenario, the occurrence of the partially unfolded states of the Ala21-Gly29 segment plays main role in the Aβ oligomerization process.Key words: amyloid-β protein, Alzheimer disease, oligomerization, fibril, electrostatic interactions, molecular dynamics simulations  相似文献   

7.
The 18.5 kDa isoform of myelin basic protein (MBP) is a peripheral membrane protein that maintains the structural integrity of the myelin sheath of the central nervous system by conjoining the cytoplasmic leaflets of oligodendrocytes and by linking the myelin membrane to the underlying cytoskeleton whose assembly it strongly promotes. It is a multifunctional, intrinsically disordered protein that behaves primarily as a structural stabilizer, but with elements of a transient or induced secondary structure that represent binding sites for calmodulin or SH3-domain-containing proteins, inter alia. In this study we used solid-state NMR (SSNMR) and Fourier transform infrared (FTIR) spectroscopy to study the conformation of 18.5 kDa MBP in association with actin microfilaments and bundles. FTIR spectroscopy of fully 13C,15N-labeled MBP complexed with unlabeled F-actin showed induced folding of both protein partners, viz., some increase in β-sheet content in actin, and increases in both α-helix and β-sheet content in MBP, albeit with considerable extended structure remaining. Solid-state NMR spectroscopy revealed that MBP in MBP-actin assemblies is structurally heterogeneous but gains ordered secondary structure elements (both α-helical and β-sheet), particularly in the terminal fragments and in a central immunodominant epitope. The overall conformational polymorphism of MBP is consistent with its in vivo roles as both a linker (membranes and cytoskeleton) and a putative signaling hub.  相似文献   

8.
The intrinsically disordered 18.5 kDa classic isoform of MBP (myelin basic protein) interacts with Fyn kinase during oligodendrocyte development and myelination. It does so primarily via a central proline-rich SH3 (Src homology 3) ligand (T92–R104, murine 18.5 kDa MBP sequence numbering) that is part of a molecular switch due to its high degree of conservation and modification by MAP (mitogen-activated protein) and other kinases, especially at residues T92 and T95. Here, we show using co-transfection experiments of an early developmental oligodendroglial cell line (N19) that an MBP segment upstream of the primary ligand is involved in MBP–Fyn–SH3 association in cellula. Using solution NMR spectroscopy in vitro, we define this segment to comprise MBP residues (T62–L68), and demonstrate further that residues (V83–P93) are the predominant SH3-target, assessed by the degree of chemical shift change upon titration. We show by chemical shift index analysis that there is no formation of local poly-proline type II structure in the proline-rich segment upon binding, and by NOE (nuclear Overhauser effect) and relaxation measurements that MBP remains dynamic even while complexed with Fyn–SH3. The association is a new example first of a non-canonical SH3-domain interaction and second of a fuzzy MBP complex.  相似文献   

9.
The ATP-binding-cassette transporter OpuA from Lactococcus lactis is composed of two ATPase subunits (OpuAA) and two subunits (OpuABC) with the transmembrane domain fused to an extracellular substrate-binding protein. Of the almost 1900 homologues of OpuA known to date, a subset has an amino-terminal amphipathic helix (plus extra transmembrane segment) fused to the core of the transmembrane domain of the OpuABC subunit. FRET measurements indicate that the amphipathic α-helix is located close to the membrane surface, where its hydrophobic face interacts with the transport protein rather than the membrane lipids. Next, we determined the functional role of this accessory region by engineering the amphipathic α-helix. We analyzed the consequence of the mutations in intact cells by monitoring growth and transport of glycine betaine under normal and osmotic stress conditions. More detailed studies were performed in hybrid membrane vesicles, proteoliposomes, and bilayer nanodisks. We show that the amphipathic α-helix of OpuA is necessary for high activity of OpuA but is not critical for the biogenesis of the protein or the ionic regulation of transport.  相似文献   

10.
We combined systematic bioinformatics analyses and molecular dynamics simulations to assess the conservation patterns of Ser and Thr motifs in membrane proteins, and the effect of such motifs on the structure and dynamics of α-helical transmembrane (TM) segments. We find that Ser/Thr motifs are often present in β-barrel TM proteins. At least one Ser/Thr motif is present in almost half of the sequences of α-helical proteins analyzed here. The extensive bioinformatics analyses and inspection of protein structures led to the identification of molecular transporters with noticeable numbers of Ser/Thr motifs within the TM region. Given the energetic penalty for burying multiple Ser/Thr groups in the membrane hydrophobic core, the observation of transporters with multiple membrane-embedded Ser/Thr is intriguing and raises the question of how the presence of multiple Ser/Thr affects protein local structure and dynamics. Molecular dynamics simulations of four different Ser-containing model TM peptides indicate that backbone hydrogen bonding of membrane-buried Ser/Thr hydroxyl groups can significantly change the local structure and dynamics of the helix. Ser groups located close to the membrane interface can hydrogen bond to solvent water instead of protein backbone, leading to an enhanced local solvation of the peptide.  相似文献   

11.
TRPM7 is an unusual bifunctional protein consisting of an α-kinase domain fused to a TRP ion channel. Previously, we have identified annexin A1 as a substrate for TRPM7 kinase and found that TRPM7 phosphorylates annexin A1 at Ser5 within the N-terminal α-helix. Annexin A1 is a Ca(2+)-dependent membrane binding protein, which has been implicated in membrane trafficking and reorganization. The N-terminal tail of annexin A1 can interact with either membranes or S100A11 protein, and it adopts the conformation of an amphipathic α-helix upon these interactions. Moreover, the existing evidence indicates that the formation of an α-helix is essential for these interactions. Here we show that phosphorylation at Ser5 prevents the N-terminal peptide of annexin A1 from adopting an α-helical conformation in the presence of membrane-mimetic micelles as well as phospholipid vesicles. We also show that phosphorylation at Ser5 dramatically weakens the binding of the peptide to S100A11. Our data suggest that phosphorylation at Ser5 regulates the interaction of annexin A1 with membranes as well as S100A11 protein.  相似文献   

12.
Using solution NMR spectroscopy, three-dimensional structures have been obtained for an 18-residue synthetic polypeptide fragment of 18.5 kDa myelin basic protein (MBP, human residues Q81-T98) under three conditions emulating the protein's natural environment in the myelin membrane to varying degrees: (a) an aqueous solution (100 mM KCl pH 6.5), (b) a mixture of trifluoroethanol (TFE-d2) and water (30 : 70% v/v), and (c) a dispersion of 100 mM dodecylphosphocholine (DPC-d38, 1 : 100 protein/lipid molar ratio) micelles. This polypeptide sequence is highly conserved in MBP from mammals, amphibians, and birds, and comprises a major immunodominant epitope (human residues N83-T92) in the autoimmune disease multiple sclerosis. In the polypeptide fragment, this epitope forms a stable, amphipathic, alpha helix under organic and membrane-mimetic conditions, but has only a partially helical conformation in aqueous solution. These results are consistent with recent molecular dynamics simulations that showed this segment to have a propensity to form a transient alpha helix in aqueous solution, and with electron paramagnetic resonance (EPR) experiments that suggested a alpha-helical structure when bound to a membrane [I. R. Bates, J. B. Feix, J. M. Boggs & G. Harauz (2004) J Biol Chem, 279, 5757-5764]. The high sensitivity of the epitope structure to its environment is characteristic of intrinsically unstructured proteins, like MBP, and reflects its association with diverse ligands such as lipids and other proteins.  相似文献   

13.
The 18.5-kDa myelin basic protein (MBP), the most abundant isoform in human adult myelin, is a multifunctional, intrinsically disordered protein that maintains compact assembly of the sheath. Solution NMR spectroscopy and a hydrophobic moment analysis of MBP's amino-acid sequence have previously revealed three regions with high propensity to form strongly amphipathic α-helices. These regions, located in the central, N- and C-terminal parts of the protein, have been shown to play a role in the interactions of MBP with cytoskeletal proteins, Src homology 3-domain-containing proteins, Ca(2+)-activated calmodulin (Ca(2+)-CaM), and myelin-mimetic membrane bilayers. Here, we have further characterized the structure-function relationship of these three domains. We constructed three recombinant peptides derived from the 18.5-kDa murine MBP: (A22-K56), (S72-S107), and (S133-S159) (which are denoted α1, α2, and α3, respectively). We used a variety of biophysical methods (circular dichroism spectroscopy, isothermal titration calorimetry, transmission electron microscopy, fluorimetry, and solution NMR spectroscopy and chemical shift index analysis) to characterize the interactions of these peptides with actin and Ca(2+)-CaM. Our results show that all three peptides can adopt α-helical structure inherently even in aqueous solution. Both α1- and α3-peptides showed strong binding with Ca(2+)-CaM, and both adopted an α-helical conformation upon interaction, but the binding of the α3-peptide appeared to be more dynamic. Only the α1-peptide exhibited actin polymerization and bundling activity, and the addition of Ca(2+)-CaM resulted in depolymerization of actin that had been polymerized by α1. The results of this study proved that there is an N-terminal binding domain in MBP for Ca(2+)-CaM (in addition to the primary site located in the C-terminus), and that it is sufficient for CaM-induced actin depolymerization. These three domains of MBP represent molecular recognition fragments with multiple roles in both membrane- and protein-association.  相似文献   

14.
The filamentous phage Ff (f1, fd, or M13) of Escherichia coli is assembled at the cell membranes by a process that is morphologically similar to that of pilus assembly. The release of the filament virion is mediated by excision from the membrane; conversely, entry into a host cell is mediated by insertion of the virion coat proteins into the membrane. The N-terminal domains of the minor virion protein pIII have the sole role of binding to host receptors during infection. In contrast, the C domain of pIII is required for two opposite functions: insertion of the virion into the membrane during infection and excision at the termination step of assembly/secretion. We identified a 28-residue-long segment in the pIII C domain, which is required for phage entry but dispensable for release from the membrane at the end of assembly. This segment, which we named the infection-competence segment (ICS), works only in cis with the N-terminal receptor-binding domains and does not require the equivalent ICS sequences in other subunits within the virion cap. The ICS contains a predicted amphipathic α-helix and is rich in small amino acids, Gly, Ala, and Ser, which are arranged as a [small]XXX[small]XX[small]XXX[small]XXX[small] motif. Scanning Ala/Gly mutagenesis of ICS showed that small residues are compatible with infection. Overall, organization of the C domain is reminiscent of α-helical pore-forming toxins' membrane insertion domains. The unique ability of pIII to mediate both membrane insertion and excision allowed us to compare these two fundamental membrane transactions and to show that receptor-triggered insertion is a more complex process than excision from membranes.  相似文献   

15.
The C-terminus of the NuoL subunit of Complex I includes a long amphipathic α-helix positioned parallel to the membrane, which has been considered to function as a piston in the proton pumping machinery. Here, we have introduced three types of mutations into the nuoL gene to test the piston-like function. First, NuoL was truncated at its C- and N-termini, which resulted in low production of a fragile Complex I with negligible activity. Second, we mutated three partially conserved residues of the amphipathic α-helix: Asp and Lys residues and a Pro were substituted for acidic, basic or neutral residues. All these variants exhibited almost a wild-type phenotype. Third, several substitutions and insertions were made to reduce rigidity of the amphipathic α-helix, and/or to change its geometry. Most insertions/substitutions resulted in a normal growth phenotype, albeit often with reduced stability of Complex I. In contrast, insertion of six to seven amino acids at a site of the long α-helix between NuoL and M resulted in substantial loss of proton pumping efficiency. The implications of these results for the proton pumping mechanism of Complex I are discussed.  相似文献   

16.
Peripheral myelin protein 22 (PMP22) resides in the plasma membrane and is required for myelin formation in the peripheral nervous system. Excess PMP22 mutants accumulate in the endoplasmic reticulum (ER) resulting in the inherited neuropathies of Charcot–Marie–Tooth disease. However, there was no evidence of the structure of PMP22 or how mutations affect its folding. Therefore, in this study, we combined bioinformatics and homology modeling approaches to obtain three-dimensional native and mutated PMP22 models and its anchoring to a POPC membrane, submitted to .5-μs MD simulations, to determine how the L16P and T118M mutations affect the conformational behavior of PMP22. In addition, we investigated the ability of the native and mutated species to accumulate in the ER, via interaction with RER1, by combining protein–protein docking and MD simulations, taking the conformations that were most representative of the native and mutated PMP22 systems and RER1 conformations. Principal component analysis over MD simulations revealed that L16P and T118M mutations resulted in increased structural instability compared to the native form, which is consistent with previous experimental findings of increased structural fluctuations along a loop connecting transmembrane α-helix1 and α-helix2. Docking and MD simulations coupled with the MMGBSA approach allowed the identification that the binding interface for the PMP22-RER1 complex takes place through transmembrane α-helix1 and α-helix2, with higher effective binding free energy values between the mutated PMP22 systems and RER1 than for the native PMP22, mainly through van der Waals interactions.  相似文献   

17.
The formation of α-helical assembly by complexing biologically active peptides with de novo designed protein is described. The de novo designed protein described here is a cystinelinked 4-helix bundle protein constructed with 80 amino acid residues and forms a hydrophobic core region surrounded by 4 helices in an aqueous solution. The biologically active peptides, such as melittin and human growth hormone releasing factor, contain the sequences that are able to form amphiphilic helices. These peptides alone do not form the α-helix structure in a diluted solution with low ion strength. But on mixing with the designed helix bundle protein, the peptides are strongly bound to the protein with the induction of α-helical structure in the biologically active peptides. The content of induced α-helix is in accord with that estimated from the amphiphilic sequence. The results mean that a novel architecture composed of α-helices is formed. Fluorescent and temperature-scanning measurement revealed that the α-helical assembly is constructed with hydrophobic interaction. Also, it is shown by means of fluorescence depolarization that the assembly has a compact globular form corresponding to 1 : 1 complex. © 1994 John Wiley & Sons, Inc.  相似文献   

18.
The cytoplasmic N-terminal domain of the human ether-a-go-go related gene (hERG) K+ channel is critical for the slow deactivation kinetics of the channel. However, the mechanism(s) by which the N-terminal domain regulates deactivation remains to be determined. Here we show that the solution NMR structure of the N-terminal 135 residues of hERG contains a previously described Per-Arnt-Sim (PAS) domain (residues 26-135) as well as an amphipathic α-helix (residues 13-23) and an initial unstructured segment (residues 2-9). Deletion of residues 2-25, only the unstructured segment (residues 2-9) or replacement of the α-helix with a flexible linker all result in enhanced rates of deactivation. Thus, both the initial flexible segment and the α-helix are required but neither is sufficient to confer slow deactivation kinetics. Alanine scanning mutagenesis identified R5 and G6 in the initial flexible segment as critical for slow deactivation. Alanine mutants in the helical region had less dramatic phenotypes. We propose that the PAS domain is bound close to the central core of the channel and that the N-terminal α-helix ensures that the flexible tail is correctly orientated for interaction with the activation gating machinery to stabilize the open state of the channel.  相似文献   

19.
Libich DS  Harauz G 《Biophysical journal》2008,94(12):4847-4866
The 18.5 kDa isoform of myelin basic protein (MBP) is the predominant form in adult human central nervous system myelin. It is an intrinsically disordered protein that functions both in membrane adhesion, and as a linker connecting the oligodendrocyte membrane to the underlying cytoskeleton; its specific interactions with calmodulin and SH3-domain containing proteins suggest further multifunctionality in signaling. Here, we have used multidimensional heteronuclear nuclear magnetic resonance spectroscopy to study the conformational dependence on environment of the protein in aqueous solution (100 mM KCl) and in a membrane-mimetic solvent (30% TFE-d2), particularly to analyze its secondary structure using chemical shift indexing, and to investigate its backbone dynamics using 15N spin relaxation measurements. Collectively, the data revealed three major segments of the protein with a propensity toward α-helicity that was stabilized by membrane-mimetic conditions: T33-D46, V83-T92, and T142-L154 (murine 18.5 kDa sequence numbering). All of these regions corresponded with bioinformatics predictions of ordered secondary structure. The V83-T92 region comprises a primary immunodominant epitope that had previously been shown by site-directed spin labeling and electron paramagnetic resonance spectroscopy to be α-helical in membrane-reconstituted systems. The T142-L154 segment overlapped with a predicted calmodulin-binding site. Chemical shift perturbation experiments using labeled MBP and unlabeled calmodulin demonstrated a dramatic conformational change in MBP upon association of the two proteins, and were consistent with the C-terminal segment of MBP being the primary binding site for calmodulin.  相似文献   

20.
Proline-induced constraints in alpha-helices   总被引:9,自引:0,他引:9  
L Piela  G Némethy  H A Scheraga 《Biopolymers》1987,26(9):1587-1600
The disrupting effect of a prolyl residue on an α-helix has been analyzed by means of conformational energy computations. In the preferred, nearly α-helical conformations of Ac-Ala4-Pro-NHMe and of Ac-Ala7-Pro-Ala7-NHMe, only the residue preceding Pro is not α-helical, while all other residues can occur in the α-helical A conformation; i.e., it is sufficient to introduce a conformational change of only one residue in order to accommodate proline in a distorted α-helix. Other low-energy conformations exist in which the conformational state of three residues preceding proline is altered considerably; on the other hand, another conformation in which these three residues retain the near-α-helical A-conformational state (with up to 26° changes of their dihedral angles ? and ψ, and a 48° change in one ω from those of the ideal α-helix) has a considerably higher energy. These conclusions are not altered by the substitution of other residues in the place of the Ala preceding Pro. The conformations of the peptide chain next to prolyl residues in or near an α-helix have been analyzed in 58 proteins of known structure, based on published atomic coordinates. Of 331 α-helices, 61 have a Pro at or next to their N-terminus, 21 have a Pro next to their C-terminus, and 30 contain a Pro inside the helix. Of the latter, 16 correspond to a break in the helix, 9 are located inside distorted first turns of the helix, and 5 are parts of irregular helices. Thus, the reported occurrence of prolyl residues next to or inside observed α-helices in proteins is consistent with the computed steric and energetic requirements of prolyl peptides.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号