首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 9 毫秒
1.
2.
Numerous polyketides are known from bacteria, plants, and fungi. However, only a few have been isolated from basidiomycetes. Large scale genome sequencing projects now help anticipate the capacity of basidiomycetes to synthesize polyketides. In this study, we identified and annotated 111 type I and three type III polyketide synthase (PKS) genes from 35 sequenced basidiomycete genomes. Phylogenetic analysis of PKS genes suggests that all main types of fungal iterative PKS had already evolved before the Ascomycota and Basidiomycota diverged. A comparison of genomic and metabolomic data shows that the number of polyketide genes exceeds the number of known polyketide structures by far. Exploiting these results to design degenerate PCR primers, we amplified and cloned the complete sequence of armB, a PKS gene from the melleolide producer Armillaria mellea. We expect this study will serve as a guide for future genomic mining projects to discover structurally diverse mushroom-derived polyketides.  相似文献   

3.
4.
We have characterized an acyl carrier protein (ACP) presumed to be involved in the synthesis of fatty acids in Streptomyces coelicolor A3(2). This is the third ACP to have been identified in S. coelicolor; the two previously characterized ACPs are involved in the synthesis of two aromatic polyketides: the blue-pigmented antibiotic actinorhodin and a grey pigment associated with the spore walls. The three ACPs are clearly related. The presumed fatty acid synthase (FAS) ACP was partially purified, and the N-terminal amino acid sequence was obtained. The corresponding gene (acpP) was cloned and sequenced and found to lie within 1 kb of a previously characterized gene (fabD) encoding another subunit of the S. coelicolor FAS, malonyl coenzyme A:ACP acyl-transferase. Expression of S. coelicolor acpP in Escherichia coli yielded several different forms, whose masses corresponded to the active (holo) form of the protein carrying various acyl substituents. To test the mechanisms that normally prevent the FAS ACP from substituting for the actinorhodin ACP, acpP was cloned in place of actI-open reading frame 3 (encoding the actinorhodin ACP) to allow coexpression of acpP with the act polyketide synthase (PKS) genes. Pigmented polyketide production was observed, but only at a small fraction of its former level. This suggests that the FAS and PKS ACPs may be biochemically incompatible and that this could prevent functional complementation between the FAS and PKSs that potentially coexist within the same cells.  相似文献   

5.
Alkylresorcinol moieties of cannabinoids are derived from olivetolic acid (OLA), a polyketide metabolite. However, the polyketide synthase (PKS) responsible for OLA biosynthesis has not been identified. In the present study, a cDNA encoding a novel PKS, olivetol synthase (OLS), was cloned from Cannabis sativa. Recombinant OLS did not produce OLA, but synthesized olivetol, the decarboxylated form of OLA, as the major reaction product. Interestingly, it was also confirmed that the crude enzyme extracts from flowers and rapidly expanding leaves, the cannabinoid-producing tissues of C. sativa, also exhibited olivetol-producing activity, suggesting that the native OLS is functionally expressed in these tissues. The possibility that OLS could be involved in OLA biosynthesis was discussed based on its catalytic properties and expression profile.  相似文献   

6.
Liou GF  Lau J  Cane DE  Khosla C 《Biochemistry》2003,42(1):200-207
The acyltransferase (AT) domains of modular polyketide synthases (PKSs) are the primary determinants of building block specificity in polyketide biosynthesis and are therefore attractive targets for protein engineering. Thus far, investigations into the fundamental biochemical properties of AT domains have been hampered by the inability to produce these enzymes as self-standing polypeptides. Here we describe an alternative, generally applicable strategy for overexpression and analysis of AT domains from modular PKSs as truncated didomain proteins (approximately 60 kDa). Recently, we reported the expression and reconstitution of the loading didomain of 6-deoxyerythronolide B synthase (Lau, J., Cane, D. E., and Khosla, C. (2000) Biochemistry 39, 10514-20). By replacing the AT domain of this protein with a methylmalonyl-CoA specific AT domain from module 6 of the 6-deoxyerythronolide B synthase, or alternatively a malonyl-CoA specific AT domain from module 2 of the rapamycin synthase, each of these extender unit AT domains could be overproduced and purified to homogeneity. Using acyl-CoA substrates as acyl group donors and N-acetylcysteamine as the thiol acceptor, we devised a steady-state kinetic assay to probe the properties of these three didomain proteins and selected mutants. Propionyl-CoA was the preferred substrate of the loading didomain, although acetyl- and butyryl-CoA were also accepted with approximately 40-fold-lower specificity. In contrast to the relatively relaxed specificity of the loading AT domain, the methylmalonyl- and malonyl-specific AT domains had high specificity (>1000-fold) toward their natural substrates. The acyl transfer reaction was inhibited by coenzyme A (CoASH) with both a competitive and a noncompetitive component. Use of an exogenous holo-acyl carrier protein (ACP) as an acceptor thiol did not increase the rate of acyl transfer relative to the reaction involving N-acetylcysteamine, suggesting that either the on-rate of the acyl group is rate-limiting or that the apo-ACP component of the didomain protein precludes effective docking of a second ACP onto the AT active site. Mutation of Trp-222 in the loading AT domain to an Arg residue that is universally conserved in all extender unit AT domains failed to enable the loading AT domain to accept methylmalonyl-CoA as an alternative substrate. In contrast, mutation of the equivalent Arg residue in an extender AT domain resulted in a protein with no activity. Together, these results provide a foundation for future structural and mechanistic investigations into the properties of AT domains of modular PKSs.  相似文献   

7.
Bacterial siderophores assist pathogens in iron acquisition inside their hosts. They are often essential for achieving a successful infection, and their biosynthesis represents an attractive antibiotic target. Recently, several siderophore biosynthetic loci have been identified, and in vitro studies have advanced our knowledge of the biosynthesis of aryl-capped peptide and peptide–polyketide siderophores from Mycobacterium spp., Pseudomonas spp., Yersinia spp. and other bacteria. These studies also provided insights into the assembly of related siderophores and many secondary metabolites of medical relevance. Assembly of aryl-capped peptide and peptide–polyketide siderophores involves non-ribosomal peptide synthetase, polyketide synthase and non-ribosomal-peptide polyketide hybrid subunits. Analysis of these subunits suggests that their domains and modules are functionally and structurally independent. It appears that nature has selected a set of functional domains and modules that can be rearranged in different order and combinations to biosynthesize different products. Although much remains to be learned about modular synthetases and synthases, it is already possible to conceive strategies to engineer these enzymes to generate novel products.  相似文献   

8.
Understanding protein-protein interactions that occur between ACP and KS domains of polyketide synthases and fatty acid synthases is critical to improving the scope and efficiency of combinatorial biosynthesis efforts aimed at producing non-natural polyketides. Here, we report a facile strategy for rapidly reporting such ACP-KS interactions based on the incorporation of an amino acid with photocrosslinking functionality. Crucially, this photocrosslinking strategy can be applied to any polyketide or fatty acid synthase regardless of substrate specificity, and can be adapted to a high-throughput format for directed evolution studies.  相似文献   

9.
The first two steps of aflatoxin biosynthesis are catalyzed by the HexA/B and by the Pks protein. The phylogenetic analysis clearly distinguished fungal HexA/B from FAS subunits and from other homologous proteins. The phylogenetic trees of the HexA and HexB set of proteins share the same clustering. Proteins involved in the synthesis of fatty acids or in the aflatoxin or sterigmatocystin biosynthesis cluster separately. The Pks phylogenetic tree also differentiates the aflatoxin-related polypeptide sequences from those of other kinds of secondary metabolism. The function of some of the A. flavus Pks homologues may be deduced from the phylogenetic analysis. The conserved sequence motifs of protein domains shared by HexA/B and Pks - namely, β-polyketide synthase (KS), acetyl transferase (AT) and acyl carrier protein (ACP) - have been identified, and the HexA/B and Pks involved in aflatoxin biosynthesis have been distinguished from those involved in primary metabolism or other kinds of secondary metabolism.  相似文献   

10.
Soil bacteria live in a very competitive environment and produce many secondary metabolites; there appears to be strong selective pressure for evolution of new compounds. Secondary metabolites are the most important source of chemical structures for the pharmaceutical industry and an understanding of the evolutionary process should help in finding novel chemical entities. Modular polyketide synthases are a particularly interesting case for evolutionary studies, because much of the chemical structure can be predicted from DNA sequence. Previous evolutionary studies have concentrated on individual modules or domains and were not able to study the evolution of orthologues. This study overcame this problem by considering complete clusters as "organisms", so that orthologous modules and domains could be identified and used to characterise evolutionary pathways. Seventeen modular polyketide synthase clusters were identified that fell into six classes. Gene conversion within clusters was very common (affecting about 15?% of domains) and was detected by discordance in phylogenetic trees. An evolutionary model is proposed in which a single cross over between two different clusters (i.e. horizontal gene transfer) would generate a cluster of very different architecture with radically different chemical products; subsequent gene conversion and deletions would explore chemical variants. Two probable examples of such recombination were found. This model suggests strategies for detecting horizontal gene transfer in cluster evolution.  相似文献   

11.
Jiralerspong S  Rangaswamy V  Bender CL  Parry RJ 《Gene》2001,270(1-2):191-200
Coronafacic acid (CFA) is the polyketide component of coronatine (COR), a phytotoxin produced by the plant pathogen Pseudomonas syringae. The CFA polyketide synthase (PKS) consists of two open reading frames (ORFs) that encode type I multifunctional proteins and several ORFs that encode monofunctional proteins. Sequence comparisons of the modular portions of the CFA PKS with other prokaryotic, modular PKSs elucidated the boundaries of the domains that are involved in the individual stages of polyketide assembly. The two β-ketoacyl:acyl carrier protein synthase (KS) domains in the modular portion of the CFA PKS exhibit a high degree of similarity to each other (53%), but are even more similar to the KS domains of DEBS, RAPS, and RIF. Cfa6 possesses two acyltransferases- AT0, which is associated with a loading domain, and AT1, which uses ethylmalonyl-CoA (eMCoA) as a substrate for chain extension. Cfa7 contains an AT that uses malonyl-CoA as a substrate for chain extension. The Cfa6 AT0 shows 35 and 32% similarity to the DEBS1 and NidA1 AT0s, respectively, and 32 and 36% similarity to the Cfa6 and Cfa7 AT1s. Sequence motifs have previously been identified that correlate with AT substrates. The motifs in Cfa6 AT1 were found to correlate reasonably well with those predicted for methylmalonyl-CoA (mMCoA) ATs. The motifs in the AT of Cfa7 correlated more poorly with those predicted for MCoA ATs. Three ACP domains occur in the modular proteins of the COR PKS. The loading domain-associated ACP0 showed 38% similarity to the loading domain ACP0s of DEBS1 and NidA1 and 32–36% similarity to the two module-associated ACPs of the COR PKS. It exhibited a higher degree of similarity to the module-associated ACPs of RAPS. The two module-associated ACPs show 39% similarity to each other, but appear more closely related to module-associated ACP domains in RAPS and RIFS. Furthermore, the DH and KR domains of Cfa6 and Cfa7 show greater similarity to DH and KR domains in RAPS and RIFS than to each other. The CFA PKS includes a thioesterase domain (TE I) that resides at the C-terminus of Cfa7 and a second thioesterase, which exists as a separate ORF (Cfa9, a TE II). Analysis of a Cfa7 thioesterase mutant demonstrated that the TE domain is required for the production of CFA. The co-existence of TE domains within modular PKSs along with physically separated, monofunctional TEs (TE IIs) has been reported for a number of modular polyketide and non-ribosomal peptide synthases (NRPS). An analysis of the two types of thioesterases using Clustal X yielded a dendrogram showing that TE IIs from PKSs and NRPSs are more closely related to each other than to domain TEs from either PKSs or NRPSs. Furthermore, the dendrogram indicates that both types of TE IIs are more closely related to TE domains associated with PKSs than to TE domains in NRPSs. Finally, the overall % G+C content and the % G+C content at the third codon for all of the PKS genes in the COR cluster suggest that these genes may have been recruited from a gram-positive bacterium.  相似文献   

12.
Polyketide synthases (PKSs) synthesize the polyketide cores of pharmacologically important natural products such as the immunosuppressants FK520 and FK506. Understanding polyketide biosynthesis at atomic resolution could present new opportunities for chemo-enzymatic synthesis of complex molecules. The crystal structure of FkbI, an enzyme involved in the biosynthesis of the methoxymalonyl extender unit of FK520, was solved to 2.1A with an R(crys) of 24.4%. FkbI has a similar fold to acyl-CoA dehydrogenases. Notwithstanding this similarity, the surface and substrate-binding site of FkbI reveal key differences from other acyl-CoA dehydrogenases, suggesting that FkbI may recognize an acyl-ACP substrate rather than an acyl-CoA substrate. This structural observation coincided the genetic experiment done by Carroll et al. J. Am. Chem. Soc., 124 (2002) 4176. Although an in vitro assay for FkbI remains elusive, the structural basis for the substrate specificity of FkbI is analyzed by a combination of sequence comparison, docking simulations and structural analysis. A biochemical mechanism for the role of FkbI in the biosynthesis of methoxymalonyl-ACP is proposed.  相似文献   

13.
Polyketides and nonribosomal peptides are an important class of natural products with useful bioactivities. These compounds are similarly biosynthesized using enzymes with modular structures despite having different physicochemical properties. These enzymes are attractive targets for bioengineering to produce “unnatural” natural products owing to their modular structures. Therefore, their structures have been studied for a long time; however, the main focus was on truncated-single domains. Surprisingly, there is an increasing number of the structures of whole modules reported, most of which have been enabled through the recent advances in cryogenic electron microscopy technology. In this review, we have summarized the recent advances in the structural elucidation of whole modules.  相似文献   

14.
[背景]阿维菌素起始酰基转移酶(AveAT0)能够以2-甲基丁酰-辅酶A (coenzyme A,CoA)和异丁酰-CoA作为起始单元分别合成"a"系列或"b"系列的阿维菌素。[目的]探究AveAT0对两种底物的偏好性并进行改造。[方法]通过与识别不同底物的起始酰基转移酶(loading acyltransferases,AT0s)进行序列比对,找到AveAT0底物结合重要的氨基酸,利用活性位点定点突变的方法得到对底物偏好性改变的特定突变体。以2-甲基丁酰-CoA、异丁酰-CoA的类似物2-甲基丁酰-N-乙酰半胱氨(N-acetylcysteamine,SNAC)和异丁酰-SNAC为底物,用Ellman测试法检测释放SNAC的游离巯基(sulfhydryl,SH),测定AveAT0及其突变体的动力学常数,以此表征AveAT0及其突变体的底物偏好性。[结果]AveAT0对2-甲基丁酰SNAC的Km值为0.4 mmol/L,kcat值为14.1 min^-1,kcat/Km为32.1 L/(mmol·min);对异丁酰-SNAC的Km值为0.8 mmol/L,kcat值为6.4 min^-1,kcat/Km为7.5 L/(mmol·min)。选定的突变位点为V224M、Q149L、L121M。按顺序累积突变后发现三突变株AveAT0 V224M/Q149L/L121M对两个底物的偏好性区别最大,对2-甲基丁酰SNAC的Km值为0.8 mmol/L,kcat值为5.4 min^-1,kcat/Km为6.9 L/(mmol·min);对异丁酰-SNAC的kcat/Km为0.1 L/(mmol·min)。[结论]研究发现了AveAT0识别底物过程中的关键氨基酸,为改造阿维菌素聚酮合酶酰基转移酶提供了依据。  相似文献   

15.
The process by which α-stereocenters of polyketide intermediates are set by modular polyketide synthases (PKSs) when condensation is not immediately followed by reduction is mysterious. However, the reductase-incompetent ketoreductase (KR) from the third module of 6-deoxyerythronolide B synthase has been proposed to operate as a racemase, aiding in the epimerization process that reverses the orientation of the α-methyl group of the polyketide intermediate generated by the ketosynthase to the configuration observed in the 6-deoxyerythronolide B final product. To learn more about the epimerization process, the structure of the C2-type KR from the third module of the pikromycin synthase, analogous to the KR from the third module of 6-deoxyerythronolide B synthase, was determined to 1.88 Å resolution. This first structural analysis of this KR-type reveals differences from reductase-competent KRs such as that the site NADPH binds to reductase-competent KRs is occluded by side chains and the putative catalytic tyrosine possesses more degrees of freedom. The active-site geometry may enable C2-type KRs to align the thioester and β-keto groups of a polyketide intermediate to reduce the pKa of the α-proton and accelerate its abstraction. Results from in vivo assays of engineered PKSs support that C2-type KRs cooperate with epimer-specific ketosynthases to set the configurations of substituent-bearing α-carbons.  相似文献   

16.
Type I polyketide synthase (PKS) genes consist of modules approximately 3-6 kb long, which encode the structures of 2-carbon units in polyketide products. Alteration or replacement of individual PKS modules can lead to the biosynthesis of 'unnatural' natural products but existing techniques for this are time consuming. Here we describe a generic approach to the design of synthetic PKS genes where facile cassette assembly and interchange of modules and domains are facilitated by a repeated set of flanking restriction sites. To test the feasibility of this approach, we synthesized 14 modules from eight PKS clusters and associated them in 154 bimodular combinations spanning over 1.5-million bp of novel PKS gene sequences. Nearly half the combinations successfully mediated the biosynthesis of a polyketide in Escherichia coli, and all individual modules participated in productive bimodular combinations. This work provides a truly combinatorial approach for the production of polyketides.  相似文献   

17.
A putative catalytic triad consisting of tyrosine, serine, and lysine residues was identified in the ketoreductase (KR) domains of modular polyketide synthases (PKSs) based on homology modeling to the short chain dehydrogenase/reductase (SDR) superfamily of enzymes. This was tested by constructing point mutations for each of these three amino acid residues in the KR domain of module 6 of the 6-deoxyerythronolide B synthase (DEBS) and determining the effect on ketoreduction. Experiments conducted in vitro with the truncated DEBS Module 6+TE (M6+TE) enzyme purified from Escherichia coli indicated that any of three mutations, Tyr --> Phe, Ser --> Ala, and Lys --> Glu, abolish KR activity in formation of the triketide lactone product from a diketide substrate. The same mutations were also introduced in module 6 of the full DEBS gene set and expressed in Streptomyces lividans for in vivo analysis. In this case, the Tyr --> Phe mutation appeared to completely eliminate KR6 activity, leading to the 3-keto derivative of 6-deoxyerythronolide B, whereas the other two mutations, Ser --> Ala and Lys --> Glu, result in a mixture of both reduced and unreduced compounds at the C-3 position. The results support a model analogous to SDRs in which the conserved tyrosine serves as a proton donating catalytic residue. In contrast to deletion of the entire KR6 domain of DEBS, which causes a loss in substrate specificity of the adjacent acyltransferase (AT) domain in module 6, these mutations do not affect the AT6 specificity and offer a potentially superior approach to KR inactivation for engineered biosynthesis of novel polyketides. The homology modeling studies also led to identification of amino acid residues predictive of the stereochemical nature of KR domains. Finally, a method is described for the rapid purification of engineered PKS modules that consists of a biotin recognition sequence C-terminal to the thioesterase domain and adsorption of the biotinylated module from crude extracts to immobilized streptavidin. Immobilized M6+TE obtained by this method was over 95% pure and as catalytically effective as M6+TE in solution.  相似文献   

18.
A number of enzymes require flavin for their catalytic activity, although the reaction catalyzed involves no redox reaction. The best studied of these enigmatic nonredox flavoproteins are the acetohydroxy acid synthases (AHAS), which catalyze early steps in the synthesis of branched-chain amino acids in bacteria, yeasts, and plants. Previously, work from our laboratory showed strong amino acid sequence homology between these enzymes and Escherichia coli pyruvate oxidase, a classical flavoprotein dehydrogenase that catalyzes the decarboxylation of pyruvate to acetate. We have now shown this homology (i) to also be present in the DNA sequences and (ii) to represent functional homology in that pyruvate oxidase has AHAS activity and a protein consisting of the amino-terminal half of pyruvate oxidase and the carboxy-terminal half of E. coli AHAS I allows native E. coli AHAS I to function without added flavin. The hybrid protein contains tightly bound flavin, which is essential for the flavin substitution activity. These data, together with the sequence homologies and identical cofactors and substrates, led us to propose that the AHAS enzymes are descended from pyruvate oxidase (or a similar protein) and, thus, that the flavin requirement of the AHAS enzymes is a vestigial remnant, which may have been conserved to play a structural rather than a chemical function.  相似文献   

19.
The sesquiterpene costunolide has a broad range of biological activities and is the parent compound for many other biologically active sesquiterpenes such as parthenolide. Two enzymes of the pathway leading to costunolide have been previously characterized: germacrene A synthase (GAS) and germacrene A oxidase (GAO), which together catalyse the biosynthesis of germacra-1(10),4,11(13)-trien-12-oic acid. However, the gene responsible for the last step toward costunolide has not been characterized until now. Here we show that chicory costunolide synthase (CiCOS), CYP71BL3, can catalyse the oxidation of germacra-1(10),4,11(13)-trien-12-oic acid to yield costunolide. Co-expression of feverfew GAS (TpGAS), chicory GAO (CiGAO), and chicory COS (CiCOS) in yeast resulted in the biosynthesis of costunolide. The catalytic activity of TpGAS, CiGAO and CiCOS was also verified in planta by transient expression in Nicotiana benthamiana. Mitochondrial targeting of TpGAS resulted in a significant increase in the production of germacrene A compared with the native cytosolic targeting. When the N. benthamiana leaves were co-infiltrated with TpGAS and CiGAO, germacrene A almost completely disappeared as a result of the presence of CiGAO. Transient expression of TpGAS, CiGAO and CiCOS in N. benthamiana leaves resulted in costunolide production of up to 60 ng.g(-1) FW. In addition, two new compounds were formed that were identified as costunolide-glutathione and costunolide-cysteine conjugates.  相似文献   

20.
Modular polyketide synthases (PKSs) are large multi-enzymatic, multi-domain megasynthases, which are involved in the biosynthesis of a class of pharmaceutically important natural products, namely polyketides. These enzymes harbor a set of repetitive active sites termed modules and the domains present in each module dictate the chemical moiety that would add to a growing polyketide chain. This modular logic of biosynthesis has been exploited with reasonable success to produce several novel compounds by genetic manipulation. However, for harnessing their vast potential of combinatorial biosynthesis, it is essential to develop knowledge based in silico approaches for correlating the sequence and domain organization of PKSs to their polyketide products. In this work, we have carried out extensive sequence analysis of experimentally characterized PKS clusters to develop an automated computational protocol for unambiguous identification of various PKS domains in a polypeptide sequence. A structure based approach has been used to identify the putative active site residues of acyltransferase (AT) domains, which control the specificities for various starter and extender units during polyketide biosynthesis. On the basis of the analysis of the active site residues and molecular modelling of substrates in the active site of representative AT domains, we have identified a crucial residue that is likely to play a major role in discriminating between malonate and methylmalonate during selection of extender groups by this domain. Structural modelling has also explained the experimentally observed chiral preference of AT domain in substrate selection. This computational protocol has been used to predict the domain organization and substrate specificity for PKS clusters from various microbial genomes. The results of our analysis as well as the computational tools for prediction of domain organization and substrate specificity have been organized in the form of a searchable computerized database (PKSDB). PKSDB would serve as a valuable tool for identification of polyketide products biosynthesized by uncharacterized PKS clusters. This database can also provide guidelines for rational design of experiments to engineer novel polyketides.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号