首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Inorganic polyphosphate (polyP) has been identified and measured in different stages of Trypanosoma cruzi. Millimolar levels (in terms of P(i) residues) in chains of less than 50 residues long, and micromolar levels in chains of about 700--800 residues long, were found in different stages of T. cruzi. Analysis of purified T. cruzi acidocalcisomes indicated that polyPs were preferentially located in these organelles. This was confirmed by visualization of polyPs in the acidocalcisomes using 4',6-diamidino-2-phenylindole. A rapid increase (within 2--4 h) in the levels of short and long chain polyPs was detected during trypomastigote to amastigote differentiation and during the lag phase of growth of epimastigotes (within 12--24 h). Levels rapidly decreased after the epimastigotes resumed growth. Short and long chain polyP levels rapidly decreased upon exposure of epimastigotes to hypo-osmotic or alkaline stresses, whereas levels increased after hyperosmotic stress. Ca(2+) release from acidocalcisomes by a combination of ionophores (ionomycin and nigericin) was associated with the hydrolysis of short and long chain polyPs. In agreement with these results, acidocalcisomes were shown to contain polyphosphate kinase and exopolyphosphatase activities. Together, these results suggest a critical role for these organelles in the adaptation of the parasite to environmental changes.  相似文献   

2.
This paper describes a quantitative and sensitive chemical assay for cereulide, the heat-stable emetic toxin produced by Bacillus cereus. The methods previously available for measuring cereulide are bioassays that give a toxicity titer, but not an accurate concentration. The dose of cereulide causing illness in humans is therefore not known, and thus safety limits for cereulide cannot be indicated. We developed a quantitative and sensitive chemical assay for cereulide based on high-performance liquid chromatography (HPLC) connected to ion trap mass spectrometry. This chemical assay and a bioassay based on boar sperm motility inhibition were calibrated with purified cereulide and with valinomycin, a structurally similar cyclic depsipeptide. The boar spermatozoan motility assay and chemical assay gave uniform results over a wide range of cereulide concentrations, ranging from 0.02 to 230 microg ml(-1). The detection limit for cereulide and valinomycin by HPLC-mass spectrometry was 10 pg per injection. The combined chemical and biological assays were used to define conditions and concentrations of cereulide formation by B. cereus strains F4810/72, NC7401, and F5881. Cereulide production commenced at the end of logarithmic growth, but was independent of sporulation. Production of cereulide was enhanced by incubation with shaking compared to static conditions. The three emetic B. cereus strains accumulated 80 to 166 microg of cereulide g(-1) (wet weight) when grown on solid medium. Strain NC7401 accumulated up to 25 microg of cereulide ml(-1) in liquid medium at room temperature (21 +/- 1 degrees C) in 1 to 3 days, during the stationary growth phase when cell density was 2 x 10(8) to 6 x 10(8) CFU ml(-1). Cereulide production at temperatures at and below 8 degrees C or at 40 degrees C was minimal.  相似文献   

3.
An emetic toxin cereulide, produced by Bacillus cereus, causes emetic food poisonings, but a method for quantitative measurement of cereulide has not been well established. A current detection method is a bioassay method using the HEp-2 cell vacuolation test, but it was unable to measure an accurate concentration. We established a quantitative assay for cereulide based on its mitochondrial respiratory uncoupling activity. The oxygen consumption in a reaction medium containing rat liver mitochondria was rapid in the presence of cereulide. Thus uncoupling effect of cereulide on mitochondrial respiration was similar to those of uncouplers 2,4-dinitrophenol (DNP), carbonylcyanide m-chlorophenylhydrazone (CCCP), and valinomycin. This method gave constant results over a wide range of cereulide concentrations, ranging from 0.05 to 100 microg/ml. The minimum cereulide concentration to detect uncoupled oxygen consumption was 50 ng/ml and increased dose-dependently to the maximum level. Semi-log relationship between the oxygen consumption rate and the cereulide concentration enables this method to quantify cereulide. The results of this method were highly reproducible as compared with the HEp-2 cell vacuolation test and were in good agreement with those of the HEp-2 cell vacuolation test. The enterotoxin of B. cereus or Staphylococcus aureus did not show any effect on the oxygen consumption, indicating this method is specific for the identification of cereulide as a causative agent of emetic food poisonings.  相似文献   

4.
Abstract To study the correlation between emetic toxin and HEp-2 vacuole activity produced by Bacillus cereus isolated from an outbreak of vomiting-type food poisoning, some properties and emetic activities of both purified HEp-2 factor (cereulide) and partially purified factor to rhesus monkeys were determined. The results indicate that both cereulide and partially purified factor were very stable to digestion with proteolytic enzymes, different pH, and heating. Vomiting was induced in the rhesus monkeys orally administered with both substances. From these findings, cereulide (or HEp-2 vacuole factor) is strongly suggested to be an emetic toxin itself.  相似文献   

5.
Very different toxins are responsible for the two types of gastrointestinal diseases caused by Bacillus cereus: the diarrhoeal syndrome is linked to nonhemolytic enterotoxin NHE, hemolytic enterotoxin HBL, and cytotoxin K, whereas emesis is caused by the action of the depsipeptide toxin cereulide. The recently identified cereulide synthetase genes permitted development of a molecular assay that targets all toxins known to be involved in food poisoning in a single reaction, using only four different sets of primers. The enterotoxin genes of 49 strains, belonging to different phylogenetic branches of the B. cereus group, were partially sequenced to encompass the molecular diversity of these genes. The sequence alignments illustrated the high molecular polymorphism of B. cereus enterotoxin genes, which is necessary to consider when establishing PCR systems. Primers directed towards the enterotoxin complex genes were located in different CDSs of the corresponding operons to target two toxin genes with one single set of primers. The specificity of the assay was assessed using a panel of B. cereus strains with known toxin profiles and was successfully applied to characterize strains from food and clinical diagnostic labs as well as for the toxin gene profiling of B. cereus isolated from silo tank populations.  相似文献   

6.
Cereulide and valinomycin are highly similar cyclic dodecadepsipeptides with potassium ionophoric properties. Cereulide, produced by members of the Bacillus cereus group, is known mostly as emetic toxin, and no ecological function has been assigned. A comparative analysis of the antimicrobial activity of valinomycin produced by Streptomyces spp. and cereulide was performed at a pH range of pH 5.5 to pH 9.5, under anaerobic and aerobic conditions. Both compounds display pH-dependent activity against selected Gram-positive bacteria, including Staphylococcus aureus, Listeria innocua, Listeria monocytogenes, Bacillus subtilis, and Bacillus cereus ATCC 10987. Notably, B. cereus strain ATCC 14579 and the emetic B. cereus strains F4810/72 and A529 showed reduced sensitivity to both compounds, with the latter two strains displaying full resistance to cereulide. Both compounds showed no activity against the selected Gram-negative bacteria. Antimicrobial activity against Gram-positive bacteria was highest at alkaline pH values, where the membrane potential (ΔΨ) is the main component of the proton motive force (PMF). Furthermore, inhibition of growth was observed in both aerobic and anaerobic conditions. Determination of the ΔΨ, using the membrane potential probe DiOC(2)(3) (in the presence of 50 mM KCl) in combination with flow cytometry, demonstrated for the first time the ability of cereulide to dissipate the ΔΨ in sensitive Gram-positive bacteria. The putative role of cereulide production in the ecology of emetic B. cereus is discussed.  相似文献   

7.
We report the complete and annotated genome sequence of Bacillus cereus NC7401, a representative of the strain group that causes emetic-type food poisoning. The emetic toxin, cereulide, is produced by a nonribosomal protein synthesis (NRPS) system that is encoded by a gene cluster on a large resident plasmid, pNCcld.  相似文献   

8.
AIMS: To determine if cereulide, the emetic toxin produced by Bacillus cereus, is produced by a nonribosomal peptide synthetase (NRPS). METHODS AND RESULTS: NC Y, an emetic strain of Bacillus cereus, was examined for a NRPS gene using PCR with primers recognizing a fragment of a NRPS gene from the cyanobacterium Microcystis. The amplicon was sequenced and compared with other gene sequences using BLAST analysis, which showed that the amplicon from strain NC Y was similar in sequence to peptide synthetase genes in other micro-organisms, including Bacillus subtilis and B. brevis, while no such sequence was found in the complete genome sequence of a nonemetic strain of B. cereus. Specific PCR primers were then designed and used to screen 40 B. cereus isolates previously implicated in outbreaks of foodborne illness. The isolates were also screened for toxin production using the MTT cell cytotoxicity assay. PCR and MTT assay screening of the B. cereus isolates revealed a high correlation between the presence of the NRPS gene and cereulide production. CONCLUSIONS: The results indicate that cereulide is produced by a NRPS complex. SIGNIFICANCE AND IMPACT OF THE STUDY: This is the first study to provide evidence identifying the mechanism of production of cereulide, the emetic toxin of B. cereus. The PCR primers developed in the study allow determination of the potential for cereulide production among isolates of B. cereus.  相似文献   

9.
Bacillus cereus produces the emetic toxin cereulide, a cyclic dodecadepsipeptide that can act as a K(+) ionophore, dissipating the transmembrane potential in mitochondria of eukaryotic cells. Because pure cereulide has not been commercially available, cereulide content in food samples has been expressed in valinomycin equivalents, a highly similar cyclic potassium ionophore that is commercially available. This research tested the biological activity of synthetic cereulide and validated its use as a standard in the quantification of cereulide contents in food samples. The synthesis route consists of 10 steps that result in a high yield of synthetic cereulide that showed biological activity in the HEp-2 cell assay and the boar sperm motility assay. The activity is different in both methods, which may be attributed to differences in K(+) content of the test media used. Using cereulide or valinomycin as a standard to quantify cereulide based on liquid chromatography-mass spectrometry (LC-MS), the concentration determined with cereulide as a standard was on average 89.9% of the concentration determined using valinomycin as a standard. The recovery experiments using cereulide-spiked food products and acetonitrile as extraction solute showed that the LC-MS method with cereulide as a standard is a reliable and accurate method to quantify cereulide in food, because the recovery rate was close to 100% over a wide concentration range.  相似文献   

10.
Paenilide is a novel, heat-stable peptide toxin from Paenibacillus tundrae, which colonizes barley. P. tundrae produced 20 to 50 ng of the toxin mg(-1) of cells (wet weight) throughout a range of growth temperatures from +5°C to +28°C. Paenilide consisted of two substances of 1,152 Da and 1,166 Da, with masses and tandem mass spectra identical to those of cereulide and a cereulide homolog, respectively, produced by Bacillus cereus NS-58. The two components of paenilide were separated from those of cereulide by high-performance liquid chromatography (HPLC), showing a structural difference suggesting the replacement of O-Leu (cereulide) by O-Ile (paenilide). The exposure of porcine spermatozoa and kidney tubular epithelial (PK-15) cells to subnanomolar concentrations of paenilide resulted in inhibited motility, the depolarization of mitochondria, excessive glucose consumption, and metabolic acidosis. Paenilide was similar to cereulide in eight different toxicity endpoints with porcine and murine cells. In isolated rat liver mitochondria, nanomolar concentrations of paenilide collapsed respiratory control, zeroed the mitochondrial membrane potential, and induced swelling. The toxic effect of paenilide depended on its high lipophilicity and activity as a high-affinity potassium ion carrier. Similar to cereulide, paenilide formed lipocations, i.e., lipophilic cationic compounds, with K(+) ions already at 4 mM [K(+)], rendering lipid membranes electroconductive. Paenilide-producing P. tundrae was negative in a PCR assay with primers specific for the cesB gene, indicating that paenilide was not a product of plasmid pCER270, encoding the biosynthesis of cereulide in B. cereus. Paenilide represents the first potassium ionophoric compound described for Paenibacillus. The findings in this paper indicate that paenilide from P. tundrae is a potential food-poisoning agent.  相似文献   

11.
Inorganic polyphosphate (polyP) is the polymer of phosphate. Water-soluble polyPs with average chain lengths of 2–40 P-subunits are widely used as food additives and are currently synthesized chemically. An environmentally friendly highly scalable process to biosynthesize water-soluble food-grade polyP in powder form (termed bio-polyP) is presented in this study. After incubation in a phosphate-free medium, generally regarded as safe wild-type baker's yeast (Saccharomyces cerevisiae) took up phosphate and intracellularly polymerized it into 26.5% polyP (as KPO3, in cell dry weight). The cells were lyzed by freeze-thawing and gentle heat treatment (10 min, 70°C). Protein and nucleic acid were removed from the soluble cell components by precipitation with 50 mM HCl. Two chain length fractions (42 and 11P-subunits average polyP chain length, purity on a par with chemically produced polyP) were obtained by fractional polyP precipitation (Fraction 1 was precipitated with 100 mM NaCl and 0.15 vol ethanol, and Fraction 2 with 1 final vol ethanol), drying, and milling. The physicochemical properties of bio-polyP were analyzed with an enzyme assay, 31P nuclear magnetic resonance spectroscopy, and polyacrylamide gel electrophoresis, among others. An envisaged application of the process is phosphate recycling from waste streams into high-value bio-polyP.  相似文献   

12.
Bacillus cereus causes two types of gastrointestinal diseases: emesis and diarrhea. The emetic type of the disease is attributed to the heat-stable depsipeptide cereulide and symptoms resemble Staphylococcus aureus intoxication, but there is no rapid method available to detect B. cereus strains causing this type of disease. In this study, a polymerase chain reaction (PCR) fragment of unknown function was identified, which was shown to be specific for emetic toxin producing strains of B. cereus. The sequence of this amplicon was determined and a PCR assay was developed on this basis. One hundred B. cereus isolates obtained from different food poisoning outbreaks and diverse food sources from various geographical locations and 29 strains from other species belonging to the B. cereus group were tested by this assay. In addition, 49 non-B. cereus group strains, with special emphasis on food pathogens, were used to show that the assay is specific for emetic toxin producing B. cereus strains. The presented PCR assay is the first molecular tool for the rapid detection of emetic toxin producing B. cereus strains.  相似文献   

13.
Toxin-producing isolates of Bacillus licheniformis were obtained from foods involved in food poisoning incidents, from raw milk, and from industrially produced baby food. The toxin detection method, based on the inhibition of boar spermatozoan motility, has been shown previously to be a sensitive assay for the emetic toxin of Bacillus cereus, cereulide. Cell extracts of the toxigenic B. licheniformis isolates inhibited sperm motility, damaged cell membrane integrity, depleted cellular ATP, and swelled the acrosome, but no mitochondrial damage was observed. The responsible agent from the B. licheniformis isolates was partially purified. It showed physicochemical properties similar to those of cereulide, despite having very different biological activity. The toxic agent was nonproteinaceous; soluble in 50 and 100% methanol; and insensitive to heat, protease, and acid or alkali and of a molecular mass smaller than 10,000 g mol(-1). The toxic B. licheniformis isolates inhibited growth of Corynebacterium renale DSM 20688(T), but not all inhibitory isolates were sperm toxic. The food poisoning-related isolates were beta-hemolytic, grew anaerobically and at 55 degrees C but not at 10 degrees C, and were nondistinguishable from the type strain of B. licheniformis, DSM 13(T), by a broad spectrum of biochemical tests. Ribotyping revealed more diversity; the toxin producers were divided among four ribotypes when cut with PvuII and among six when cut with EcoRI, but many of the ribotypes also contained nontoxigenic isolates. When ribotyped with PvuII, most toxin-producing isolates shared bands at 2.8 +/- 0.2, 4.9 +/- 0.3, and 11.7 +/- 0.5 or 13.1 +/- 0.8 kb.  相似文献   

14.
We investigated the cellular mechanisms that led to growth inhibition, morphological changes, and lysis of Bacillus cereus WSBC 10030 when it was challenged with a long-chain polyphosphate (polyP). At a concentration of 0.1% or higher, polyP had a bacteriocidal effect on log-phase cells, in which it induced rapid lysis and reductions in viable cell counts of up to 3 log units. The cellular debris consisted of empty cell wall cylinders and polar caps, suggesting that polyP-induced lysis was spatially specific. This activity was strictly dependent on active growth and cell division, since polyP failed to induce lysis in cells treated with chloramphenicol and in stationary-phase cells, which were, however, bacteriostatically inhibited by polyP. Similar observations were made with B. cereus spores; 0.1% polyP inhibited spore germination and outgrowth, and a higher concentration (1.0%) was even sporocidal. Supplemental divalent metal ions (Mg(2+) and Ca(2+)) could almost completely block and reverse the antimicrobial activity of polyP; i. e., they could immediately stop lysis and reinitiate rapid cell division and multiplication. Interestingly, a sublethal polyP concentration (0.05%) led to the formation of elongated cells (average length, 70 microm) after 4 h of incubation. While DNA replication and chromosome segregation were undisturbed, electron microscopy revealed a complete lack of septum formation within the filaments. Exposure to divalent cations resulted in instantaneous formation and growth of ring-shaped edges of invaginating septal walls. After approximately 30 min, septation was complete, and cell division resumed. We frequently observed a minicell-like phenotype and other septation defects, which were probably due to hyperdivision activity after cation supplementation. We propose that polyP may have an effect on the ubiquitous bacterial cell division protein FtsZ, whose GTPase activity is known to be strictly dependent on divalent metal ions. It is tempting to speculate that polyP, because of its metal ion-chelating nature, indirectly blocks the dynamic formation (polymerization) of the Z ring, which would explain the aseptate phenotype.  相似文献   

15.
The contents of five fractions of energy-rich inorganic polyphosphates (polyPs), ATP, and H+-ATPase activity in the plasma membrane were determined in a low-activity cephalosporin C (cephC) producer Acremonium chrysogenum ATCC 11550 and selected highly efficient producer strain 26/8 grown on glucose or a synthetic medium providing for active synthesis of this antibiotic. It was shown that strain 26/8 on the synthetic medium produced 26-fold higher amount of cephC as compared with strain ATCC 11550. This was accompanied by a drastic decrease in the cell contents of ATP and the high-molecular-weight fractions polyP2, polyP3, and polyP5 with a concurrent increase in the low-molecular-weight fraction polyP1. These data suggest that polyPs are involved in the cephC synthesis as a source of energy. H+-ATPase activity insignificantly changed at both low and high levels of cephC production. This confirms the assumption that A. chrysogenum has other alternative antibiotic transporters in addition to cefT. The obtained results can be used for optimizing commercial-scale cephC biosynthesis.  相似文献   

16.
Polyphosphates (polyPs) have been found in all cell types examined to date and play diverse roles, depending on the cell type. In eukaryotic organisms, polyPs have been mainly investigated in mammalian cells, with few studies on insects. In this study, we investigated mitochondrial polyphosphate metabolism in the red flour beetle, Tribolium castaneum. Substrate specificity for different chain lengths demonstrated the presence of two exopolyphosphatase isoforms in mitochondria. T. castaneum mitochondrial polyP levels decreased after injection with soluble pyrophosphatase (Tc‐sPPase) dsRNA, while the membrane exopolyphosphate activity increased. Mitochondrial respiration modulated exopolyphosphatase activity only in wild‐type beetles. Tripolyphosphate was able to increase the F‐ATPase activity in wild‐type and Tc‐sPPase RNAi beetles. We suggest that inorganic pyrophosphatase modulates polyphosphate metabolism in mitochondria and affects the link between mitochondrial activity and polyphosphate metabolism in T. castaneum.  相似文献   

17.
The growth and emetic toxin (cereulide) production of Bacillus cereus strains in defined culture media were studied. We found that a fully synthetic medium (CADM) allowed the production of emetic toxin and the addition of glucose enhanced it. By subtracting each amino acid from CADM, we found that only three amino acids, valine, leucine and threonine, were essential for growth and toxin production by B. cereus. The addition of high levels (50 mM) of leucine, isoleucine and glutamic acid decreased the toxin production. Other amino acids had no effect at this concentration.  相似文献   

18.
Abstract A HEp-2 cell-vacuolation factor was extracted and purified from the culture supernatant of a Bacillus cereus strain which caused emetic-syndrome food poisoning. The final preparation was chemically pure, and the toxin was named as cereulide. Mass spectrometry, NMR studies and chemical degradation revealed that the cereulide is a cyclic dodecadepsipeptide, (D-O-Leu-D-Ala- L-O-Val-L-Val)3, which is closely related to the potassium ionophore, valinomycin.  相似文献   

19.
The yeast Saccharomyces cerevisiae accumulates the high levels of inorganic polyphosphates (polyPs) performing in the cells numerous functions, including phosphate and energy storage. The effects of vacuolar membrane ATPase (V-ATPase) dysfunction were studied on polyP accumulation under short-term cultivation in the Pi–excess media after Pi starvation. The addition of bafilomycin A1, a specific inhibitor of V-ATPase, to the medium with glucose resulted in strong inhibition of the synthesis of long-chain polyP and in substantial suppression of short-chain polyP. The addition of bafilomycin to the medium with ethanol resulted in decreased accumulation of high-molecular polyP, while the accumulation of low-molecular polyP was not affected. The levels of polyP synthesis in the mutant strain with a deletion in the vma2 gene encoding a V-ATPase subunit were significantly lower than in the parent strain in the media with glucose and with ethanol. The synthesis of the longest chain polyP was not observed in the mutant cells. The synthesis of only the low-polymer acid-soluble polyP fraction occurred in the cells of the mutant strain. However, the level of polyP1 was nearly tenfold lower than compared to the cells of the parent strain. Both bafilomycin A1 and the mutation in vacuolar ATPase subunit vma2 lead to a considerable decrease of cellular polyP accumulation. Thus, the defects in ΔμH+ formation on the vacuolar membrane resulted in the decrease of polyP biosynthesis in S. cerevisiae.  相似文献   

20.
From soil to gut: Bacillus cereus and its food poisoning toxins   总被引:2,自引:0,他引:2  
Bacillus cereus is widespread in nature and frequently isolated from soil and growing plants, but it is also well adapted for growth in the intestinal tract of insects and mammals. From these habitats it is easily spread to foods, where it may cause an emetic or a diarrhoeal type of food-associated illness that is becoming increasingly important in the industrialized world. The emetic disease is a food intoxication caused by cereulide, a small ring-formed dodecadepsipeptide. Similar to the virulence determinants that distinguish Bacillus thuringiensis and Bacillus anthracis from B. cereus, the genetic determinants of cereulide are plasmid-borne. The diarrhoeal syndrome of B. cereus is an infection caused by vegetative cells, ingested as viable cells or spores, thought to produce protein enterotoxins in the small intestine. Three pore-forming cytotoxins have been associated with diarrhoeal disease: haemolysin BL (Hbl), nonhaemolytic enterotoxin (Nhe) and cytotoxin K. Hbl and Nhe are homologous three-component toxins, which appear to be related to the monooligomeric toxin cytolysin A found in Escherichia coli. This review will focus on the toxins associated with foodborne diseases frequently caused by B. cereus. The disease characteristics are described, and recent findings regarding the associated toxins are discussed, as well as the present knowledge on virulence regulation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号