首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Wautersia eutropha H16 (formerly Ralstonia eutropha) mobilizes intracellularly accumulated poly(3-hydroxybutyrate) (PHB) with intracellular poly(3-hydroxybutyrate) depolymerases. In this study, a novel intracellular 3-hydroxybutyrate-oligomer hydrolase (PhaZc) gene was cloned and overexpressed in Escherichia coli. Then PhaZc was purified and characterized. Immunoblot analysis with polyclonal antiserum against PhaZc revealed that most PhaZc is present in the cytosolic fraction and a small amount is present in the poly(3-hydroxybutyrate) inclusion bodies of W. eutropha. PhaZc degraded various 3-hydroxybutyrate oligomers at a high specific activity and artificial amorphous poly(3-hydroxybutyrate) at a lower specific activity. Native PHB granules and semicrystalline PHB were not degraded by PhaZc. A PhaZ deletion mutation enhanced the deposition of PHB in the logarithmic phase in nutrient-rich medium. PhaZc differs from the hydrolases of W. eutropha previously reported and is a novel type of intracellular 3-hydroxybutyrate-oligomer hydrolase, and it participates in the mobilization of PHB along with other hydrolases.  相似文献   

2.
Genes responsible for the synthesis of poly(3-hydroxybutyrate) (PHB) in Azotobacter sp. FA8 were cloned and analyzed. A PHB polymerase gene (phbC) was found downstream from genes coding for beta-ketothiolase (phbA) and acetoacetyl-coenzyme A reductase (phbB). A PHB synthase mutant was obtained by gene inactivation and used for genetic studies. The phbC gene from this strain was introduced into Ralstonia eutropha PHB-4 (phbC-negative mutant), and the recombinant accumulated PHB when either glucose or octanoate was used as a source of carbon, indicating that this PHB synthase cannot incorporate medium-chain-length hydroxyalkanoates into PHB.  相似文献   

3.
A novel intracellular poly(3-hydroxybutyrate) (PHB) depolymerase (PhaZd) of Wautersia eutropha (formerly Ralstonia eutropha) H16 which shows similarity with the catalytic domain of the extracellular PHB depolymerase in Ralstonia pickettii T1 was identified. The positions of the catalytic triad (Ser190-Asp266-His330) and oxyanion hole (His108) in the amino acid sequence of PhaZd deduced from the nucleotide sequence roughly accorded with those of the extracellular PHB depolymerase of R. pickettii T1, but a signal peptide, a linker domain, and a substrate binding domain were missing. The PhaZd gene was cloned and the gene product was purified from Escherichia coli. The specific activity of PhaZd toward artificial amorphous PHB granules was significantly greater than that of other known intracellular PHB depolymerase or 3-hydroxybutyrate (3HB) oligomer hydrolases of W. eutropha H16. The enzyme degraded artificial amorphous PHB granules and mainly released various 3-hydroxybutyrate oligomers. PhaZd distributed nearly equally between PHB inclusion bodies and the cytosolic fraction. The amount of PHB was greater in phaZd deletion mutant cells than the wild-type cells under various culture conditions. These results indicate that PhaZd is a novel intracellular PHB depolymerase which participates in the mobilization of PHB in W. eutropha H16 along with other PHB depolymerases.  相似文献   

4.
An intracellular poly[D(-)-3-hydroxybutyrate] (PHB) depolymerase gene (phaZ) has been cloned from Ralstonia eutropha H16 by the shotgun method, sequenced, and characterized. Nucleotide sequence analysis of a 2.3-kbp DNA fragment revealed an open reading frame of 1,260 bp, encoding a protein of 419 amino acids with a predicted molecular mass of 47,316 Da. The crude extract of Escherichia coli containing the PHB depolymerase gene digested artificial amorphous PHB granules and released mainly oligomeric D(-)-3-hydroxybutyrate, with some monomer. The gene product did not hydrolyze crystalline PHB or freeze-dried artificial amorphous PHB granules. The deduced amino acid sequence lacked sequence corresponding to a classical lipase box, Gly-X-Ser-X-Gly. The gene product was expressed in R. eutropha cells concomitant with the synthesis of PHB and localized in PHB granules. Although a mutant of R. eutropha whose phaZ gene was disrupted showed a higher PHB content compared to the wild type in a nutrient-rich medium, it accumulated PHB as much as the wild type did in a nitrogen-free, carbon-rich medium. These results indicate that the cloned phaZ gene encodes an intracellular PHB depolymerase in R. eutropha.  相似文献   

5.
An intracellular 3-hydroxybutyrate (3HB)-oligomer hydrolase (PhaZ2(Reu)) of Ralstonia eutropha was purified from Escherichia coli harboring a plasmid containing phaZ2(Reu). The purified enzyme hydrolyzed linear and cyclic 3HB-oligomers. Although it did not degrade crystalline poly(3-hydroxybutyrate) (PHB), the purified enzyme degraded artificial amorphous PHB at a rate similar to that of the previously identified intracellular PHB (iPHB) depolymerase (PhaZ1(Reu)). The enzyme appeared to be an endo-type hydrolase, since it actively hydrolyzed cyclic 3HB-oligomers. However, it degraded various linear 3HB-oligomers and amorphous PHB in the fashion of an exo-type hydrolase, releasing one monomer unit at a time. PhaZ2 was found to bind to PHB inclusion bodies and as a soluble enzyme to cell-free supernatant fractions in R. eutropha; in contrast, PhaZ1 bound exclusively to the inclusion bodies. When R. eutropha H16 was cultivated in a nutrient-rich medium, the transient deposition of PHB was observed: the content of PHB was maximized in the log growth phase (12 h, ca. 14% PHB of dry cell weight) and decreased to a very low level in the stationary phase (ca. 1% of dry cell weight). In each phaZ1-null mutant and phaZ2-null mutant, the PHB content in the cell increased to ca. 5% in the stationary phase. A double mutant lacking both phaZ1 and phaZ2 showed increased PHB content in the log phase (ca. 20%) and also an elevated PHB level (ca. 8%) in the stationary phase. These results indicate that PhaZ2 is a novel iPHB depolymerase, which participates in the mobilization of PHB in R. eutropha along with PhaZ1.  相似文献   

6.
Mobilization of poly(3-hydroxybutyrate) in Ralstonia eutropha   总被引:1,自引:0,他引:1       下载免费PDF全文
Ralstonia eutropha H16 degraded (mobilized) previously accumulated poly(3-hydroxybutyrate) (PHB) in the absence of an exogenous carbon source and used the degradation products for growth and survival. Isolated native PHB granules of mobilized R. eutropha cells released 3-hydroxybutyrate (3HB) at a threefold higher rate than did control granules of nonmobilized bacteria. No 3HB was released by native PHB granules of recombinant Escherichia coli expressing the PHB biosynthetic genes. Native PHB granules isolated from chromosomal knockout mutants of an intracellular PHB (i-PHB) depolymerase gene of R. eutropha H16 and HF210 showed a reduced but not completely eliminated activity of 3HB release and indicated the presence of i-PHB depolymerase isoenzymes.  相似文献   

7.
In order to study the physiological role of acetate metabolism in Escherichia coli, the growth characteristics of an E. coli W3100 pta mutant defective in phosphotransacetylase, the first enzyme of the acetate pathway, were investigated. The pta mutant grown on glucose minimal medium excreted unusual by-products such as pyruvate, D-lactate, and L-glutamate instead of acetate. In an analysis of the sequential consumption of amino acids by the pta mutant growing in tryptone broth (TB), a brief lag between the consumption of amino acids normally consumed was observed, but no such lag occurred for the wild-type strain. The pta mutant was found to grow slowly on glucose, TB, or pyruvate, but it grew normally on glycerol or succinate. The defective growth and starvation survival of the pta mutant were restored by the introduction of poly-beta-hydroxybutyrate (PHB) synthesis genes (phbCAB) from Alcaligenes eutrophus, indicating that the growth defect of the pta mutant was due to a perturbation of acetyl coenzyme A (CoA) flux. By the stoichiometric analysis of the metabolic fluxes of the central metabolism, it was found that the amount of pyruvate generated from glucose transport by the phosphoenolpyruvate-dependent phosphotransferase system (PTS) exceeded the required amount of precursor metabolites downstream of pyruvate for biomass synthesis. These results suggest that E. coli excretes acetate due to the pyruvate flux from PTS and that any method which alleviates the oversupply of acetyl CoA would restore normal growth to the pta mutant.  相似文献   

8.
The physiological, biochemical, genetic, and cultural characteristics of the glucose-utilizing mutant strain Ralstonia eutropha B8562 were investigated in comparison with the parent strain R. eutropha B5786. The morphological, cultural, and biochemical characteristics of strain R. eutropha B8562 were similar to those of strain R. eutropha B5786. Genetic analysis revealed differences between the 16S rRNA gene sequences of these strains. The growth characteristics of the mutant using glucose as the sole carbon and energy source were comparable with those of the parent strain grown on fructose. Strain B8562 was characterized by high yields of polyhydroxyalkanoate (PHA) from different carbon sources (CO2, fructose, and glucose). In batch culture with glucose under nitrogen limitation, PHA accumulation reached 90% of dry weight. In PHA, beta-hydroxybutyrate was predominant (over 99 mol %); beta-hydroxyvalerate (0.25-0.72 mol %) and beta-hydroxyhexanoate (0.008-1.5 mol %) were present as minor components. The strain has prospects as a PHA producer on glucose-containing media.  相似文献   

9.
The early stages of poly(3-hydroxybutyrate) (PHB) accumulation were analyzed in vivo by fluorescence microscopy in Rhodospirillum rubrum, Ralstonia eutropha, and in recombinant Escherichia coli harboring the PHB biosynthesis genes phaCAB of R. eutropha. PHB granules were stained with Nile red and by expression of a phasin-enhanced yellow fluorescent protein fusion protein. Distribution of PHB granules at the early stages of PHB accumulation frequently occurred near the cell poles and near the cell wall in all three strains investigated. This is the first evidence obtained from living cells that PHB synthesis initiates not randomly but at discrete regions in bacteria.  相似文献   

10.
Li L  Wada M  Yokota A 《Proteomics》2007,7(18):3348-3357
F172-8, an H(+)-ATPase-defective mutant of the glutamic acid-producing bacterium Corynebacterium glutamicum ATCC 14067, exhibits enhanced rates of glucose consumption and respiration compared to the parental strain when cultured in a biotin-rich medium with glucose as the carbon source. We conducted a comparative proteomic analysis to clarify the mechanism by which the enhanced glucose metabolism in this mutant is established using a proteome reference map for strain ATCC 14067. A comparison of the proteomes of the two strains revealed the up-regulated expression of the several important enzymes such as pyruvate kinase (Pyk), malate:quinone oxidoreductase (Mqo), and malate dehydrogenase (Mdh) in the mutant. Because Pyk activates glycolysis in response to cellular energy shortages in this bacterium, its increased expression may contribute to the enhanced glucose metabolism of the mutant. A unique reoxidation system has been suggested for NADH in C. glutamicum consisting of coupled reactions between Mqo and Mdh, together with the respiratory chain; therefore, the enhanced expression of both enzymes might contribute to the reoxidation of NADH during increased respiration. The proteomic analysis allowed the identification of unique physiological changes associated with the H(+)-ATPase defect in F172-8 and contributed to the understanding of the adaptations of C. glutamicum to energy deficiencies.  相似文献   

11.
Production of Poly(3-hydroxybutyrate) from waste potato starch   总被引:1,自引:0,他引:1  
There has been a considerable interest in using low cost carbon substrates for the production of Poly(3-hydroxybutyrate) (PHB). We have shown that saccharified waste potato starch can be used as a viable alternative carbon source in high cell density PHB production. Using Ralstonia eutropha NCIMB 11599 with phosphate limitation, 179 g/l biomass, 94 g/l PHB, Y(biomass/starch) = 0.46 g/g, Y(PHB/starch) = 0.22 g/g, and PHB productivity = 1.47 g/(l*h) were achieved. Residual maltose accumulated in the fed-batch reactor but caused no noticeable inhibition. Performance with saccharified starch was virtually identical to that with glucose.  相似文献   

12.
Two cloned phbC genes, encoding polyhydroxybutyrate (PHB) synthase from Ralstonia eutropha and from Alcaligenes latus, were transformed into a PHB-negative mutant of R. eutropha. The expression characteristics of both genes were compared for the biosyntheses of PHB and its copolymers. Each phbC gene had different characteristics not only in the biosyntheses of PHB, poly(3-hydroxybutyrate-3-hydroxy-valerate), and poly(3-hydroxybutyrate-4-hydroxybutyrate) but also in the resulting morphology of PHB granules.  相似文献   

13.
Poly(3-hydroxybutyrate) (PHB) is synthesized from 3-hydroxybutyryl-CoA by polyhydroxyalkanoate synthase and hydrolyzed by PHB depolymerase. In this study, we focused on the reverse reaction of polyhydroxyalkanoate synthase, and propose the possibility that PHB can be degraded through a novel process, that is thiolysis of PHB with CoASH. Polyhydroxyalkanoate synthase of Ralstonia eutropha was incubated with 14C-labeled PHB and CoASH. The reaction mixture was fractionated by HPLC and then analyzed with a scintillation counter. The analysis revealed 3-hydroxybutyryl-CoA to be a product of the reaction. When NADP+ and acetoacetyl-CoA reductase were added to the reaction mixture, an increase in absorbance at 340 nm was observed. Native PHB inclusion bodies from R. eutropha also showed thiolytic activity. This is the first indication that polyhydroxyalkanoate synthase catalyzes both the synthesis and degradation of PHB, and that native PHB inclusion bodies has thiolytic activity.  相似文献   

14.
Sheu DS  Lee CY 《Journal of bacteriology》2004,186(13):4177-4184
The substrate specificity of polyhydroxyalkanoate (PHA) synthase 1 (PhaC1(Pp), class II) from Pseudomonas putida GPo1 (formerly known as Pseudomonas oleovorans GPo1) was successfully altered by localized semirandom mutagenesis. The enzyme evolution system introduces multiple point mutations, designed on the basis of the conserved regions of the PHA synthase family, by using PCR-based gene fragmentation with degenerate primers and a reassembly PCR. According to the opaqueness of the colony, indicating the accumulation of large amounts of PHA granules in the cells, 13 PHA-accumulating candidates were screened from a mutant library, with Pseudomonas putida GPp104 PHA- as the host. The in vivo substrate specificity of five candidates, L1-6, D7-47, PS-A2, PS-C2, and PS-E1, was evaluated by the heterologous expression in Ralstonia eutropha PHB(-)4 supplemented with octanoate. Notably, the amount of 3-hydroxybutyrate (short-chain-length [SCL] 3-hydroxyalkanoate [3-HA] unit) was drastically increased in recombinants that expressed evolved mutant enzymes L1-6, PS-A2, PS-C2, and PS-E1 (up to 60, 36, 50, and 49 mol%, respectively), relative to the amount in the wild type (12 mol%). Evolved enzyme PS-E1, in which 14 amino acids had been changed and which was heterologously expressed in R. eutropha PHB(-)4, not only exhibited broad substrate specificity (49 mol% SCL 3-HA and 51 mol% medium-chain-length [MCL] 3-HA) but also conferred the highest PHA production (45% dry weight) among the candidates. The 3-HA and MCL 3-HA units of the PHA produced by R. eutropha PHB(-)4/pPS-E1 were randomly copolymerized in a single polymer chain, as analytically confirmed by acetone fractionation and the 13C nuclear magnetic resonance spectrum.  相似文献   

15.
Phasins play an important role in the formation of poly(3-hydroxybutyrate) [PHB] granules and affect their size and number in the cells. Recent studies on the PHB granule proteome and analysis of the complete genomic DNA sequence of Ralstonia eutropha H16 have identified three homologues of the phasin protein PhaP1. In this study, mutants of R. eutropha deficient in the expression of the phasin genes phaP1, phaP2, phaP3, phaP4, phaP12, phaP123, and phaP1234 were examined by gas chromatography. In addition, the nanostructures of the PHB granules of the wild-type and of the mutants were imaged by atomic force microscopy (AFM), and the molecular masses of the accumulated PHB were analyzed by gel permeation chromatography. For this, cells were cultivated under conditions permissive for accumulation of PHB and were then cultivated under conditions permissive for degradation of PHB. Mutants deficient in the expression of phaP2, phaP3, or phaP4 genes mobilized the stored PHB only slowly like the wild-type, whereas degradation occurred much earlier and faster in the phaP1 single mutant as well as in all multiple mutants defective in the phaP1 gene plus one or more other phasin genes. This indicated that the presence of the major phasin PhaP1 on the granule surface is important for PHB degradation and that this phasin is therefore of particular relevance for PHB accumulation. It was also shown that the molecular weights of the accumulated PHB were identical in all examined strains; phasins have therefore no influence on the molecular weight of PHB. The AFM images obtained in this study showed that the PHB granules of R. eutropha H16 form a single interconnected system inside the wild-type cells.  相似文献   

16.
17.
A previous study reported that the Tn5-induced poly(3-hydroxybutyric acid) (PHB)-leaky mutant Ralstonia eutropha H1482 showed a reduced PHB synthesis rate and significantly lower dihydrolipoamide dehydrogenase (DHLDH) activity than the wild-type R. eutropha H16 but similar growth behavior. Insertion of Tn5 was localized in the pdhL gene encoding the DHLDH (E3 component) of the pyruvate dehydrogenase complex (PDHC). Taking advantage of the available genome sequence of R. eutropha H16, observations were verified and further detailed analyses and experiments were done. In silico genome analysis revealed that R. eutropha possesses all five known types of 2-oxoacid multienzyme complexes and five DHLDH-coding genes. Of these DHLDHs, only PdhL harbors an amino-terminal lipoyl domain. Furthermore, insertion of Tn5 in pdhL of mutant H1482 disrupted the carboxy-terminal dimerization domain, thereby causing synthesis of a truncated PdhL lacking this essential region, obviously leading to an inactive enzyme. The defined ΔpdhL deletion mutant of R. eutropha exhibited the same phenotype as the Tn5 mutant H1482; this excludes polar effects as the cause of the phenotype of the Tn5 mutant H1482. However, insertion of Tn5 or deletion of pdhL decreases DHLDH activity, probably negatively affecting PDHC activity, causing the mutant phenotype. Moreover, complementation experiments showed that different plasmid-encoded E3 components of R. eutropha H16 or of other bacteria, like Burkholderia cepacia, were able to restore the wild-type phenotype at least partially. Interestingly, the E3 component of B. cepacia possesses an amino-terminal lipoyl domain, like the wild-type H16. A comparison of the proteomes of the wild-type H16 and of the mutant H1482 revealed striking differences and allowed us to reconstruct at least partially the impressive adaptations of R. eutropha H1482 to the loss of PdhL on the cellular level.  相似文献   

18.
19.
Recent data on the biosynthesis of poly(3-hydroxybutyrate) (PHB) and poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHB/V) and its regulation in bacteria are reviewed, with special emphasis on the properties and regulation of the relevant enzymes and their genes. Some conditions promoting the synthesis of PHB and PHB/V by natural, mutant, and recombinant producers are considered.  相似文献   

20.
Intracellular poly[D-(-)-3-hydroxybutyrate] (PHB) depolymerases degrade PHB granules to oligomers and monomers of 3-hydroxybutyric acid. Recently an intracellular PHB depolymerase gene (phaZ1) from Ralstonia eutropha was identified. We now report identification of candidate PHB depolymerase genes from R. eutropha, namely, phaZ2 and phaZ3, and their characterization in vivo. phaZ1 was used to identify two candidate depolymerase genes in the genome of Ralstonia metallidurans. phaZ1 and these genes were then used to design degenerate primers. These primers and PCR methods on the R. eutropha genome were used to identify two new candidate depolymerase genes in R. eutropha: phaZ2 and phaZ3. Inverse PCR methods were used to obtain the complete sequence of phaZ3, and library screening was used to obtain the complete sequence of phaZ2. PhaZ1, PhaZ2, and PhaZ3 share approximately 30% sequence identity. The function of PhaZ2 and PhaZ3 was examined by generating R. eutropha H16 deletion strains (Delta phaZ1, Delta phaZ2, Delta phaZ3, Delta phaZ1 Delta phaZ2, Delta phaZ1 Delta phaZ3, Delta phaZ2 Delta phaZ3, and Delta phaZ1 Delta phaZ2 Delta phaZ3). These strains were analyzed for PHB production and utilization under two sets of conditions. When cells were grown in rich medium, PhaZ1 was sufficient to account for intracellular PHB degradation. When cells that had accumulated approximately 80% (cell dry weight) PHB were subjected to PHB utilization conditions, PhaZ1 and PhaZ2 were sufficient to account for PHB degradation. PhaZ2 is thus suggested to be an intracellular depolymerase. The role of PhaZ3 remains to be established.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号