首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Formins are key regulators of actin nucleation and elongation. Diaphanous-related formins, the best-known subclass, are activated by Rho and play essential roles in cytokinesis. In cultured cells, Diaphanous-related formins also regulate cell adhesion, polarity and microtubules, suggesting that they may be key regulators of cell shape change and migration during development. However, their essential roles in cytokinesis hamper our ability to test this hypothesis. We used loss- and gain-of-function approaches to examine the role of Diaphanous in Drosophila morphogenesis. We found that Diaphanous has a dynamic expression pattern consistent with a role in regulating cell shape change. We used constitutively active Diaphanous to examine its roles in morphogenesis and its mechanisms of action. This revealed an unexpected role in regulating myosin levels and activity at adherens junctions during cell shape change, suggesting that Diaphanous helps coordinate adhesion and contractility of the underlying actomyosin ring. We tested this hypothesis by reducing Diaphanous function, revealing striking roles in stabilizing adherens junctions and inhibiting cell protrusiveness. These effects also are mediated through coordinated effects on myosin activity and adhesion, suggesting a common mechanism for Diaphanous action during morphogenesis.  相似文献   

2.
Endothelial cells undergo branching morphogenesis to form capillary tubes. We have utilized an in vitro Matrigel overlay assay to analyze the role of the cytoskeleton and Rho GTPases during this process. The addition of matrix first induces changes in cell morphology characterized by the formation of dynamic cellular protrusions and the assembly of discrete aggregates or cords of aligned cells resembling primitive capillary-like structures, but without a recognizable lumen. This is followed by cell migration leading to the formation of a complex interconnecting network of capillary tubes with readily identifiable lumens. Inhibition of actin polymerization or actin-myosin contraction inhibits cell migration but has no effect on the initial changes in endothelial cell morphology. However, inhibition of microtubule dynamics prevents both the initial cell shape changes as well as cell migration. We find that the small GTPase Rac is essential for the matrix-induced changes in endothelial cell morphology, whereas p21-activated kinase, an effector of Rac, is required for cell motility. We conclude that Rac integrates signaling through both the actin and microtubule cytoskeletons to promote capillary tube assembly.  相似文献   

3.
Sprouting angiogenesis is a multistep process that involves endothelial cell activation, basement membrane degradation, proliferation, lumen formation, and stabilization. In this study, we identified annexin 2 as a regulator of endothelial morphogenesis using a three-dimensional in vitro model where sprouting angiogenesis was driven by sphingosine 1-phosphate and angiogenic growth factors. We observed that sphingosine 1-phosphate triggered annexin 2 translocation from the cytosol to the plasma membrane and its association with vascular endothelial (VE)-cadherin. In addition, annexin 2 depletion attenuated Akt activation, which was associated with increased phosphorylation of VE-cadherin and endothelial barrier leakage. Disrupting homotypic VE-cadherin interactions with EGTA, antibodies to the extracellular domain of VE-cadherin, or gene silencing all resulted in decreased Akt (but not Erk1/2) activation. Furthermore, expression of constitutively active Akt restored reduced endothelial sprouting responses observed with annexin 2 and VE-cadherin knockdown. Collectively, we report that annexin 2 regulates endothelial morphogenesis through an adherens junction-mediated pathway upstream of Akt.  相似文献   

4.
The cytoskeletal protein Shroom3 is a potent inducer of epithelial cell shape change and is required for lens and neural plate morphogenesis. Analysis of gut morphogenesis in Shroom3 deficient mouse embryos revealed that the direction of gut rotation is also disrupted. It was recently established that Pitx2-dependent, asymmetrical cellular behaviors in the dorsal mesentery (DM) of the early mid-gut, a structure connecting the gut-tube to the rest of the embryo, contribute to the direction of gut rotation in chicken embryos by influencing the direction of the dorsal mesenteric tilt. Asymmetric cell shapes in the DM epithelium are hypothesized to contribute to the tilt, however, it is unclear what lies downstream of Pitx2 to alter epithelial cell shape. The cells of the left DM epithelium in either Pitx2 or Shroom3 deficient embryos are shorter and wider than those in control embryos and resemble the shape of those on the right, demonstrating that like Pitx2, Shroom3 is required for cell shape asymmetry and the leftward DM tilt. Because N-cadherin expression is specific to the left side and is Pitx2 dependent, we determined whether Shroom3 and N-cadherin function together to regulate cell shape in the left DM epithelium. Analysis of mouse embryos lacking one allele of both Shroom3 and N-cadherin revealed that they possess shorter and wider left epithelial DM cells when compared with Shroom3 or N-cadherin heterozygous embryos. This indicates a genetic interaction. Together these data provide evidence that Shroom3 and N-cadherin function cooperatively downstream of Pitx2 to directly regulate cell shape changes necessary for early gut tube morphogenesis.  相似文献   

5.
Endothelial cells lining the vasculature have close cell-cell associations that maintain separation of the blood fluid compartment from surrounding tissues. Permeability is regulated by a variety of growth factors and cytokines and plays a role in numerous physiological and pathological processes. We examined a potential role for the p21-activated kinase (PAK) in the regulation of vascular permeability. In both bovine aortic and human umbilical vein endothelial cells, PAK is phosphorylated on Ser141 during the activation downstream of Rac, and the phosphorylated subfraction translocates to endothelial cell-cell junctions in response to serum, VEGF, bFGF, TNFalpha, histamine, and thrombin. Blocking PAK activation or translocation prevents the increase in permeability across the cell monolayer in response to these factors. Permeability correlates with myosin phosphorylation, formation of actin stress fibers, and the appearance of paracellular pores. Inhibition of myosin phosphorylation blocks the increase in permeability. These data suggest that PAK is a central regulator of endothelial permeability induced by multiple growth factors and cytokines via an effect on cell contractility. PAK may therefore be a suitable drug target for the treatment of pathological conditions where vascular leak is a contributing factor, such as ischemia and inflammation.  相似文献   

6.
Actomyosin contraction generates mechanical forces that influence cell and tissue structure. During convergent extension in Drosophila melanogaster, the spatially regulated activity of the myosin activator Rho-kinase promotes actomyosin contraction at specific planar cell boundaries to produce polarized cell rearrangement. The mechanisms that direct localized Rho-kinase activity are not well understood. We show that Rho GTPase recruits Rho-kinase to adherens junctions and is required for Rho-kinase planar polarity. Shroom, an asymmetrically localized actin- and Rho-kinase–binding protein, amplifies Rho-kinase and myosin II planar polarity and junctional localization downstream of Rho signaling. In Shroom mutants, Rho-kinase and myosin II achieve reduced levels of planar polarity, resulting in decreased junctional tension, a disruption of multicellular rosette formation, and defective convergent extension. These results indicate that Rho GTPase activity is required to establish a planar polarized actomyosin network, and the Shroom actin-binding protein enhances myosin contractility locally to generate robust mechanical forces during axis elongation.  相似文献   

7.
In humans and mice, loss of HOXA13 function causes defects in the growth and patterning of the digits and interdigital tissues. Analysis of Hoxa13 expression reveals a pattern of localization overlapping with sites of reduced Bmp2 and Bmp7 expression in Hoxa13 mutant limbs. Biochemical analyses identified a novel series of Bmp2 and Bmp7 enhancer regions that directly interact with the HOXA13 DNA-binding domain and activate gene expression in the presence of HOXA13. Immunoprecipitation of HOXA13-Bmp2 and HOXA13-Bmp7 enhancer complexes from the developing autopod confirm that endogenous HOXA13 associates with these regions. Exogenous application of BMP2 or BMP7 partially rescues the Hoxa13 mutant limb phenotype, suggesting that decreased BMP signaling contributes to the malformations present in these tissues. Together, these results provide conclusive evidence that HOXA13 regulates Bmp2 and Bmp7 expression, providing a mechanistic link between HOXA13, its target genes and the specific developmental processes affected by loss of HOXA13 function.  相似文献   

8.
Shroom family proteins have been implicated in the control of the actin cytoskeleton, but so far only a single family member has been studied in the context of developing embryos. Here, we show that the Shroom-family protein, Shroom2 (previously known as APXL) is both necessary and sufficient to govern the localization of pigment granules at the apical surface of epithelial cells. In Xenopus embryos that lack Shroom2 function, we observed defects in pigmentation of the eye that stem from failure of melanosomes to mature and to associate with the apical cell surface. Ectopic expression of Shroom2 in na?ve epithelial cells facilitates apical pigment accumulation, and this activity specifically requires the Rab27a GTPase. Most interestingly, we find that Shroom2, like Shroom3 (previously called Shroom), is sufficient to induce a dramatic apical accumulation of the microtubule-nucleating protein gamma-tubulin at the apical surfaces of na?ve epithelial cells. Together, our data identify Shroom2 as a central regulator of RPE pigmentation, and suggest that, despite their diverse biological roles, Shroom family proteins share a common activity. Finally, because the locus encoding human SHROOM2 lies within the critical region for two distinct forms of ocular albinism, it is possible that SHROOM2 mutations may be a contributing factor in these human visual system disorders.  相似文献   

9.
During angiogenesis, cytoskeletal dynamics that mediate endothelial cell branching morphogenesis during vascular guidance are thought to be regulated by physical attributes of the extracellular matrix (ECM) in a process termed mechanosensing. Here, we tested the involvement of microtubules in linking mechanosensing to endothelial cell branching morphogenesis. We used a recently developed microtubule plus end-tracking program to show that specific parameters of microtubule assembly dynamics, growth speed and growth persistence, are globally and regionally modified by, and contribute to, ECM mechanosensing. We demonstrated that engagement of compliant two-dimensional or three-dimensional ECMs induces local differences in microtubule growth speed that require myosin II contractility. Finally, we found that microtubule growth persistence is modulated by myosin II-mediated compliance mechanosensing when cells are cultured on two-dimensional ECMs, whereas three-dimensional ECM engagement makes microtubule growth persistence insensitive to changes in ECM compliance. Thus, compliance and dimensionality ECM mechanosensing pathways independently regulate specific and distinct microtubule dynamics parameters in endothelial cells to guide branching morphogenesis in physically complex ECMs.  相似文献   

10.
Tubulogenic transformation of a nontubulogenic endothelial cell line NP31 by a constitutively activated form of the Flt-1 kinase (NP31/kinase) was accompanied by an increased expression of Nox1 by sixfold over NP31. Overexpression of Nox1 in NP31 cells (NP31/Nox1) stimulated branching morphogenesis in Matrigel but surprisingly cords lacked a lumen. The branching morphogenesis by NP31/kinase and NP31/Nox1 cells was blocked either by N-acetyl-l-cysteine (NAC) or Tiron. Vascular endothelial growth factor (VEGF)-dependent sinusoidal endothelial cells (SEC) in primary culture showed fivefold increase in Nox1 expression 4 days after VEGF stimulation. Interestingly, VEGF-resistant apoptosis in SEC at day 7 was inhibited by NAC or by anti-Nox1 siRNA. These results suggest that Nox1 regulates apoptosis in SEC and can potentially stimulate branching morphogenesis in SEC-derived NP 31 cells.  相似文献   

11.
12.
High levels of specific prolactin-releasing peptide (PrRP) binding sites have been found in the myocardium; however, the functional importance of PrRP in the regulation of cardiac function is unknown. In isolated perfused rat hearts, infusion of PrRP (1–100 nM) induced a dose-dependent positive inotropic effect. Inhibition of cAMP catabolism by IBMX, a phosphodiesterase inhibitor, failed to augment the contractile effect of PrRP. The protein phosphatase (PP1/PP2A) inhibitor calyculin A increased the inotropic response to PrRP, whereas the PP2A inhibitor okadaic acid had no effect. Ro32-0432, a protein kinase Cα (PKCα) inhibitor, significantly enhanced the inotropic effect of PrRP as well as the phosphorylation of phospholamban at Ser-16. In conclusion, the present data define a hitherto unrecognized role for PrRP in the regulation of cardiovascular system by showing that PrRP exerts a direct positive inotropic effect. Moreover, our results suggest that the cAMP-independent inotropic response to PrRP is suppressed by concurrent activation of PKCα and PP1.  相似文献   

13.
Cadherin regulates dendritic spine morphogenesis   总被引:16,自引:0,他引:16  
Synaptic remodeling has been postulated as a mechanism underlying synaptic plasticity, and cadherin adhesion molecules are thought to be a regulator of such a process. We examined the effects of cadherin blockage on synaptogenesis in cultured hippocampal neurons. This blockade resulted in alterations of dendritic spine morphology, such as filopodia-like elongation of the spine and bifurcation of its head structure, along with concomitant disruption of the distribution of postsynaptic proteins. The accumulation of synapsin at presynaptic sites and synaptic vesicle recycling were also perturbed, although these synaptic responses to the cadherin blockade became less evident upon the maturation of the synapses. These findings suggest that cadherin regulates dendritic spine morphogenesis and related synaptic functions, presumably cooperating with cadherin-independent adhesive mechanisms to maintain spine-axon contacts.  相似文献   

14.
Hildebrand JD  Soriano P 《Cell》1999,99(5):485-497
Using gene trap mutagenesis, we have identified a mutation in mice that causes exencephaly, acrania, facial clefting, and spina bifida, all of which can be attributed to failed neural tube closure. This mutation is designated shroom (shrm) because the neural folds "mushroom" outward and do not converge at the dorsal midline. shrm encodes a PDZ domain protein that is involved at several levels in regulating aspects of cytoarchitecture. First, endogenous Shrm localizes to adherens junctions and the cytoskeleton. Second, ectopically expressed Shrm alters the subcellular distribution of F-actin. Third, Shrm directly binds F-actin. Finally, cytoskeletal polarity within the neuroepithelium is perturbed in mutant embryos. In concert, these observations suggest that Shrm is a critical determinant of the cellular architecture required for proper neurulation.  相似文献   

15.
Bone morphogenetic protein-2 (BMP-2) regulates development of heart during vertebrate embryogenesis. In vitro BMP-2 induces differentiation of precardiac cells into mature cardiomyocytes by inducing the expression of cardiac-specific genes. However, the role of BMP-2 and its signaling in other cardiac functions have not been studied. We examined the action of phosphatidylinositol (PI) 3 kinase in isolated adult rat cardiomyocytes. Incubation of rat ventricular cardiomyocytes with BMP-2 increased the PI 3 kinase activity. Ly294002, a pharmacological inhibitor of PI 3 kinase, blocked BMP-2-induced PI 3 kinase activity completely. To investigate the contractility of isolated cardiomyocytes, fractional shortening was examined. BMP-2 significantly increased the percent fractional shortening of the cardiomyocytes. Inhibition of PI 3 kinase activity completely abolished this action of BMP-2. These data indicate that PI 3 kinase regulates BMP-2-induced myocyte contractility. To further confirm this observation, we used adenovirus-mediated gene transfer to express a constitutively active myristoylated catalytic subunit of PI 3 kinase in rat cardiomyocytes. Infection of cardiomyocytes with the adenovirus vector increased the expression of constitutively active PI 3 kinase within 24 h. Expression of constitutively active PI 3 kinase significantly increased cardiomyocyte contractility. Together, these data show for the first time that the growth and differentiation factor, BMP-2, stimulates cardiomyocyte contractility. Also we provide the first evidence that BMP-2-induced PI 3 kinase activity regulates this cardiomyocyte function.  相似文献   

16.
Remodeling of epithelial sheets plays important roles in animal morphogenesis. Shroom3 is known to regulate the apical constriction of epithelial cells. Here, we show that Shroom3 binds ROCKs and recruits them to the epithelial apical junctions. We identified the Shroom3-binding site (RII-C1) on ROCKs, and found that RII-C1 could antagonize the Shroom3-ROCK interaction, interfering with the action of Shroom3 on cell morphology. In the invaginating neural plate/tube, Shroom3 colocalized with ROCKs at the apical junctions; Shroom3 depletion or RII-C1 expression in the tube removed these apically localized ROCKs, and concomitantly blocked neural tube closure. Closing neural plate exhibited peculiar cell assemblies, including rosette formation, as well as a planar-polarized distribution of phosphorylated myosin regulatory light chain, but these were abolished by ROCK inhibition or RII-C1 expression. These results demonstrate that the Shroom3-ROCK interaction is crucial for the regulation of epithelial and neuroepithelial cell arrangement and remodeling.  相似文献   

17.
Long non‐coding RNAs (lncRNAs) are emerging as key regulators of endothelial cell function. Here, we investigated the role of a novel vascular endothelial‐associated lncRNA (VEAL2) in regulating endothelial permeability. Precise editing of veal2 loci in zebrafish (veal2 gib005Δ8/+) induced cranial hemorrhage. In vitro and in vivo studies revealed that veal2 competes with diacylglycerol for interaction with protein kinase C beta‐b (Prkcbb) and regulates its kinase activity. Using PRKCB2 as bait, we identified functional ortholog of veal2 in humans from HUVECs and named it as VEAL2. Overexpression and knockdown of VEAL2 affected tubulogenesis and permeability in HUVECs. VEAL2 was differentially expressed in choroid tissue in eye and blood from patients with diabetic retinopathy, a disease where PRKCB2 is known to be hyperactivated. Further, VEAL2 could rescue the effects of PRKCB2‐mediated turnover of endothelial junctional proteins thus reducing hyperpermeability in hyperglycemic HUVEC model of diabetic retinopathy. Based on evidence from zebrafish and hyperglycemic HUVEC models and diabetic retinopathy patients, we report a hitherto unknown VEAL2 lncRNA‐mediated regulation of PRKCB2, for modulating junctional dynamics and maintenance of endothelial permeability.  相似文献   

18.
Autosomal dominant polycystic kidney disease (ADPKD) is characterized by the formation of multiple fluid-filled cysts that expand over time and destroy the renal architecture. Loss or mutation of polycystin-1 or polycystin-2, the respective proteins encoded by the ADPKD genes PKD1 and PKD2, is associated with most cases of ADPKD. Thus, the polycystin proteins likely play a role in cell proliferation and morphogenesis. Recent studies indicate that polycystin-1 is involved in these processes, but little is known about the role played by polycystin-2. To address this question, we created a number of related cell lines variable in their expression of polycystin-2. We show that the basal and epidermal growth factor-stimulated rate of cell proliferation is higher in cells that do not express polycystin-2 versus those that do, indicating that polycystin-2 acts as a negative regulator of cell growth. In addition, cells not expressing polycystin-2 exhibit significantly more branching morphogenesis and multicellular tubule formation under basal and hepatocyte growth factor-stimulated conditions than their polycystin-2-expressing counterparts, suggesting that polycystin-2 may also play an important role in the regulation of tubulogenesis. Cells expressing a channel mutant of polycystin-2 proliferated faster than those expressing the wild-type protein, but exhibited blunted tubule formation. Thus, the channel activity of polycystin-2 may be an important component of its regulatory machinery. Finally, we show that polycystin-2 regulation of cell proliferation appears to be dependent on its ability to prevent phosphorylated extracellular-related kinase from entering the nucleus. Our results indicate that polycystin-2 is necessary for the proper growth and differentiation of kidney epithelial cells and suggest a possible mechanism for the cyst formation seen in ADPKD2.  相似文献   

19.

Background  

Pancreatic islets of Langerhans originate from endocrine progenitors within the pancreatic ductal epithelium. Concomitant with differentiation of these progenitors into hormone-producing cells such cells delaminate, aggregate and migrate away from the ductal epithelium. The cellular and molecular mechanisms regulating islet cell delamination and cell migration are poorly understood. Extensive biochemical and cell biological studies using cultured cells demonstrated that Rac1, a member of the Rho family of small GTPases, acts as a key regulator of cell migration.  相似文献   

20.
Talin is a cytoskeletal protein that binds to integrin β cytoplasmic tails and regulates integrin activation. Talin1 ablation in mice disrupts gastrulation and causes embryonic lethality. However, the role of talin in mammalian epithelial morphogenesis is poorly understood. Here we demonstrate that embryoid bodies (EBs) differentiated from talin1-null embryonic stem cells are defective in integrin adhesion complex assembly, epiblast elongation, and lineage differentiation. These defects are accompanied by a significant reduction in integrin β1 protein levels due to accelerated degradation through an MG-132-sensitive proteasomal pathway. Overexpression of integrin β1 or MG-132 treatment in mutant EBs largely rescues the phenotype. In addition, epiblast cells isolated from talin1-null EBs exhibit impaired cell spreading and focal adhesion formation. Transfection of the mutant cells with green fluorescent protein (GFP)-tagged wild-type but not mutant talin1 that is defective in integrin binding normalizes integrin β1 protein levels and restores focal adhesion formation. Significantly, cell adhesion and spreading are also improved by overexpression of integrin β1. All together, these results suggest that talin1 binding to integrin promotes epiblast adhesion and morphogenesis in part by preventing integrin β1 degradation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号