首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
脂质纳米粒是由固体脂肪酸或其酯类制成的一类纳米制剂,其生物相容性好、安全性好,所以在药物递送领域受到广泛关注.难溶性药物、多肽及蛋白质药物由于溶解度、跨膜能力以及稳定性等问题,导致口服生物利用度低,而利用脂质纳米粒作为其载体,口服给药后能显著改善药物的生物利用度,这使得脂质纳米粒在口服给药系统中得到了广泛的应用与研究.本文从口服脂质纳米粒的处方、制备工艺、吸收机制以及应用四个方面对其进行了详细的综述.  相似文献   

2.
Recent studies in nanotechnology resulted in the development of novel formulations with improved bioavailability. This is especially important for oral administered drugs as the most convenient formulations for administration to patients. The review considers processes occurring in the gastro-intestinal (GI) tract during oral administration of drugs. The increase of bioavailability of the drug may be achieved through designing novel formulations according to the specific drug properties. These include capsules that release pharmaceutical agents at various parts of the GI tract, floating systems that prolong the presence of the drug in stomach, maximally dispersed forms containing surface-active soluble polymers or micelles that carry poor-soluble drugs inside their non-polar core, agents that facilitate tight junction opening, such as caprate and chitosan, and lipid-based formulations. The own data show the stimulating influence of phospholipid nanoparticles on peroral absorption of the drug, indomethacin, in rats and on passage of transport marker and drugs through Caco-2 cell monolayer in vitro. The review summarizes current understanding of factors that influence the bioavailability of the oral drug formulations, currently used models for pharmacokinetic studies, and various approaches to developing novel pharmaceutical formulations that increase the bioavailability of the drugs.  相似文献   

3.
Nanoparticle drug formulations have been extensively researched and developed in the field of drug delivery as a means to efficiently deliver insoluble drugs to tumor cells. By mechanisms of the enhanced permeability and retention effect, nanoparticle drug formulations are capable of greatly enhancing the safety, pharmacokinetic profiles and bioavailability of the administered treatment. Here, the progress of various nanoparticle formulations in both research and clinical applications is detailed with a focus on the development of drug/gene delivery systems. Specifically, the unique advantages and disadvantages of polymeric nanoparticles, liposomes, solid lipid nanoparticles, nanocrystals and lipid-coated nanoparticles for targeted drug delivery will be investigated in detail.  相似文献   

4.
In this study, solid lipid nanoparticles (SLNs) were successfully prepared by an ultrasonic and high-pressure homogenization method to improve the oral bioavailability of the poorly water-soluble drug cryptotanshinone (CTS). The particle size and distribution, drug loading capacity, drug entrapment efficiency, zeta potential, and long-term physical stability of the SLNs were characterized in detail. A pharmacokinetic study was conducted in rats after oral administration of CTS in different SLNs, and it was found that the relative bioavailability of CTS in the SLNs was significantly increased compared with that of a CTS-suspension. The incorporation of CTS in SLNs also markedly changes the metabolism behavior of CTS to tanshinone IIA. These results indicate that CTS absorption is enhanced significantly by employing SLN formulations, and SLNs represent a powerful approach for improving the oral absorption of poorly soluble drugs.  相似文献   

5.
This paper highlights the importance of lipid-based colloidal carriers and their pharmaceutical implications in the delivery of peptides and proteins for oral and parenteral administration. There are several examples of biomacromolecules used nowadays in the therapeutics, which are promising candidates to be delivered by means of liposomes and lipid nanoparticles, such as solid lipid nanoparticles (SLN) and nanostructured lipid carriers (NLC). Several production procedures can be applied to achieve a high association efficiency between the bioactives and the carrier, depending on the physicochemical properties of both, as well as on the production procedure applied. Generally, this can lead to improved bioavailability, or in case of oral administration a more consistent temporal profile of absorption from the gastrointestinal tract. Advantages and drawbacks of such colloidal carriers are also pointed out. This article describes strategies used for formulation of peptides and proteins, methods used for assessment of association efficiency and practical considerations regarding the toxicological concerns.  相似文献   

6.
Stable solid lipid nanoparticles (SLNs) and nanostructured lipid carriers (NLCs) formulations to enhance the dissolution rates of poorly soluble drug spironolactone (SP) were being developed. Probe ultra-sonication method was used to prepare SLNs and NLCs. All NLCs contained stearic acid (solid lipid carrier) and oleic acid (liquid lipid content), whereas, SLNs were prepared and optimised by using the solid lipid only. The particles were characterised in terms of particle size analysis, thermal behaviour, morphology, stability and in vitro release. The zeta sizer data revealed that the increase in the concentration of oleic acid in the formulations reduced the mean particle size and the zeta potential. The increase in concentration of oleic acid from 0 to 30% (w/w) resulted in a higher entrapment efficiency. All nanoparticles were almost spherically shaped with an average particle size of about ~170 nm. The DSC traces revealed that the presence of oleic acid in the NLC formulations resulted in a shift in the melting endotherms to a higher temperature. This could be attributed to a good long-term stability of the nanoparticles. The stability results showed that the particle size remained smaller in NLC compared to that of SLN formulations after 6 months at various temperatures. The dissolution study showed about a 5.1- to 7.2-fold increase in the release of the drug in 2 h compared to the raw drug. Comparing all nanoparticle formulations indicated that the NLC composition with a ratio of 70:30 (solid:liquid lipid) is the most suitable formulation with desired drug dissolution rates, entrapment efficiency and physical stability.  相似文献   

7.
Biotechnology allows tailor-made production of biopharmaceuticals and biotechnological drugs; however, many of them require special formulation technologies to overcome drug-associated problems. Such potential challenges to solve are: poor solubility, limited chemical stability in vitro and in vivo after administration (i.e. short half-life), poor bioavailability and potentially strong side effects requiring drug enrichment at the site of action (targeting). This review describes the use of nanoparticulate carriers, developed in our research group, as one solution to overcome such delivery problems, i.e. drug nanocrystals, solid lipid nanoparticles (SLN), nanostructured lipid carriers (NLC) and lipid-drug conjugate (LDC) nanoparticles, examples of drugs are given. As a recently developed targeting principle, the concept of differential protein adsorption is described (PathFinder Technology) using as example delivery to the brain.  相似文献   

8.
The development of drug dispersions using solid lipids is a novel formulation strategy that can help address the challenges of poor drug solubility and systemic exposure after oral administration. The highly lipophilic and poorly water-soluble drug torcetrapib could be effectively formulated into solid lipid microparticles (SLMs) using an anti-solvent precipitation strategy. Acoustic milling was subsequently used to obtain solid lipid nanoparticles (SLNs). Torcetrapib was successfully incorporated into the lipid matrix in an amorphous state. Spherical SLMs with mean particle size of approximately 15–18 μm were produced with high drug encapsulation efficiency (>96%) while SLNs were produced with a mean particle size of 155 nm and excellent colloidal stability. The in vitro drug release and the in vivo absorption of the solid lipid micro- and nanoparticles after oral dosing in rats were evaluated against conventional crystalline drug powders as well as a spray dried amorphous polymer dispersion formulation. Interestingly, the in vitro drug release rate from the lipid particles could be tuned for immediate or extended release by controlling either the particle size or the precipitation temperature used when forming the drug-lipid particles. This change in the rate of drug release was manifested in vivo with changes in Tmax as well. In addition, in vivo pharmacokinetic studies revealed a significant increase (∼6 to 11-fold) in oral bioavailability in rats dosed with the SLMs and SLNs compared to conventional drug powders. Importantly, this formulation approach can be performed rapidly on a small scale, making it ideal as a formulation technology for use early in the drug discovery timeframe.Electronic supplementary materialThe online version of this article (doi:10.1208/s12249-015-0299-8) contains supplementary material, which is available to authorized users.KEY WORDS: anti-solvent precipitation, controlled release, formulation, nanoparticles, solid lipid  相似文献   

9.
Solid lipid nanoparticle (SLN), nanostructured lipid carriers (NLC) and hybrid nanoparticles, have gained increasing interest as drug delivery systems because of their potential to load and release drugs from the Biopharmaceutical classification system (BCS) of class II (low solubility and high permeability) and of class IV (low solubility and low permeability). Lipid properties (e.g. high solubilizing potential, biocompatibility, biotolerability, biodegradability and distinct route of absorption) contribute for the improvement of the bioavailability of these drugs for a set of administration routes. Their interest continues to grow, as translated by the number of patents being field worldwide. This paper discusses the recent advances on the use of SLN, NLC and lipid-polymer hybrid nanoparticles for the loading of lipophilic, poorly water-soluble and poorly permeable drugs, being developed for oral, topical, parenteral and ocular administration, also discussing the industrial applications of these systems. A review of the patents filled between 2014 and 2017, concerning the original inventions of lipid nanocarriers, is also provided.  相似文献   

10.
Exogenously supplied alpha-lipoic acid (LA) has proven to be effective as an antioxidant. In an effort to develop a water-soluble formulation for topical administration, LA was formulated in the form of solid lipid nanoparticles (SLN), nanostructure lipid carriers (NLC), and nanoemulsion (NE) and characterized in terms of physical and biological properties. Mean particle size of 113, 110, and 121 nm were obtained for NE, NLC, and SLN, respectively, with narrow size distribution. Zeta potential was approximately in the range of −25 to −40 mV. Disc and spherical structures of nanoparticles were observed by cryo-scanning electron microscopy. Entrapment efficiency of LA in three formulations was found to be more than 70%. After 120 days of storage at 25°C, physical stability of all formulations remained unchanged whereas the entrapment efficiency of SLN and NLC could be maintained, suggesting relative long-term stability. Prolonged release of LA formulation following the Higuchi model was found where a faster release was observed from NE compared with that of SLN and NLC. More than 80% of cell survivals were found up to 1 μM of LA concentrations. Antioxidant activity analysis demonstrated that all LA-loaded formulations expressed antioxidant activity at a similar magnitude as pure LA. These results suggest that chosen compositions of lipid nanoparticles play an important role on drug loading, stability, and biological activity of nanoparticles. Both SLN and NLC demonstrated their potential as alternative carriers for aqueous topical administration of LA.  相似文献   

11.
Drug based nanoparticle (NP) formulations have gained considerable attention over the past decade for their use in various drug formulations. NPs have been shown to increase bioavailability, decrease side effects of highly toxic drugs, and prolong drug release. Nonsteroidal anti-inflammatory drugs such as diclofenac block cyclooxygenase expression and reduce prostaglandin synthesis, which can lead to several side effects such as gastrointestinal bleeding and renal insufficiency. The aim of this study was to formulate and characterize diclofenac entrapped poly(lactide-co-glycolide) (PLGA) based nanoparticles. Nanoparticles were formulated using an emulsion-diffusion-evaporation technique with varying concentrations of poly vinyl alcohol (PVA) (0.1, 0.25, 0.5, or 1%) or didodecyldimethylammonium bromide (DMAB) (0.1, 0.25, 0.5, 0.75, or 1%) stabilizers centrifuged at 8,800 rpm or 12,000 rpm. The resultant nanoparticles were evaluated based on particle size, zeta potential, and entrapment efficacy. DMAB formulated NPs showed the lowest particle size (108±2.1 nm) and highest zeta potential (−27.71±0.6 mV) at 0.1 and 0.25% respectively, after centrifugation at 12,000 rpm. Results of the PVA based NP formulation showed the smallest particle size (92.4±7.6 nm) and highest zeta potential (−11.14±0.5 mV) at 0.25% and 1% w/v, respectively, after centrifugation at 12,000 rpm. Drug entrapment reached 77.3±3.5% and 80.2±1.2% efficiency with DMAB and PVA formulations, respectively. The results of our study indicate the use of DMAB for increased nanoparticle stability during formulation. Our study supports the effective utilization of PLGA based nanoparticle formulation for diclofenac.  相似文献   

12.
Food effects on oral drug bioavailability are a consequence of the complex interplay between drug, formulation and human gastrointestinal (GI) physiology. Accordingly, the prediction of the direction and the extent of food effects is often difficult. With respect to novel formulations, biorelevant in vitro methods can be extremely powerful tools to simulate the effect of food-induced changes on the physiological GI conditions on drug release and absorption. However, the selection of suitable in vitro methods should be based on a thorough understanding not only of human GI physiology but also of the drug and formulation properties. This review focuses on in vitro methods that can be applied to evaluate the effect of food intake on drug release from extended release (ER) products during preclinical formulation development. With the aid of different examples, it will be demonstrated that the combined and targeted use of various biorelevant in vitro methods can be extremely useful for understanding drug release from ER products in the fed state and to be able to forecast formulation-associated risks such as dose dumping in early stages of formulation development.  相似文献   

13.
Development of knowledge on lipids has attracted the scientific community for the effective utilization of the natural and synthetic lipids. Bioavailability of poorly water soluble drugs from gastrointestinal tract (GIT) can be enhanced by formulating the drugs in lipid based formulations. This formulation can increase the dissolution of poorly water soluble drugs, and facilitates the formation of solubilized phases from which absorption may occur. The enhanced solubility of lipophilic drugs from lipid-based systems will not necessarily arise directly from the administered lipid, but most likely from the intra luminal processing to which they are subjected prior to absorption. This review will focus on assessment of lipid-based formulations of drugs with a consideration of how gastrointestinal physiology, the choice of lipids and their formulation attribute and the mode of lipid digestion in the GIT influence the bioavailability of lipophilic drugs.  相似文献   

14.
The aim of the study was to prepare etoposide-loaded nanoparticles with glyceride lipids and then characterize and evaluate the in vitro steric stability and drug release characteristics and stability. The nanoparticles were prepared by melt emulsification and homogenization followed by spray drying of nanodispersion. Spray drying created powder nanoparticles with excellent redispersibility and a minimal increase in particle size (20–40 nm). Experimental variables, such as homogenization pressure, number of homogenization cycles, and surfactant concentration, showed a profound influence on the particle size and distribution. Spray drying of Poloxamer 407-stabilized nanodispersion lead to the formation of matrix-like structures surrounding the nanoparticles, resulting in particle growth. The in vitro steric stability test revealed that the lipid nanoparticles stabilized by sodium tauroglycocholate exhibit excellent steric stability compared with Poloxamer 407. All 3 glyceride nanoparticle formulations exhibited sustained release characteristics, and the release pattern followed the Higuchi equation. The spray-dried lipid nanoparticles stored in black polypropylene containers exhibited excellent long-term stability at 25°C and room light conditions. Such stable lipid nanoparticles with in vitro steric stability can be a beneficial delivery system for intravenous administration as long circulating carriers for controlled and targeted drug delivery. Published: September 30, 2005  相似文献   

15.
Cyclodextrins (CDs) are used in oral pharmaceutical formulations, by means of inclusion complexes formation, with the following advantages for the drugs: (1) solubility, dissolution rate, stability, and bioavailability enhancement; (2) to modify the drug release site and/or time profile; and (3) to reduce or prevent gastrointestinal side effects and unpleasant smell or taste, to prevent drug–drug or drug–additive interactions, or even to convert oil and liquid drugs into microcrystalline or amorphous powders. A more recent trend focuses on the use of CDs as nanocarriers, a strategy that aims to design versatile delivery systems that can encapsulate drugs with better physicochemical properties for oral delivery. Thus, the aim of this work was to review the applications of the CDs and their hydrophilic derivatives on the solubility enhancement of poorly water-soluble drugs in order to increase their dissolution rate and get immediate release, as well as their ability to control (to prolong or to delay) the release of drugs from solid dosage forms, either as complexes with the hydrophilic (e.g., as osmotic pumps) and/or hydrophobic CDs. New controlled delivery systems based on nanotechnology carriers (nanoparticles and conjugates) have also been reviewed.  相似文献   

16.
The oral route remains the preferred route of administration to ensure patient satisfaction and compliance. However, new chemical entities may exhibit low bioavailability after oral administration because of poor stability within the gastrointestinal tract, poor solubility in gastrointestinal fluids, low mucosal permeability, and/or extensive first-pass metabolism. Consequently, these new drug substances cannot be further developed using conventional oral formulations. This issue is addressed by an innovative approach based on the entrapment of drug molecules in drug/carrier assembling systems. The carrier materials are lipids, naturally occurring polymers or synthetic polymers, which are considered as nontoxic and biocompatible materials. Drug entrapment is intended to protect drug substances against degradation by gastrointestinal fluids. Fine drug/carrier particle size ensures increased drug dissolution rates. Carriers and particle supramolecular organization can be designed to enhance drug absorption through the intestinal epithelium and lymphatic transport. Promising preclinical results have been obtained with model drugs like paclitaxel, insulin, calcitonin, or cyclosporin. Attention has focused on mucoadhesive carriers like chitosan that favor an intimate and extended contact between drugs and intestinal cells, thus enhancing absorption. Addition of ligands such as lectins improves intestinal drug absorption through specific binding of the carrier to intestinal cell carbohydrates. In conclusion, drug/carrier particulate systems are an attractive and exciting drug delivery strategy for highly potent drug substances unsuitable for oral use. Further evidence will determine whether this approach has marked therapeutic benefits over conventional drug formulations and is compatible with large-scale industrial production and stringent registration requirements. Producing highly effective particulate systems requiring low-complexity manufacturing processes is therefore an ongoing challenge.  相似文献   

17.
固体脂质纳米粒(SLN)是20世纪90年代发展起来的一种性能优异的新型纳米粒给药剂型作为一种新型载体,可有效提高包封药物的稳定性、提高病变部位靶向性、低毒性与组织亲和性,为药物的体内递送提供了一种新的方法。本文主要针对固体脂质纳米粒的制备,发展现状,目前存在的问题及解决思路等作以介绍与总结。并在此基础上,介绍了新的脂质纳米粒,纳米脂质载体(nanostructured lipid carriers,NLC)和药脂结合物纳米粒(Lipid drug conjugate nanoparticles,LDC),以及未来固体脂质纳米粒的发展方向。  相似文献   

18.
Silymarin, a potential phytochemical compound obtained from the seeds of Silybum marianum plant has been used as a hepatoprotective agent for more than a decade. So far, eight active components of silymarin flavonolignans have been identified, among which silibinin has been proven the most active. However, it had poor oral bioavailability due to extensive phase II metabolism, low permeability across intestinal epithelial cells, low aqueous solubility, and rapid excretion in bile and urine. Therefore it becomes necessary to understand all its formulation and analytical aspects from past to present, including all of its possible future prospects. In modern research scenario, nanotization strategies of drugs has served as a potential approach to enhance solubility, bioavailability and to develop a robust formulation. Several approaches have been utilized previously to enhance the solubility and bioavailability of silymarin to provide it a robust strength against physical, chemical, and environmental degradation. Nanoscale formulations such as nanoemulsion, nanosuspension, liposomes, and solid–lipid nanoparticles can be used to enhance solubility and to target them to desired cells with minimum harm to normal cells. However, many other approaches exist such as dendrimers, ceramic nanoparticles, and carbon nanotubes, which serve as a great vehicle in drug delivery to transport medicament at target sites. Therefore, the purpose of this review was to develop a better understanding of the problems associated with silymarin and approaches to overcome the difficulties to develop a better and stable formulation for food and pharmaceutical applications.  相似文献   

19.
Nanotechnology is an innovative approach that has potential applications in nutraceutical research. Phytochemicals have promising potential for maintaining and promoting health, as well as preventing and potentially treating some diseases. However, the generally low solubility, stability, bioavailability and target specificity, together with the side effects seen when used at high levels, have limited their application. Indeed, nanoparticles can increase solubility and stability of phytochemicals, enhance their absorption, protect them from premature degradation in the body and prolong their circulation time. Moreover, these nanoparticles exhibit high differential uptake efficiency in the target cells (or tissue) over normal cells (or tissue) through preventing them from prematurely interacting with the biological environment, enhanced permeation and retention effect in disease tissues and improving their cellular uptake, resulting in decreased toxicity, In this review, we outline the commonly used biocompatible and biodegradable nanoparticles including liposomes, emulsions, solid lipid nanoparticles, nanostructured lipid carriers, micelles and poly(lactic-co-glycolic acid) nanoparticles. We then summarize studies that have used these nanoparticles as carriers for epigallocatechin gallate, quercetin, resveratrol and curcumin administration to enhance their aqueous solubility, stability, bioavailability, target specificity and bioactivities.  相似文献   

20.
The ability to quantitatively predict the influence of a solubilization technology on oral absorption would be highly beneficial in rational selection of drug delivery technology and formulation design. Cyclodextrins (CDs) are cyclic oligosaccharides which form inclusion complexes with a large variety of compounds including drugs. There are many studies in the literature showing that complexation between CD and drug enhances oral bioavailability and some demonstrating failure of CD in bioavailability enhancement, but relatively little guidance regarding when CD can be used to enhance bioavailability. A model was developed based upon mass transport expressions for drug dissolution and absorption and a pseudo‐equilibrium assumption for the complexation reaction with CD. The model considers neutral compound delivered as a physical mixture with CD in both immediate release (IR) and controlled release (CR) formulations. Simulation results demonstrated that cyclodextrins can enhance, have no effect, or hurt drug absorption when delivered as a physical mixture with drug. The predicted influence depends on interacting parameter values, including solubility, drug absorption constant, binding constant, CD:drug molar ratio, dose, and assumed volume of the intestinal lumen. In general, the predicted positive influence of dosing as a physical mixture with CD was minimal, alluding to the significance of dosing as a preformed complex. The model developed enabled examination of which physical and chemical properties result in oral absorption enhancement for neutral drug administered as a physical mixture with CD, demonstrating the utility of modeling the influence of a drug delivery agent (e.g., CD) on absorption for rational dosage form design. Biotechnol. Bioeng. 2010; 105: 409–420. © 2009 Wiley Periodicals, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号